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WEAK LEFSCHETZ FOR CHOW GROUPS: INFINITESIMAL
LIFTING

D. PATEL and G. V. RAVINDRA

(communicated by Charles A. Weibel)

Abstract
Let X be a smooth projective variety over an algebraically

closed field k of characteristic zero, and let Y ⊂ X be a
smooth ample hyperplane section. The Weak Lefschetz conjec-
ture for Chow groups states that the natural restriction map
CHp(X)Q → CHp(Y )Q is an isomorphism for all p < dim(Y )/2.
In this note, we revisit a strategy introduced by Grothendieck to
attack this problem by using the Bloch–Quillen formula to fac-
tor this morphism through a continuous K-cohomology group on
the formal completion of X along Y . This splits the conjecture
into two smaller conjectures: one consisting of an algebraization
problem and the other dealing with infinitesimal liftings of alge-
braic cycles. We give a complete proof of the infinitesimal part
of the conjecture.

1. Introduction

In this note, we continue our study (see [13]) of weak Lefschetz-type theorems for
Chow groups modulo rational equivalence. We begin by recalling the weak Lefschetz
conjecture for Chow groups. In the following, let X be a smooth projective variety
over an algebraically closed field k of characteristic zero. Furthermore, let Y ⊂ X
denote a smooth ample hyperplane section.

Conjecture 1.1. The natural restriction map

CHp(X)Q −→ CHp(Y )Q

is an isomorphism for all p < dim(Y )/2.

When p = 1, the Chow group of divisors of any smooth, projective variety can
be identified with the Picard group, and the above conjecture is the Grothendieck–
Lefschetz theorem, which, in fact, holds integrally. Grothendieck’s proof (see [8]) for
Picard groups proceeded by first lifting line bundles from Y to the formal completion
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X of X along Y , and then to make use of the Lefschetz conditions to extend line
bundles from the formal scheme to the whole scheme X. Unfortunately, this strategy
does not directly apply to higher codimension cycles, since the Chow groups are
invariant under infinitesimal thickenings. However, the Bloch–Quillen formula allows
one to interpret the Chow groups in terms of K-cohomology, where one can try to
apply deformation theoretic methods. We briefly recall the formalism.

Let Ki,X denote the ith K-theory sheaf in the Zariski topology (cf. §2.3). Then the
Bloch–Quillen formula gives an isomorphism

Hp(X,Kp,X)
∼=−→ CHp(X).

One has a similar statement for Y . The restriction morphism from the conjecture is
then the restriction map

Hp(X,Kp,X)Q −→ Hp(Y,Kp,Y )Q,

and the conjecture is equivalent to showing that this map is an isomorphism for all
p < dim(Y )/2. Let Yn denote the nth infinitesimal neighborhood of Y in X. Then
we can consider (Ki,Yn) as a pro-sheaf on Y (cf. §2.3), and, in particular, consider its
continuous cohomology (see [10]). Then one can factor the above morphism (see [13,
§3]) as a composition:

Hp(X,Kp,X)Q −→ Hp
cont(X, (Kp,Yn))Q −→ Hp(Y,Kp,Y )Q.

Therefore, the following two conjectures imply Conjecture 1.1:

Conjecture 1.2. The natural morphism

Hp(X,Kp,X)Q −→ Hp
cont(X, (Kp,Yn))Q

is an isomorphism for all p < dim(Y )/2.

Conjecture 1.3. The natural morphism

Hp
cont(X, (Kp,Yn))Q −→ Hp(Y,Kp,Y )Q

is an isomorphism for all p < dim(Y )/2.

In [13], the authors proved conjecture 1.3 for p = 2. In this note, we give a complete
proof of this conjecture. In particular, we prove the following theorem.

Theorem 1.4. Let X be a smooth projective variety over an algebraically closed field
k of characteristic zero and Y a smooth ample hyperplane section. Then the natural
restriction map

Hp
cont(X, (Kq,Yn)) −→ Hp(Y,Kq,Y )

is an isomorphism for all p+ q < dim(Y ). In particular,

Hp
cont(X, (Kp,Yn)) −→ Hp(Y,Kp,Y )

is an isomorphism for all p < dim(Y )/2.

Note that the above theorem does not require one to tensor with Q. The basic
strategy to prove the above conjecture in the case of p = 2 was to use Bloch’s theorem
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(see [2]) describing the kernel of the (surjective) morphism

K2,Yn −→ K2,Y

in terms of 1-forms. The proof of Theorem 1.4 proceeds in a similar manner. Instead
of Bloch’s theorem, we make use of Goodwillie’s theorem, which relates the kernel of
the morphism

Kp,Yn
−→ Kp,Y

to cyclic homology (cf. §2.3). In particular, Goodwillie’s theorem gives an isomorphism
of this kernel with the kernel of the corresponding morphism at the level of cyclic
homology sheaves over Q

HC/Qp−1,Yn
−→ HC/Qp−1,Y .

Therefore, the bulk of the proof goes into computing the cohomology of these sheaves.
Since Y is smooth, its cyclic homology sheaves are well understood by the classical
Hochschild–Kostant–Rosenberg isomorphism. On the other hand, the cyclic homology
sheaves for Yn are not easy to understand. However, if one assembles all of these
together into a pro-sheaf, then one has a pro-analog of the classical Hochschild–
Kostant–Rosenberg isomorphism [4]. This reduces the proof of the theorem to some
standard computations with (pro) de Rham complexes.

In this note, we say nothing about conjecture 1.2, which is clearly the more difficult
conjecture. The morphism

Hp(X,Kp,X) −→ Hp
cont(X, (Kp,Yn))

factors as (see [13, §3])

Hp(X,Kp,X) −→ Hp(X,Kp,X) −→ Hp
cont(X, (Kp,Yn)).

The second arrow above can again be understood via cyclic homology (when p = 1,
this is an isomorphism, see [13, Proposition 3.1], and we hope to pursue this elsewhere.
On the other hand, it is not clear how to analyze the first arrow. Note that one has
a global analog of the above picture. Namely, there is a sequence of morphisms of
K-theory spectra:

K(X) −→ K(X) −→ Ktop(X) −→ K(Y ).

