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1. Introduction

In this article, we continue our work [1] on the higher Grassmann codes, which are 
defined as follows. Let Fq denote the finite field with q elements, where q is a power 
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of a prime number. For positive integers l and m such that l ≤ m, let V denote the 
vector space F

m

q , where Fq stands for an algebraic closure of Fq. Let Gr(l, V ) denote 

the Grassmann variety of l-dimensional subspaces of V . Let ι : Gr(l, V ) → P ((
∧l

V )⊗r)
denote the projective embedding of Gr(l, V ) that is obtained by composing the diagonal 
Plücker embedding with the Segre embedding of 

∏r
i=1 P (

∧l
V ). The r-th order (higher) 

Grassmann code is the code determined by the projective system corresponding to ι. 
Note that an r-th order projective Reed-Müller code can be regarded as an r-th order 
Grassmann code.

In [1], we found the parameters of higher Grassmann codes under the assumption that 
2 ≤ r < q − 1. For the classical case, that is, when r = 1, the parameters of Grassmann 
codes were studied previously; Ryan and Ryan detailed the binary case in [12], and the 
parameters of the q-ary case were determined by Nogin, [9]. In the present article, we 
further relax the assumption on r to the interval

1 ≤ r ≤ (q − 1)(dimGr(l, V )) − 1.

Note that this is the true upper bound to get interesting codes. Once the degree of 
our code exceeds the critical number (q − 1) dimGr(l, V ) − 1, we do not get any new 
codewords since all codewords are obtained by evaluating the polynomials at Fq-rational 
points. Indeed, if a variable x appears with a degree bigger than q − 1 in a polynomial 
function, then that power of x can be reduced modulo xq−x without changing the value 
of the polynomial function.

A significant portion of this article is about the extension of our earlier results from [1]
to the Grassmann codes of arbitrary order. The methods of [1] do not readily apply to the 
extended setting for several reasons. First of all, for the minimum distance calculations, 
we have to work with a higher dimensional space of functions. As a result, the bounds 
on the minimum distances of the extended codes are different than the ones that we 
presented in [1]. Secondly, for the dimension calculations, our previous representation 
theoretic approach does not directly apply. Indeed, for r ∈ {1, . . . , q− 1}, we can always 
choose a sufficiently large q to ensure that the corresponding r-th order Grassmann code 
is a simple SLm(Fq)-module. Then we can use the well-known Weyl character formula 
to compute its dimension. However, if r is in the range {q − 1, q, . . . , dimGr(l, V ) − 1}, 
then our code may not be a simple SLm(Fq)-module anymore. To obtain the dimension 
formula, we have to first prove a technical result that is akin to a weak form of Hilbert’s 
nullstellensatz for the Fq-rational points of a Grassmann variety (Theorem 4.9). Only 
after this we could use important determinantal formulas that go back to MacMahon [8]
combined with the deep algebro-combinatorial techniques of Rota [11] to calculate the 
dimension of a higher Grassmann code (Theorem 5.3). In this regard, the first main 
result of our article is an elaboration of the dimension formula for the projective Reed-
Müller codes. We provide two formulations of the dimension in two different expressions 
in Propositions 3.5 and 3.9. The reason why we had to deal with this issue in the first 
place is that, these computations, especially the one in Proposition 3.9, hold keys to a 
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formula for the dimension of a higher Grassmann code. We should also mention that our 
dimension formulas are new even for the projective Reed-Müller codes.

Let C denote the r-th order Grassmann code. Another major result of our article is 
a duality result, that is Theorem 7.4. Roughly speaking, it states that the dual of C is 
either another higher Grassmann code, or an extension of a higher Grassmann code by an 
all-1 codeword. An important consequence of this result is that every higher Grassmann 
code is self-orthogonal. This can be seen as a generalization of the duality properties of 
the projective Reed-Müller codes. Our duality theorem readily enables us to apply the 
results of the present paper along with some rather well-known techniques such as the 
Calderbank-Shore-Steane method to produce quantum codes from the higher Grassmann 
codes. This will be explored in a separate paper.