Here Ktop(X) is by definition the homotopy inverse limit of the spectra K(Yn). This
gives a diagram of global K-theory groups:

Kp(X) −→ Kp(X) −→ Ktop
p (X) −→ Kp(Y ).

Furthermore, in the case of K(X) and K(Y ), the Brown–Gersten–Quillen (BGQ)
spectral sequence allows one to relate the K-cohomology groups with the global K-
theory groups. While there is an analog of the BGQ-spectral sequence for Ktop(X),
with Ep,q

2 terms given by the continuous cohomology groups above, there seems to
be no such spectral sequence for Kp(X). The obstruction to the existence of such a
spectral sequence seems to be due to the lack of Zariski descent in this case. The
interested reader may refer to [3] and [7] for related work in a different setting.

We conclude this introduction with a brief description of the contents of each
section. In §2, we recall some preliminaries on pro-systems, K-theory, and Hochschild
homology (and its various other cousins). In §2.1, we recall some statements from the
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theory of pro-sheaves. In §2.2, we recall Hochschild homology and its cousins, and, in
particular, the pro-HKR isomorphism adapted to our setting of pro-sheaves. In §2.3,
after some preliminaries on K-theory, we recall Goodwillie’s theorem relating relative
K-theory along infinitesimal extensions to negative cyclic homology. In §2.4, we recall
the Kassel–Sletsjøe spectral sequence (adapted to our setting of pro-sheaves), which
relates Hochschild homology over a base field k with the Hochschild homology over
a subfield F of k. In §3, we compare continuous cohomology of cyclic homology pro-
sheaves on X with that of the cohomology of cyclic cohomology sheaves on Y . The
results of §2.2 reduce this to a computation of various sheaves of differentials and de
Rham cohomology sheaves. In §3.1, we recall a result of Ogus, which compares the
pro-system of de Rham cohomology sheaves on X and Y . In §3.2, we use Ogus’s result
and some basic results from algebraic geometry (Kodaira–Nakano vanishing) to prove
isomorphisms between the continuous cohomology of pro-sheaves of differentials on
X with the cohomology of sheaves of differentials on Y . In §3.3, the results of §3.2 are
extended, using the Kassel–Sletsjøe spectral sequence, to an arbitrary subfield F ⊂ k.
Finally, in §4 we give a proof of the main result.

2. Preliminaries

2.1. Preliminaries on pro-systems
For any abelian category A, let Pro(A) denote the category of pro-objects in A.

Let AN denote the full subcategory of the category of pro-objects consisting of pro-
objects indexed by N. We shall use the notation (An) to denote an object in this
category. Note that any object A ∈ A gives rise to a constant pro-system denoted
(A). We shall sometimes denote this simply by A. Recall that morphisms between
two objects (An) and (Bn) in this category are given by

HomAN((An), (Bn)) = lim←−lim−→HomA(Ai, Bj).

In particular, a system of morphisms fn : An → Bn compatible with the transition
maps An → An−1 and Bn → Bn−1 gives rise to a morphism of pro-systems. We shall
refer to such morphisms as strict morphisms. In the following, we shall also be inter-
ested in Ch(AN), the corresponding category of (co) chain complexes of pro-systems.
Note that both AN and Ch(AN) are abelian categories. In the following, by pro-
objects in A we will always mean objects in AN. We refer the reader to [1, Appendix]
for details regarding pro-objects.

Suppose that A is the category of sheaves of abelian groups on some topological
space X. In this situation, the corresponding category of pro-sheaves has enough
injectives. In particular, following Jannsen [10], we denote by Hp

cont(X, (Fn)) the
continuous cohomology groups of the given pro-system. In this setting, one has the
following standard exact sequence:

0 −→ R1lim←−H
p−1(X,Fn) −→ Hp

cont(X, (Fn)) −→ lim←−H
p(X,Fn) −→ 0.

If

0 −→ (F ′
n) −→ (Fn) −→ (F ′′

n) −→ 0

is a complex of strict morphisms, then it is exact if

0 −→ F ′
n −→ Fn −→ F ′′

n −→ 0
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is exact for all n. This follows from the fact that the kernel of a strict morphism
(fn) : (Fn)→ (Gn) is given by the pro-system (ker(fn)), and similarly for the cokernel.

2.2. Preliminaries on cyclic homology
In this section, we recall some background material on various non-commutative

homology theories. We refer to [16, Chapter 9] for details. In the following, k will
denote a fixed field of characteristic zero.

A mixed complex over k is a triple (C·, b, B) where (C·, b) is a chain complex of
k-vector spaces and B : C· → C ·[1] is a morphism of degree 1 such that B2 = 0.

Example 2.1. Given a commutative ring A over k, we can consider the mixed complex
(Ω·

A/k, 0, d). In particular, we put Ωp
A/k in degree p, b = 0 and B = d.

Given a mixed complex (C·, b, B) , one can associate to it the cyclic homology chain
complex HC(C ·) whose homology groups HCi(C

·) are called the cyclic homology
groups. One can also associate to it the negative cyclic (resp. periodic cyclic) homology
HN(C·) (resp. HP(C·) ) chain complex, whose homology groups are the negative
cyclic (resp. periodic cyclic) homology groups. Furthermore, the homology groups of
the underlying complex (C ·, b) will be referred to as the Hochschild homology groups.
These chain complexes are related by the following two standard exact sequences of
chain complexes:

1. 0 −→ C· −→ HC(C ·) −→ HC(C ·)[2] −→ 0.

2. 0 −→ HN(C·) −→ HP(C·) −→ HC(C·)[2] −→ 0.

A morphism of mixed complexes f : (C·, b, B)→ (C ′·, b′, B′) is said to be a quasi-
isomorphism if it induces a quasi-isomorphism of underlying complexes C· → C ′·. A
quasi-isomorphism of mixed complexes induces an isomorphism on the corresponding
Hochschild and cyclic homology groups [16, p. 348].

Given a commutative ringA over k, there is a standard mixed complex (C·(A), b, B)
associated to A. The corresponding Hochshild (respectively cyclic, negative cyclic, and

periodic cyclic) homology groups will be denoted by HH
/k
q (A) (respectively HC

/k
q (A),

HN
/k
q (A), and HP

/k
q (A)).