We are now ready to give a brief outline of our paper. In the next preliminaries 
section we setup our notation. In Section 3, we analyze some dimension formulas for 
the projective Reed-Müller codes. In Section 4, we describe our weak Fq-nullstellensatz 
for the set of Fq-rational points, Gr(l, V )(Fq). Section 5 is devoted to the dimension 
computations. The main result of Section 6 is Theorem 6.2, which describes the bounds 
for the minimum distance of a Grassmann code of degree ν. These bounds are natural 
extensions of the bounds that we found in our first paper [1, Theorem 1.3, part 3]. Finally, 
our main duality theorem is proven in Section 7.
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2. Preliminaries and notation

Throughout this text, Z+ will stand for the set of all positive integers. Let n ∈ Z+. Let 
v ∈ Fn

q . The Hamming weight of v, denoted by ||v||, is the number of nonzero coordinates 
of v. In this paper, by an [n, k, d]-code over Fq we mean a k-dimensional subspace C ⊆ Fn

q

such that

d = min{||v|| : v is a nonzero vector in C}.

Let 〈, 〉 denote the standard dot product on Fq. Let C be an [n, k, d] code over Fq. The 
dual of C is the code defined by

C⊥ := {v ∈ Fn
q : 〈v, w〉 = 0 for all w ∈ C}.
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The length and dimension of C⊥ are given by n and n −k, respectively. The code that is 
defined as the linear span of the union {1n} ∪ C in Fn

q will be denoted by C. Although 
it is not a standard name, we will call C the all-one vector extension of C.

Let X be a variety defined over Fq. The set of Fq-rational points of X is denoted by 
X(Fq). To relax our notation, whenever the underlying field is apparent from the context, 
we write |X| to denote the number of Fq-rational points of X. We fix the following letters 
throughout our paper:

n : the length of an unspecified code,
k : the dimension of an unspecified code,
d : the minimum distance of an unspecified code,
d : the dimension of the Grassmann variety, Gr(l, V ), where V = Fm

q ,

e : the dimension of the projective space, P (
∧l

V ).

Then, in the notation of the introduction, we have, d := l(m − l) and e :=
(
m
l

)
− 1.

Let a ∈ Z+, and let x be a variable. The a-th rising factorial of x, denoted by x(a), 
is the product x(a) = x(x + 1) · · · (x + a − 1). The set {1, . . . , a} is denoted by [a]. The 
polynomial 1 + q + · · · + qa−1, denoted by [a]q, is called the q-analog of a. Note that 
[a]q = qa−1

q−1 . We set [0]q := 1. The product [1]q[2]q · · · [a]q, called the q-factorial of a, is 
denoted by [a]q!. Let {a, b} ⊂ N. The q-binomial coefficient is defined by

[
a

b

]
q

:=
{ [a]q!

[a−b]q ![b]q! if a ≥ b,

0 if a < b.

Let α be a finite sequence of nonnegative integers. If the sum of the parts of α is equal 
to m, then α is called a weak composition of m. For example (1, 3, 0, 2) is a weak com-
position of 6. If a weak composition of m has no 0 entries then, it is called a composition 
of m. An (integer) partition of m is a composition of m with nonincreasing parts. When 
we want to emphasize that a given sequence is a composition of m, we will write α � m.

Let Bm(Fq) denote the Borel subgroup of all upper triangular matrices in SLm(Fq). 
A Schubert variety in Gr(l, V ) is the Zariski closure of a Bm(Fq)-orbit. The boundary
of a Schubert variety in Gr(l, V ) is the complement of the open Borel subgroup in that 
Schubert variety. In particular, the boundary of Gr(l, V ), denoted by ∂Gr(l, V ), is the 
unique one codimensional Schubert variety in Gr(l, V ).