Let X be a scheme over k. Then one can sheafify the constructions of the pre-
vious paragraph. In particular, one can associate to X a mixed complex of sheaves
(C·(X), b, B). One has the corresponding Hochschild (respectively periodic cyclic,

negative cyclic, and cyclic) homology sheaves HH/k
q,X (resp. HP/k

q,X , HN /k
q,X , HC/kq,X)

over X.
If A is a commutative algebra over a field k of characteristic zero, then one has a

natural morphism (antisymmetrization map) of graded A-modules:

Ωq
A/k −→ HH/k

q (A).

Furthermore, if A is a (noetherian) regular algebra over k, then the above morphism is
an isomorphism. On the other hand, one has a natural morphism of mixed complexes

µ : (C ·(A), b, B) −→ (Ω·
A/k, 0, d),

which, at the level of homology, is multiplication by q + 1 in degree q when pre-
composed with

Ωq
A/k −→ HH/k

q (A).
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It follows that if A is regular, then µ is a quasi-isomorphism of mixed complexes. In
this setting, one has the following description for the cyclic homology of A over k:

HC/k
q (A) = Ωq

A/k/dΩ
q−1
A/k ⊕Hq−2

dR (A)⊕Hq−4
dR (A)⊕ · · · .

Here Hq
dR(A) is the cohomology of the de Rham complex (Ω·

A/k, d) of A over k. If X
is a smooth scheme over k, then we can sheafify these results. In particular, one has
an induced isomorphism of sheaves

Ωq
X/k −→ HH

/k
q,X .

Furthermore, the natural morphism of mixed complexes

µ : (C·(X), b, B) −→ (Ω·
X/k, 0, d)

is a quasi-isomorphism. It follows that one has an isomorphism

HC/kq,X −→ Ωq
X/k/dΩ

q−1
X/k ⊕H

q−2
dR (X/k)⊕Hq−4

dR (X/k)⊕ · · · .

One can generalize the result of the previous paragraph to the pro-setting. We
shall assume for the remainder of this section that A is an algebra essentially of finite
type and smooth over a field k of characteristic zero and that F is a subfield of k. Let
I ⊂ A be an ideal. Then one has the following theorem due to Cortiñas, Haesemeyer,
and Weibel.

Theorem 2.2. ([4, Theorem 3.2, Proposition 3.5]) The induced morphism of graded
pro-A-modules

(Ωq
(A/Im)/F ) −→ (HH/F

q (A/Im))

is a pro-isomorphism.

Proof. This is precisely Theorem 3.2 of loc. cit. when F = k and Proposition 3.5 for
general F .

On the other hand, one has a morphism of pro-mixed complexes

µ : (C·(A/Im), b, B) −→ (Ω·
(A/Im)/F , 0, d).

Again, for each m, the composition

Ωq
(A/Im)/F −→ HH/F

q (A/Im) −→ Ωq
(A/Im)/F

is multiplication by q + 1.

Lemma 2.3. In the above setting, µ is a quasi-isomorphism of pro-complexes.

Proof. We must show that the induced morphism

(HH/F
q (A/Im)) −→ (Ωp

(A/Im)/F )

is an isomorphism of graded pro-modules. By the previous remarks we have that the
composition

(Ωq
(A/Im)/F ) −→ (HH/F

q (A/Im)) −→ (Ωq
(A/Im)/F )

is multiplication by q + 1, and the first arrow is an isomorphism of pro-modules. Since
F ⊃ Q, it follows that the right morphism divided by q + 1 is an inverse of the first
morphism. Therefore, the right arrow is an isomorphism.
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Corollary 2.4. One has an isomorphism of pro-modules

(HC/F
q (A/Im)) −→ (Ωq

(A/Im)/F /dΩ
q−1
(A/Im)/F )⊕ (Hq−2

dR ((A/Im)/F ))⊕ · · · .

Suppose now that X is a smooth scheme essentially of finite type over a field k of
characteristic zero. Let Y ⊂ X denote a closed smooth subvariety of X, and let Yn

denote the nth infinitesimal thickening of Y in X. In this situation, we can sheafify
the previous constructions to get a morphism of mixed complexes of pro-sheaves

µ : ((C·(Yn), b, B)) −→ ((Ω·
Yn/k

, 0, d)).

Lemma 2.5. Let X be as above. Then the natural antisymmetrization map

(Ωq
Yn/k

) −→ (HH/k
q,Yn

).

is a pro-isomorphism.

Proof. It is enough to check this locally on X. On the other hand, in the affine case
this is precisely the theorem of Cortiñas, Haesaemeyer, and Weibel recalled above.

Corollary 2.6. Let X be a smooth variety over a field k, and let F ⊂ k be a sub-
field. Suppose Y ⊂ X is a smooth closed subvariety and Yn is the nth infinitesimal
thickening of Y in X. Then one has an isomorphism of (graded) pro-sheaves on Y

(HC/Fq,Yn
) −→ (Ωq

Yn/F
/dΩq−1

Yn/F
)⊕ (Hq−2

dR (Yn/F ))⊕ (Hq−4
dR (Yn/F )) · · · .

Proof. It is enough to show that

µ : (C·(Yn)) −→ (Ω·
Yn/F

).

is a quasi-isomorphism of mixed complexes of pro-sheaves. Again, this can be checked
locally on X. In this case, it is precisely Lemma 2.3 above.

2.3. Preliminaries on K-theory

For any schemeX, we let Kperf(X) denote the (non-connective) K-theory spectrum
of perfect complexes on X and Kperf

q (X), the corresponding homotopy groups. It
follows from [15], that if X is a smooth scheme then the natural map K(X)→
Kperf(X) is a weak equivalence, where K(X) is the usual K-theory spectrum of vector
bundles on X. In general, if X has an ample family of line bundles then Ki(X) =

Kperf
i (X) for all i ⩾ 0.

We denote by KX the pre-sheaf of spectra on X that associates to an open U ⊂ X
the spectrum K(U), and similarly forKperf. Then the corresponding homotopy sheaves

are given by Ki,X and Kperf
i,X . By definition, Ki,X is the sheaf associated to the pre-sheaf

whose sections over U ⊂ X are given by Ki(U), and similarly for Kperf
i,X .