It is well-known that the Schubert subvarieties of Gr(l, V ) are indexed by the integer 
partitions whose Young diagrams fit into the l×(m −l) rectangle. In this correspondence, 
the unique 0-dimensional Schubert variety is indexed by the integer partition of 0, whose 
Young diagram is the empty set. The boundary of Gr(l, V ) corresponds to the Schubert 
variety indexed by the partition (m − l, m − l, . . . , m − l, m − l − 1).

Example 2.1. Let V be a four dimensional vector space. Let l = 2. There are five positive 
dimensional Schubert varieties. They are indexed by the integer partitions whose Young 
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Fig. 2.1. The Young diagrams of the integer partitions whose Young diagram fits in a 2 × 2 grid.

Fig. 2.2. The Young diagram of (5, 4, 3).

diagram fits into 2 ×2 grid (Fig. 2.1). Then ∂Gr(2, V ) corresponds to the Young diagram 
of (2, 1).

Let α and β be two integer partitions. If the Young diagram of α is contained in 
the Young diagram of β, then we will write α ≤ β. This order on the integer partitions 
whose Young diagrams fit into l × (m − l) grid is called the Bruhat-Chevalley order. It 
has an important geometric interpretation. Let Xα and Xβ denote the Schubert varieties 
corresponding to the partitions α and β. Then we have

α ≤ β ⇐⇒ Xα ⊆ Xβ . (2.2)

Following [10], we denote the partial order defined in (2.2) by Am−1(l).
Let γ = (γ1, . . . , γs) be a composition. The diagram of γ is a top-left justified array 

of boxes, where the i-th row of the array has γi boxes for i ∈ {1, . . . , s}. Likewise, let 
λ = (λ1, . . . , λs) be an integer partition. The Young diagram of λ is a top-left justified 
array of boxes, where the i-th row of the array has λi boxes for i ∈ {1, . . . , s}. To given 
an example, we depict the Young diagram of the partition λ = (5, 4, 3) in Fig. 2.2.

Let K be a field. Let K[x1, . . . , xm] be a polynomial ring over K with m variables. The 
support of a monomial xai1

i1
x
ai2
i2

· · ·xair
ir

∈ K[x1, . . . , xm], where ai1 , . . . , air are positive 
integers, is the set of variables {xi1 , . . . , xir}. By allowing 0 as an exponent, let us write 
x
ai1
i1

x
ai2
i2

· · ·xair
ir

in the form xa1
1 xa2

2 · · ·xam
m . Then we can identify the sequence of expo-

nents, (a1, . . . , am), as a weak composition with m parts. To determine the count of the 
monomials of total degree r, we add (1, . . . , 1) to (a1, . . . , am). Then we get a monomial 
of total degree r+m whose support is {x1, . . . , xm}. These monomials are in one-to-one 
correspondence with the compositions of m + r with m parts. Therefore, the number of 
monomials of degree r in m variables is 

(
m+r−1
m−1

)
. For details of this composition counting, 

see [15, pg. 18].
In the sequel, the notation of modular arithmetic will be used. Let q be a power of 

a prime number. Let r be a positive integer. When we write t ≡ r mod q − 1 for some 
t ∈ Z, we mean that t −r is divisible by q−1. When we write t = r mod q−1, we mean 
that t ∈ {0, . . . , q − 1}, and t is the remainder of division of r by q − 1.
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3. Projective Reed-Müller codes

Let m ∈ Z+. For ν ∈ Z+, we denote by Fq[x0, . . . , xm]νh the set of all homogeneous 
polynomials of degree ν from Fq[x0, . . . , xm]. By adding 0 to Fq[x0, . . . , xm]νh, we obtain 
a vector space of dimension 

(
m+ν
ν

)
. Let P1, . . . , Pn be the list of all Fq-rational points of 

Pm. Then we have

n = |Pm| = [m + 1]q.