Remark 2.7. Strictly speaking, Kperf
X is the pre-sheaf that takes the DG-category of

perfect complexes on U to the spectrum Kperf(U). To avoid dealing with pseudo-
functors, one should take some rectification of the corresponding (pseudo) pre-sheaf
of DG-categories. We refer to [17] for details.
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Suppose Y ⊂ X is a closed subvariety and Yn is its nth infinitesimal neighborhood.
The we can consider Kperf

Yn
as pre-sheaves on Y . Let Kperf

(Y,Yn)
denote the homotopy

fiber of

Kperf
Yn
−→ Kperf

Y .

In particular, one has a long exact sequence of homotopy sheaves

· · · −→ Kperf
i,(Yn,Y ) −→ K

perf
i,Yn
−→ Kperf

i,Y −→ K
perf
i−1,(Yn,Y ) −→ · · · ,

where Kperf
i,(Yn,Y ) are the sheaves of homotopy groups associated to Kperf

(Yn,Y ).

Remark 2.8. In the following, we shall always assume that our (presheaves of) spectra
and presheaves of spectra are fibrant-cofibrant. In particular, we choose once and for
all a functorial fibrant-cofibrant replacement.1

There is a standard way to associate a pre-sheaf of spectra to a chain complex of
sheaves such that the homotopy sheaves of the corresponding pre-sheaf of spectra are
the homology sheaves of the given complex. Given a schemeX/k and a subfield F ⊂ k,

let HH/F
X denote the corresponding Hochschild homology pre-sheaf of spectra relative

to F . Similarly, let HN /F
X (resp. HC/FX and HP/F

X ) denote the corresponding negative
cyclic (resp. cyclic and periodic cyclic) homology presheaves of spectra. Just as above,

we let HH/F
(Yn,Y ) denote the homotopy fiber of the restriction map HH/F

Yn
→ HH/F

Y .

One defines HN /F
(Yn,Y ), HC

/F
(Yn,Y ), and HP

/F
(Yn,Y ) in a similar manner. The short exact

sequence

0 −→ HN(C·) −→ HP(C ·) −→ HC(C ·)[−2] −→ 0

sheafifies to give a cofibre sequence of presheaves of spectra:

HN /F
X −→ HP/F

X −→ Ω−2HC/FX .

For the inclusions Y ↪→ Yn, this gives rise to a commutative diagram of presheaves of
spectra:

HN /F
(Yn,Y )

//

��

HP/F
(Yn,Y )

//

��

Ω−2HC/F(Yn,Y )

��
HN /F

Yn

//

��

HP/F
Yn

//

��

Ω−2HC/FYn

��
HN /F

Y
// HP/F

Y
// Ω−2HC/FY

By a theorem of Goodwillie [5, Theorem II.5.1], HP is invariant under infinitesimal
thickenings. In particular, the natural morphism

HP/F
Yn
−→ HP/F

Y

is a weak equivalence. It follows that HP/F
(Yn,Y ) is contractible, and, in particular, the

1In this note, we work with the local projective model structure on the category of pre-sheaves of
spectra.
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corresponding homotopy sheaves are trivial. It follows that one has an isomorphism
of sheaves

HC/Fi−1,(Yn,Y ) −→ HN
/F
i,(Yn,Y ).

Suppose nowX is a scheme over a field k of characteristic zero. Let Y ⊂ X denote a
closed subvariety, and let Yn denote its nth infinitesimal thickening. In this situation,
Goodwillie’s theorem [6, Theorem 4.5] allows one to identify the sheaves Kperf

(Yn,Y )

with negative cyclic homology. We shall use this result in the following to reduce the
computation of relative K-theory to that of relative negative cyclic homology. There
is a natural chern character

Kperf
X → HN /Q

X .

This gives rise to a diagram of presheaves of spectra:

Kperf
(Yn,Y )

//

��

Kperf
Yn

//

��

Kperf
Y

��
HN /Q

(Yn,Y )
// HN /Q

Yn

// HN /Q
Y

Goodwillie’s theorem says that the left vertical arrow is a weak equivalence. In par-
ticular, it induces an isomorphism on the corresponding sheaves of homotopy groups.
Combining the results of the previous paragraph, one has an isomorphism

Ki,(Yn,Y ) −→ HC
/Q
i−1,(Yn,Y ). (1)

We now recall a pro-sheaf version of the previous results. For the rest of this section,
we assume that X is a smooth variety over a field k of characteristic zero and Y is
a closed smooth subvariety. As before, Yn is the nth infinitesimal neighborhood of Y
in X. By [13, Lemma 5.9], the natural restriction maps

Kperf
i,Yn
−→ Kperf

i,Y

and

HC/Fi,Yn
−→ HC/Fi,Y

are surjective. It follows that we have short exact sequences

0 −→ Kperf
i,(Yn,Y ) −→ K

perf
i,Yn
−→ Kperf

i,Y −→ 0,

and

0 −→ HC/Fi,(Yn,Y ) −→ HC
/F
i,Yn
−→ HC/Fi,Y −→ 0.

This gives rise to a commutative diagram of pro-sheaves with exact rows:

0 // (Kperf
i,(Yn,Y ))

//

��

(Kperf
i,Yn

) //

��

(Kperf
i,Y ) //

��

0

0 // (HC/Qi−1,(Yn,Y ))
// (HC/Qi−1,Yn

) // (HC/Qi−1,Y )
// 0

We record the following corollary for future reference:
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Corollary 2.9. Let X and Y be as above. Then, by (1), one has an isomorphism

Hp
cont(Y, (K

perf
q,(Yn,Y ))) −→ Hp

cont(Y, (HC
/Q
q−1,(Yn,Y ))).

2.4. Pro-Kassel–Sletsjøe spectral sequence
In the following, we will need to compute continuous cohomology groups on a

scheme Y/k with coefficients given by the pro-system (HH/Q
p,Yn

) (with notation as
in the previous section). We shall achieve this by first using geometric methods to
compute the analogous result over k and then descending to Q. The Kassel–Sletsjøe
spectral sequence ([11, 4.3a]; [4, Lemma 3.4]) allows one to pass from k to a subfield
F . We recall the relevant statements in our setting of pro-sheaves.