The projective Reed-Müller code of degree ν over Fq, denoted PCν(m, q), is defined as 
follows:

PCν(m, q) := {(F (P1), . . . , F (Pn)) ∈ Fn
q : F (x0, . . . , xn) ∈ Fq[x0, . . . , xm]νh}. (3.1)

For ν ∈ [q − 2], the parameter of the projective Reed-Müller codes of degree ν were 
first determined by Lachaud in [7]. For ν ≥ q − 1, the parameters are determined by 
Sorensen [14] except for the dimension formula which we proceed to explain.

In [14, Theorem 1], Sorensen stated the following formula for the dimension of 
PCr(m, q):

dimPCν(m, q) =
∑

0 < t ≤ ν s.t.
t ≡ ν mod q − 1

⎛
⎝m+1∑

j=0
(−1)j

(
m + 1

j

)(
t− jq + m

t− jq

)⎞⎠ . (3.2)

We claim that this dimension formula is not correct. We will use a well-known identity 
that is obtained by the “finite differences” formalism.

Lemma 3.3. Let K be a field. Let P (x) ∈ K[x] be a polynomial of the form P (x) :=
a0 + a1x + · · · + aex

e. Then we have

e∑
j=0

(−1)j
(
e

j

)
P (j) = (−1)ee!ae.

Proof. Our assertion is stated (in a different notation) in [4, pg 190]. �
Let P (x) ∈ Q[x] be the polynomial defined by

P (x) := (t− xq)(t− xq − 1) · · · (t− xq − (m− 1))
m! .

For every integer j ∈ N, we have

P (j) =
(
t− jq + m

)
=
(
t− jq + m

)
.

m t− jq
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We now apply Lemma 3.3 to P (x). Since degP (x) = m, we find

m+1∑
j=0

(−1)j
(
m + 1

j

)
P (j) = 0. (3.4)

The identity in (3.4) shows that the r.h.s. of Soresen’s formula (3.2) is always 0. The 
correct formula for dimPCRν(m, q) is given in our proposition.

Proposition 3.5. The dimension of the projective Reed-Müller code of degree ν is given 
by

dimPCRν(m, q) =
∑

t ∈ [ν]
t ≡ ν mod q − 1

�t/q�∑
i=0

(−1)i
(
m + 1

i

)(
m + t− iq

m

)
.

Proof. Let us compute the cardinality of the set
{
xi0

0 xi1
1 · · ·xim

m : i0 + · · · + im = t and,
0 ≤ ij ≤ q − 1 for j ∈ {0, . . . ,m}

}
(3.6)

as follows. The elements (3.6) are in one-to-one correspondence with the weak compo-
sitions of t with at most m + 1 parts, and each part less than q. Let N(t, m + 1, q − 1)
denote the cardinality of this set. Then we have

[xt](1 + x + · · · + xq−1)m+1 = N(t,m + 1, q − 1), (3.7)

where [xa]h(x) (a ∈ N, h(x) is a polynomial) stands for the coefficient of xa in h(x). 
By using the binomial theorem and a related generating series [4, eqn. (5.56)], we notice 
that

(1 + x + · · · + xq−1)m+1 = (1 − xq)m+1 1
(1 − x)m+1

=
(

m+1∑
i=0

(−1)i
(
m + 1

i

)
(xq)i

)( ∞∑
i=0

(
m + i

i

)
xi

)
. (3.8)

For r ∈ N, let ar denote the number defined by

ar :=
{

(−1)i
(
m+1

i

)
if r = iq for some i ∈ {0, . . . ,m + 1},

0 otherwise.

Then the coefficient of xt in the product (3.8) is given by 
∑t

r=0 ar
(
m+t−r

m

)
. It is now 

easily seen that t/q < m + 1, and that
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t∑
r=0

ar

(
m + t− r

m

)
=

∑
i∈{0,...,�t/q�}

(−1)i
(
m + 1

i

)(
m + t− iq

m

)
.