Given a commutative algebra A over k, one has a natural decomposition for
Hochschild homology:

HH/k
p (A) ∼= ⊕HH(i),/k

p (A).

Furthermore, one has HH
(p),/k
p (A) = Ωp

A/k and HH
(p),/k
p (A) = 0 for i > p. If A is reg-

ular, then one also has HH
(i),/k
p (A) = 0 for all i < p.

One can sheafify the construction of the last paragraph. In particular, for any
scheme X/k, one has a decomposition

HH/k
p,X
∼= ⊕HH(i),/k

p,X .

If X is smooth, then the only non-vanishing term on the right is the i = p term, where

one has HH(p),/k
p,X = Ωp

X/k.

Let F be a subfield of k, and let A be a k-algebra. Then one has the following
spectral sequence:

Lemma 2.10. ([11, 4.3a]) For each p ⩾ 1 there is a bounded second quadrant homo-
logical spectral sequence (0 ⩽ i < p, j ⩾ 0)

pE
1
−i,i+j = Ωi

k/F ⊗k HH
(p−i),/k
p−i+j (A) −→ HH

(p),/F
p+j (A).

One can sheafify this spectral sequence to obtain a spectral sequence of sheaves
on X

pE
1
−i,i+j = Ωi

k/F ⊗k HH(p−i),/k
p−i+j,X −→ HH

(p),/F
p+j,X

Suppose now that X/k is smooth and Y is a closed subvariety of X, and Yn is the nth
infinitesimal neighborhood of Y . Then one obtains a spectral sequence of pro-sheaves
on Y

pE
1
−i,i+j = (Ωi

k/F ⊗k HH(p−i),/k
p−i+j,Yn

) −→ (HH(p),/F
p+j,Yn

)

Since X is smooth, by Lemma 2.5 and the previous remarks, the only non-zero E1

terms are the ones where j = 0, and, in this case, one has

pE
1
−i,i+j = (Ωi

k/F ⊗k Ωp−i
Yn/k

).

In particular, one has has a finite decreasing exhaustive filtration F · of (Ωp
Yn/F

) such

that

griF := F i/F i+1 ∼= ((Ωi
k/F ⊗k Ωp−i

Yn/k
)).

Note that F 0 = (Ωp
Yn/F

) and F p+1 = 0.
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3. Sheaves of Differentials

In the following, let X be as before, a smooth projective variety over k. We let
Y ⊂ X denote a smooth subvariety, and Yn the nth infinitesimal neighborhood of
Y in X. In particular, if I is the ideal of definition of Y , then In+1 is the ideal of
definition of Yn and Y = Y0. Let (X,OX) denote the corresponding formal scheme.
Let Ωp

X/k, Ω
p
Yn/k

, and Ωp
X/k denote the corresponding sheaves of differential forms.

If F is a subfield of k, then let Ωp
X/F , Ω

p
Yn/F

, and Ωp
X/F denote the corresponding

sheaves of differential forms over F . Finally, let (Ω·
X/F , d), (Ω

·
Yn/F

, d) , and, (Ω·
X/F , d)

denote the corresponding de Rham complexes.

3.1. De Rham cohomology sheaves
We start by recalling a theorem of Ogus comparing the de Rham cohomology

sheaves H∗
dR(Yn/F ) and H∗

dR(Y/F ).

Theorem 3.1. ([12, Theorem 1.3]) The natural restriction map of de Rham com-
plexes

Ω·
X/F −→ Ω·

Yn/F

is a quasi-isomorphism. In particular, the natural restriction maps

H·
dR(Yn/F ) −→ H·

dR(Y/F ).

are isomorphisms.

Note that in loc. cit. this result is proved when X is smooth over k = C; however,
the same proof applies to any k of characteristic zero. More generally, Ogus’s proof
also applies to de Rham complexes over subfields F ⊂ k.

3.2. Continuous cohomology of cotangent sheaves over k
In this section, we assume further that Y is a smooth ample hyperplane section.

For any subfield F ⊂ k, one has a natural surjection of sheaves of abelian groups on Y

Ω1
Yn/F

−→ Ω1
Y/F −→ 0.

Let Ω1
(Yn,Y )/F denote the kernel of this morphism. Similarly, one has a natural sur-

jection

Ωq
Yn/F

−→ Ωq
Y/F −→ 0.

Again, let Ωq
(Yn,Y )/F denote the kernel. In [13], the authors proved the q = 1 case of

the following theorem.

Theorem 3.2. Let X be a smooth projective variety over k, and let Y ⊂ X be a
smooth ample hyperplane section. Then the natural restriction map

Hp(Y,Ωq
Yn/k

) −→ Hp(Y,Ωq
Y/k)

is an isomorphism for p+ q < dim(Y )− 1 and an injection for p+ q = dim(Y )− 1.
In particular,

Hp(Y,Ωq
(Yn,Y )/k) = 0

for all p+ q < dim(Y ).
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Corollary 3.3. Let X and Y be as in the theorem. Then the natural restriction map

Hp
cont(Y, (Ω

q
Yn/k

)) −→ Hp(Y,Ωq
Y/k)

is an isomorphism for p+ q < dim(Y )− 1 and an injection for p+ q = dim(Y )− 1.

Proof. Recall that one has an exact sequence

0 −→ R1lim←−H
p−1(Y,Ωq

Yn/k
) −→ Hp

cont(Y, (Ω
q
Yn/k

)) −→ lim←−H
p(Y,Ωq

Yn/k
) −→ 0.

Theorem 3.2 implies that the pro-system (Hp−1(Y,Ωq
Yn/k

)) satisfies the Mittag–Leffler

condition for all p+ q < dim(Y ). Therefore, the left-most term in the above exact
sequence is zero for all p+ q < dim(Y ). Again, by the previous theorem, one has an
isomorphism

lim←−H
p(Y,Ωq

Yn/k
) −→ Hp(Y,Ωq

Y/k)

for p+ q < dim(Y )− 1. This gives the desired isomorphism for p+ q < dim(Y )− 1.
Suppose now that p+ q = dim(Y )− 1. In this case, the R1 term above still vanishes.
Furthermore, since taking inverse limits is left exact, the previous theorem gives an
injection

lim←−H
p(Y,Ωq

Yn/k
) −→ Hp(Y,Ωq

Y/k).

We begin with some preliminary lemmas.

Lemma 3.4. Let X and Y be as in the theorem. For all q > 0 and n ⩾ 0, one has
an exact sequence of sheaves on Y

0 −→ Ωq−1
Y/k ⊗OX

In+1/In+2 −→ Ωq
X/k ⊗OX

OYn −→ Ωq
Yn/k

−→ 0.

Proof. By Lemma 4.2 in [13], one has the following cotangent sheaf sequence:

0→ In+1/In+2 → Ω1
X/k ⊗OX

OYn → Ω1
Yn/k

→ 0. (2)

Lemma 18.4 in [14], (applied twice; the second time with a suitable twist) gives
rise to a four-term sequence

Ωq−2
X/k ⊗OX In+2/In+3 −→ Ωq−1

X/k ⊗OX In+1/In+2 −→ Ωq
X/k|Yn −→ Ωq

Yn/k
−→ 0.

(3)
By op. cit. this sequence is exact everywhere except perhaps at the second term,
where one first directly checks that the composite of the first and second maps (from
the left) is zero.

Further, when n = 0, the cokernel of the first map above can be computed, so that
we get the exact sequences (see [9, 5.16 (d), p. 126])

0→ I/I2 ⊗OX Ωq−1
Y/k → Ωq

X/k ⊗OX OY → Ωq
Y/k → 0 and (4)

In+2/In+3 ⊗OX
Ωq−2

X/k → Ωq−1
X/k ⊗OX

In+1/In+2 → Ωq−1
Y/k ⊗ I

n+1/In+2 → 0. (5)

Putting (5) and (3) together, we get an exact sequence

Ωq−1
Y/k ⊗OX

In+1/In+2 −→ Ωq
X/k ⊗OX

OYn −→ Ωq
Yn/k

−→ 0.

Now all that remains to be checked is left exactness in the above sequence. This is
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done by noting that the composite

Ωq−1
Y/k ⊗OX

In+1/In+2 −→ Ωq
X/k ⊗OX

OYn −→ Ωq
X/k ⊗OX

OY

is the same as the composite of the injective maps

Ωq−1
Y/k ⊗OX

In+1/In+2 −→ Ωq
X/k ⊗OX

In/In+1 −→ Ωq
X/k ⊗OX

OY

(the map on the left is obtained by tensoring the injective map in (4) with the locally
free sheaf In/In+1 and hence is injective). This proves the desired left exactness.

Remark 3.5. Alternatively, as pointed out by the referee, the previous lemma can also
be proved by first noting that the statement is local in the etale topology on X, and
therefore one is reduced to Y = Ad−1 and X = Ad, where the statement is clear.

Lemma 3.6. Let X and Y be as above. Then

Hp(Y,Ωq
X/k|Y ⊗OX In/In+1) = 0

for all 0 ⩽ p+ q < dim(Y ).

Proof. We have an exact sequence

0 −→ Ωq−1
Y/k ⊗ I/I

2 −→ Ωq
X/k|Y → Ωq

Y/k −→ 0.

Tensoring the above exact sequence with the locally free sheaf In/In+1 gives an exact
sequence

0 −→ Ωq−1
Y/k ⊗ I/I

2 ⊗ In/In+1 −→ Ωq
X/k|Y ⊗ I

n/In+1 → Ωq
Y/k ⊗ I

n/In+1 −→ 0.

Then, by Kodaira–Nakano vanishing, one has that Hp(Y,Ωq−1
Y/k ⊗ I/I

2 ⊗ In/In+1) =

0 for all p+ q − 1 < dim(Y ). It follows that the cohomology of the middle term
and the right-most term are isomorphic for all p+ q < dim(Y ). On the other hand,
Kodaira–Nakano vanishing applied to the right-most term gives that Hp(Y,Ωq

Y/k ⊗
In/In+1) = 0 for all p+ q < dim(Y ). Therefore, Hp(Y,Ωq

X/k ⊗ I
n/In+1) = 0 for all

p+ q < dim(Y ).

Proof. (Theorem 3.2) Consider the following commutative diagram of sheaves on Y :

0

��
Ωq

X/k|Yn ⊗OYn
In/In+1

��
0 // Ωq−1

Y/k ⊗OX In+1/In+2 //

��

Ωq
X/k ⊗OX OYn

//

��

Ωq
Yn/k

//

��

0

0 // Ωq−1
Y/k ⊗OX

In/In+1 // Ωq
X/k ⊗OX

OYn−1
//

��

Ωq
Yn−1/k

// 0

0
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Here the left-most vertical arrow is zero. The bottom two rows are exact by Lemma 3.4.
The middle column is given by tensoring the standard exact sequence

0 −→ In/In+1 −→ OYn −→ OYn−1 −→ 0

with the locally free sheaf Ωp
X/k|Yn and is therefore also exact. By Lemma 3.6,

Hp(Y,Ωq
X |Y ⊗ I

n/In+1) = 0

for all p+ q < dim(Y ). Therefore, taking the long exact sequence in cohomology
associated to the middle vertical column in the diagram above gives isomorphisms

Hp(Y,Ωq
X/k ⊗OX

OYn) −→ Hp(Y,Ωq
X/k ⊗OX

OYn−1)

for all p+ q < dim(Y )− 1 and an injection when p+ q = dim(Y )− 1. Taking coho-
mology of the horizontal exact sequences in the diagram above gives the following
diagram of long exact sequences:

// Hp(Y,Ωq
X/k ⊗OX

OYn
) //

��

Hp(Y,Ωq
Yn/k

) //

��

Hp+1(Y,Ωq−1
Y/k ⊗ I

n+1/In+2)

��

//

// Hp(Y,Ωq
X/k ⊗OX

OYn−1) // Hp(Y,Ωq
Yn−1/k

) // Hp+1(Y,Ωq−1
Y/k ⊗ I

n/In+1) //

By the previous remarks and Lemma 3.6, it follows that the restriction map

Hp(Y,Ωq
Yn/k

) −→ Hp(Y,Ωq
Yn−1/k

)

is an isomorphism when p+q < dim(Y )−1 and an injection when p+q=dim(Y )−1.
In particular, the restriction morphism

Hp(Y,Ωq
Yn/k

) −→ Hp(Y,Ωq
Y/k)

is an isomorphism when p+q < dim(Y )−1, and an injection when p+q=dim(Y )−1.
Finally, applying this result to the long exact sequence in cohomology associated

to the short exact sequence

0 −→ Ωq
(Yn,Y )/k −→ Ωq

Yn/k
−→ Ωq

Y/k −→ 0

now gives the second part of the theorem.