This finishes the proof of our assertion. �
Next, we recompute dimPCRν(m, q) with an eye towards a similar computation for 

the Grassmann case. In fact, the inner sum in our reformulation will be used later.

Proposition 3.9. The dimension of the projective Reed-Müller code of degree ν is given 
by

dimPCRν(m, q)=
∑

t ∈ [ν]
t ≡ ν mod q−1

min{t,m+1}∑
e=1

(
m+1
e

)⎛⎝� t−e
q−1 �∑
j=1

(−1)j
(
e

j

)(
t−1−(q−1)j

e−1

)⎞⎠ .

Proof. We compute the cardinality of the set

{
xi0

0 xi1
1 · · ·xim

m : i0 + · · · + im = t and,
0 ≤ ij ≤ q − 1 for j ∈ {0, . . . ,m}

}

by first fixing the variables that we use. Let e ∈ {1, . . . , min{m +1, t}}, and choose e vari-
ables from x0, . . . , xm. This can be done in 

(
m+1
e

)
many different ways. We proceed with 

the harmless assumption that our chosen variables are x1, . . . , xe. Next, we determine 
the number of monomials of the form xi1

1 · · ·xie
e , where 

∑e
j=1 ij = t and 1 ≤ ij ≤ q−1 for 

j ∈ {1, . . . , e}. The set of all such monomials is in bijection with the set of compositions,

{(γ1, . . . , γe) � t : 1 ≤ γj ≤ q − 1 for all j ∈ {1, . . . , e}}.

Let g(t, e, q − 1) denote the cardinality of the set in the previous line. The generating 
series of g(t, e, q − 1) is easily seen to be

∑
t≥e

g(t, e, q − 1)xt = (x + x2 + · · · + xq−1)e = xe (1 − xq−1)e

(1 − x)e .

By manipulating the power series as before, we see that

g(t, e, q − 1) =
� t−e
q−1 �∑
j=0

(−1)j
(
e

j

)(
t− 1 − (q − 1)j

e− 1

)
. (3.10)

Since e varies in {1, . . . , min{m + 1, t}}, by combining our counts, we finish the proof of 
our assertion. �
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4. The Nullstellensatz for Grassmannians

Our goal in this section is to prove a ‘theorem of zeros’ for Gr(l, V )(Fq). First, we 
present several preparatory observations. We begin with a simple remark.

Remark 4.1. Let c ∈ Fq. Let S be a nonempty subset of As(Fq). We claim that if 
|S| is a power of q, then the equality 

∑
a∈S c = 0 holds. Indeed, obviously, we have ∑

a∈S c = |S|c. Since Fq is an abelian group of order q, we have |S|c = 0 in Fq. As a 
consequence of this simple observation, we see that if S is an affine subspace (of positive 
dimension) of As(Fq), then 

∑
a∈S c = 0 holds.

The homogeneous coordinate ring R of Gr(l, V ) is the Fq-algebra generated by 
the Plücker coordinates of Gr(l, V ). It has a natural grading that is given by the 
degree. The graded pieces are spanned by their standard monomials in the Plücker 
coordinates [13, Proposition 1.3.6]. In other words, if OGr(l,V ) denotes the structure 
sheaf of Gr(l, V ), then R can be identified with 

⊕
r≥0 H

0(Gr(l, V ), OGr(l,V )(r)), where 
H0(Gr(l, V ), OGr(l,V )(r)) corresponds to the r-th graded piece spanned by the degree r
monomials in the Plücker variables. In turn, the Plücker variables are the coordinates 
of the affine space Ae+1(Fq), that is, 

∧l F
m

q . It is not difficult to check that the set of 
Fq-rational points of the vector space 

∧l F
m

q is 
∧l Fm

q . Therefore, the Plücker coordinates 
are the coordinates of the affine space 

∧l Fm
q as well.

Proposition 4.2. Let r be a positive integer of the form r = a(q − 1), where a ∈ [d]. If F
is an element of H0(Gr(l, V ), OGr(l,V )(r)), then we have

∑
a∈Gr(l,V )(Fq)

F (a) = 0.