In the rest of this section, we use the previous results to investigate the following
morphism:

Hp
cont(Y, (Ω

q
Yn/k

/dΩq−1
Yn/k

)) −→ Hp(Y,Ωq
Y/k/dΩ

q−1
Y/k).

In particular, we will prove the following theorem:

Theorem 3.7. Let X and Y be as in Theorem 3.2 and suppose that q ⩾ 1. Then the
natural restriction morphism

Hp
cont(Y, (Ω

q
Yn/k

/dΩq−1
Yn/k

)) −→ Hp(Y,Ωq
Y/k/dΩ

q−1
Y/k).

is an isomorphism for all p+q < dim(Y )−1 and an injection for p+q=dim(Y )−1.
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We begin with some preliminary remarks. First, note that we have a diagram of
pro-sheaves:

0 // (dΩq−1
Yn/k

) //

��

(Ωq,cl
Yn/k

) //

��

(Hq
dR(Yn/k)) //

��

0

0 // dΩq−1
Y/k

// Ωq,cl
Y/k

// Hq
dR(Y/k)

// 0

Here Ωp,cl
Yn/k

denotes the sheaf of (locally) closed forms andHq
dR(Yn/k) are the usual de

Rham cohomology sheaves. In particular, the rows in the above commutative diagram
are exact by definition. Furthermore, by Theorem 3.1, the pro-systems (Hq

dR(Yn/k))
are constant and, in particular, isomorphic to the constant pro-system (Hq

dR(Y/k)).
It follows that one has isomorphisms

Hp
cont(Y, (H

q
dR(Yn/k))) −→ Hp(Y,Hq

dR(Y/k)).

Proposition 3.8. The natural morphism

Hp
cont(Y, (dΩ

q−1
Yn/k

)) −→ Hp(Y, dΩq−1
Y/k)

is an isomorphism for p+ q < N and an injection for p+ q = N if and only if the
morphism

Hp
cont(Y, (Ω

q,cl
Yn/k

)) −→ Hp(Y,Ωq,cl
Y/k)

is an isomorphism for p+ q < N and an injection for p+ q = N .

Proof. The commutative diagram above induces the following diagram in cohomology
where the rows are exact:

// Hp
cont(Y, (dΩ

q−1
Yn/k

)) //

��

Hp
cont(Y, (Ω

q,cl
Yn/k

)) //

��

Hp
cont(Y, (H

q
dR(Yn/k))) //

��
// Hp(Y, dΩq−1

Y/k)
// Hp(Y,Ωq,cl

Y/k)
// Hp(Y,Hq

dR(Y/k))
//

The result is now a consequence of the 5-lemma and the fact that the restriction maps

Hp
cont(Y, (H

q
dR(Yn/k))) −→ Hp(Y,Hq

dR(Y/k))

are isomorphisms.

Proof. (Theorem 3.7) Consider the following two statements:

(1) The following morphism is an isomorphism for all p+ q < dim(Y )− 1 and injec-
tive for p+ q = dim(Y )− 1:

Hp
cont(Y, (Ω

q
Yn/k

/dΩq−1
Yn/k

)) −→ Hp(Y,Ωq
Y/k/dΩ

q−1
Y/k).

(2) The following morphism is an isomorphism for all p+ q < dim(Y )− 1 and injec-
tive for p+ q = dim(Y )− 1:

Hp
cont(Y, (dΩ

q
Yn/k

)) −→ Hp(Y, dΩq
Y/k).
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We shall prove both of these statements simultaneously via induction on q. We begin
with the base case q = 1. Consider the following commutative diagram with exact
rows:

0 // (dOYn) //

��

(Ω1
Yn/k

) //

��

(Ω1
Yn/k

/dOYn) //

��

0

0 // dOY
// Ω1

Y/k
// Ω1

Y/k/dOY
// 0

By considering the diagram of long exact sequences in cohomology associated to the
above diagram and applying Corollary 3.3, one concludes that statement (1) for q = 1
follows if the natural restriction map

Hp
cont(Y, (dOYn)) −→ Hp(Y, dOY )

is an isomorphism for all p < dim(Y )− 1 and an injection for p = dim(Y )− 1. On
the other hand, we have a commutative diagram with exact rows

0 // (k) //

��

(OYn)
//

��

(dOYn)
//

��

0

0 // k // OY
// dOY

// 0

Therefore,

Hp
cont(Y, (dOYn)) −→ Hp(Y, dOY )

is an isomorphism if and only if

Hp
cont(Y, (OYn)) −→ Hp(Y,OY )

is an isomorphism. The result now follows from the exact sequences

0 −→ I/In+1 −→ OYn −→ OY −→ 0

and Kodaira–Nakano vanishing. This proves statement (1) for q = 1. Now for state-
ment (2), in the case q = 1, consider the following diagram with exact rows:

0 // (Ω1,cl
Yn/k

) //

��

(Ω1
Yn/k

) //

��

(dΩ1
Yn/k

) //

��

0

0 // Ω1,cl
Y/k

// Ω1
Y/k

// dΩ1
Y/k

// 0

Just as above, it is enough to show that the restriction map

Hp
cont(Y, (Ω

1,cl
Yn/k

)) −→ Hp(Y,Ω1,cl
Y/k)

is an isomorphism for p < dim(Y )− 1 and an injection for p = dim(Y )− 1. By Propo-
sition 3.8, this is equivalent to showing that the restriction map