Proof. If Gr(l, V ) is a projective space, then, our claim follows from [14, Lemma 1]. We 
proceed with the assumption that Gr(l, V ) is not a projective space. In particular, it 
is not P 1. Since H0(Gr(l, V ), OGr(l,V )(r)) is spanned as a vector space by the standard 
monomials of degree r, it suffices to prove our claim for a single standard monomial. Let 
M be a standard monomial of the form,

M := pa1
α(i1)p

a2
α(i2) · · · p

as

α(is) ∈ H0(Gr(l, V ),OGr(l,V )(r)) (α(i1) > · · · > α(is)),
(4.3)

where the exponents are positive integers such that 
∑s

j=1 aj = r. We will use induction 
on r, where the base case is given by r = q − 1.

After choosing a suitable one-parameter subgroup (in a way that we discussed in [1, 
Section 3]), we may assume that the vanishing set of the Plücker coordinate pα(i1) is 
the boundary of Gr(l, V ). Equivalently, we may assume that α(i1) = α(e). Hence, we 
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proceed with the assumption that M vanishes on the boundary ∂Gr(l, V ). Let us first 
analyze the possibility that M = p

a(q−1)
α(e) . In this case, the only values of M are 0 or 1. 

In fact, since pα(e) vanishes precisely on the boundary of Gr(l, V ), we have pα(e) = 1 on 
the affine open cell of Gr(l, V ). Thus, by Remark 4.1, we see that 

∑
a∈Cα(e)

M(a) = 0. 
We now proceed with the general case that M has more than one Plücker variables in it. 
In this case, by setting pα(e) = 1, we obtain a standard monomial of lower degree, that 
is, M̃ = pa2

α(i2) · · · p
as

α(is). If 
∑s

j=2 aj is divisible by q − 1, then we apply our induction 
hypothesis to conclude that

∑
P∈Gr(l,V )

M(P ) =
∑

P∈Gr(l,V )\∂Gr(l,V )

M̃(P ) = 0.

If 
∑s

j=2 aj is not divisible by q − 1, then we apply [2, Lemma 1.6] to conclude the same 
identity. Notice that these two cases also take care of the base case, where r = q− 1. �
4.1. Affine Fq-Nullstellensatz and its consequences

Notation 4.4. Let x• be a list of variables, x• := (x1, . . . , xs). Let F (x•) be a polynomial 
from Fq[x•]. We denote by F̄ (x•) the polynomial obtained from F (x•) by reducing it 
modulo xq

i − xi for i ∈ {1, . . . , s}. In other words, F̄ (x•) is obtained from F (x•) by 
replacing in every monomial of F (x•) every factor of the form xti

i , where ti = a(q−1) +b

such that b ∈ [q − 1], with xb
i . We will call F̄ (x•) the reduced form of F (x•).

Let us abbreviate the list of Plücker coordinates pα(0), . . . , pα(e) to p•. Let F (p•) be a 
polynomial of the form

F (p•) :=
∑

ci0i1...iep
i0
α(0)p

i1
α(1) · · · p

ie
α(e) ∈ Fq[p•],

where some of the exponents might be 0. We will denote by F̄ (p•) the reduced form of 
F (p•) as defined in Notation 4.4.

Let Γq denote the ideal of Fq[p•] that is generated by the polynomials pqα(i) − pα(i) for 
i ∈ {0, . . . , e}. The proof of the following lemma is easy.

Lemma 4.5. Let F (p•) be an element of Fq[p•]. If F̄ (p•) is not the zero polynomial, then 
F̄ /∈ Γq.