Hp
cont(Y, (dOYn)) −→ H1(Y, dOY )

is an isomorphism for all p < dim(Y )− 1 and an injection for p = dim(Y )− 1. We
have already seen this above.
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Suppose that the statements hold for all fixed i < q. First, note that we have a
commutative diagram with exact rows

0 // (dΩq−1
Yn/k

) //

��

(Ωq
Yn/k

) //

��

(Ωq
Yn/k

/dΩq−1
Yn/k

) //

��

0

0 // dΩq−1
Y/k

// Ωq
Y/k

// Ωq
Y/k/dΩ

q−1
Y/k

// 0

This gives the following commutative diagram with exact rows:

// Hp
cont(Y, (Ω

q
Yn/k

)) //

��

Hp
cont(Y, (Ω

q
Yn/k

/dΩq
Yn/k

)) //

��

Hp+1
cont(Y, (dΩ

q−1
Yn/k

)) //

��
// Hp(Y,Ωq

Y/k)
// Hp(Y,Ωq

Y/k/dΩ
q−1
Y/k)

// Hp+1(Y, dΩq−1
Y/k)

//

Therefore, statement (1) follows from the induction hypothesis, Corollary 3.3, and a
diagram chase. It remains to prove statement (2). Now consider the following com-
mutative diagram with exact rows:

0 // (Ωq,cl
Yn/k

) //

��

(Ωq
Yn/k

) //

��

(dΩq
Yn/k

) //

��

0

0 // Ωq,cl
Y/k

// Ωq
Y/k

// dΩq
Y/k

// 0

This gives the following diagram in cohomology:

// Hp
cont(Y, (Ω

q
Yn/k

)) //

��

Hp
cont(Y, (dΩ

q
Yn/k

)) //

��

Hp+1
cont(Y, (Ω

q,cl
Yn/k

)) //

��
// Hp(Y,Ωq

Y/k)
// Hp(Y, dΩq

Y/k)
// Hp+1(Y,Ωq,cl

Y/k)
//

Once again, the result follows from an application of Corollary 3.3, Proposition 3.8,
and a diagram chase.

3.3. Continuous cohomology of cotangent sheaves over F
We use the same notation and hypothesis as in the previous section. In particular,

X is a smooth projective variety over k and F ⊂ k is a fixed subfield. In this section, we
generalize the main theorems of the previous section to similar results for differentials
relative to F . These results will be used in the next section to compute cyclic homology
relative to F = Q.

Theorem 3.9. Let X and Y be as in the theorem. Then the natural restriction map

Hp
cont(Y, (Ω

q
Yn/F

)) −→ Hp(Y,Ωq
Y/F )

is an isomorphism for all p+ q < dim(Y )− 1 and an injection for p+ q = dim(Y )− 1.
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Proof. The Kassel–Sletsjøe spectral sequence (cf. §2.4) gives a filtration F · of (Ωq
Yn/F

)

such that

griF := F i/F i+1 ∼= ((Ωi
k/F ⊗F Ωq−i

Yn/k
)),

F 0 = (Ωq
Yn/F

), and F q+1 = 0. Recall that if V is a finite-dimensional vector space

over k, then one has an isomorphism

Hp(Y, V ⊗k F) ∼= Hp(Y,F)⊗k V.

Filtering an arbitrary vector space by finite-dimensional subspaces and using that
cohomology commutes with direct limits gives the same result for arbitrary V . In
particular, one has isomorphisms

Hp(Y,Ωi
k/F ⊗k Ωq−i

Y/k)
∼= Hp(Y,Ωq−i

Y/k)⊗k Ωi
k/F .

One has a similar result for continuous cohomology. Therefore, the result now follows
by recurrence, using the filtration above, and the fact that it holds over k. We leave
the details to the reader.

Theorem 3.10. Let X and Y be as above, and suppose that 1 ⩽ q. Then the natural
restriction morphism

Hp
cont(Y, (Ω

q
Yn/F

/dΩq−1
Yn/F

)) −→ Hp(Y,Ωq
Y/F /dΩ

q−1
Y/F )

is an isomorphism for all p+ q < dim(Y )− 1 and an injection for p+ q = dim(Y )− 1.

Proof. Given the previous theorem, and Theorem 3.1, the proof of this theorem
is exactly the same as that of Theorem 3.7. Note that Proposition 3.8 also holds
over F .

4. Main Theorem

As in the previous sections, we let X denote a smooth projective variety over k,
and Y ⊂ X is a smooth ample hyperplane section. Let Yn denote the nth infinitesimal
thickening of Y in X.

Theorem 4.1. The natural restriction map

Hp
cont(Y, (Kq,Yn)) −→ Hp(Y,Kq,Y )

is an isomorphism for all p+ q < dim(Y ) and injective for p+ q = dim(Y ).

Proof. Recall that we have an exact sequence of pro-sheaves

0 −→ (Kq,(Yn,Y )) −→ (Kq,Yn)) −→ Kq,Y −→ 0.

Therefore, it is enough to show that

Hp
cont(Y, (Kq,(Yn,Y ))) = 0

for all p+ q < dim(Y ) + 1. By Corollary 2.9, it is enough to show that

Hp
cont(Y, (HC

/Q
q−1,(Yn,Y ))) = 0

for p+ q < dim(Y ) + 1. For the latter, it is enough to show that the natural restriction
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maps

Hp
cont(Y, (HC

/Q
q−1,Yn

)) −→ Hp(Y,HC/Qq−1,Y )

is an isomorphism for p+ q < dim(Y ) and an injection for p+ q = dim(Y ). On the
other hand, by Corollary 2.6

(HC/Qq,Yn
) ∼= (Ωq

Yn/Q/dΩ
q−1
Yn/Q)⊕ (Hq−2

dR (Yn/Q))⊕ (Hq−4
dR (Yn/Q)) · · · .

The result now follows from Theorem 3.10 and Theorem 3.1.

Corollary 4.2. The natural restriction map

Hp
cont(X, (Kp,Yn)) −→ Hp(Y,Kp,Y )

is an isomorphism for all p < dim(Y )/2.
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