Proof. Let us assume that F̄ ∈ Γq. Since the degree of Plücker variable in the reduced 
polynomial F̄ (p•) is at most q− 1, F̄ (p•) must be the zero polynomial. This finishes the 
proof. �

Adapting it to our notation, we now state a finite field analog of the “theorem of 
zeros.” A modern proof of this useful result can be found in Ghorpade’s article [3].
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Theorem 4.6. (Affine Fq-Nullstellensatz) Let H, H1, . . . , Hs be polynomials from Fq[p•]
such that H vanishes at every common zero of H1, . . . , Hs. Then we have

(1) there exist polynomials G1, . . . , Gs in Fq[p•] and γ ∈ Γq such that

H = G1H1 + · · · + GsHs + γ. (4.7)

(2) H vanishes at all points of 
∧l Fq if and only if H ∈ Γq.

It is easy to see that (2) follows from (1). We will use the following consequence of 
the Affine Fq-Nullstellensatz.

Lemma 4.8. Let I be the vanishing ideal in Fq[p•] of a (closed) set V ⊂
∧l Fm

q . If 
{H1, . . . , Hs} is a set of generators for I, then so is the following union:

{H1, . . . ,Hs} ∪ {pqα(j) − pα(j) : j = 0, . . . , e}.

In particular, F vanishes on a (closed) set V ⊆
∧l Fm

q if and only if so does F̄ .

Proof. Let N be a positive integer such that N ≥ q. Then we have

pNα(j) = (pqα(j) − pα(j))pN−q
α(j) + p

N−(q−1)
α(j) .

By using induction, we see from this observation that any polynomial F ∈ I can be 
written in the form F̄ + γ, where γ is an element of Γq. Since the inclusion Γq ⊆ I is 
always true, we see that F vanishes on V if and only if F̄ vanishes on V . The proof now 
follows. �

Let us consider the canonical quotient map,

π :
(

l∧
F
m

q

)
\ {0} −→ P := P (

l∧
F
m

q ).

The closure of the preimage π−1(Gr(l, V )) in 
∧l F

m

q will be denoted by CGr(l, V ). In 
our next result, we will denote by [P ] the point in P that is represented by a nonzero 
vector P in 

∧l
V . Let F be a homogeneous polynomial in the Plücker variables. When 

we write F ([P ]) we actually mean the evaluation of F (p•) at the point P ; it is defined 
up to a scalar multiple of P but we are only interested in whether F (P ) = 0 or not. We 
are now ready to state and prove an analog of Fq-Nullstellensatz for the homogeneous 
coordinate ring of a Grassmann variety.

Theorem 4.9. Let F be an Fq-rational section from H0(Gr(l, V ), OGr(l,V )(r)). If 
F ([P ]) = 0 for all [P ] ∈ Gr(l, V ), then F̄ = 0. Conversely, if F̄ = 0, then F ([P ]) = 0
for all [P ] ∈ Gr(l, V ).
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Proof. By the definition of the homogeneous coordinate ring R of Gr(l, V ), a nonzero 
element of R cannot vanish at all points of Gr(l, V ). In particular, if an element F ∈
H0(Gr(l, V ), OGr(l,V )(r)) has the property that F ([P ]) = 0 for every [P ] ∈ Gr(l, V ), 
then F must be the zero element of R. Of course, this implies that F̄ = 0. Conversely, 
if F̄ = 0, then, by Lemmas 4.5 and 4.8, we have F (P ) = 0 for every P in the cone 
CGr(l, V ). Since F is homogeneous, we have F ([P ]) = 0 for every [P ] ∈ Gr(l, V ). This 
finishes the proofs of our assertions. �
5. The dimension of a higher Grassmann code

In Section 3, we presented two formulas for the dimension of a projective Reed-Müller 
code. In this section, we present a similar calculation for the dimensions of higher Grass-
mann codes. Our approach has its roots in Proposition 3.9. The underlying idea is the 
following: we first count the number of supports of the relevant standard monomials, 
and then we count the possible exponents that we can place on the variables of the sup-
ports. The latter calculation has been made in the proof of Proposition 3.9 but the first 
calculation requires a completely novel approach. To this end, we begin with providing 
some useful algebraic definitions regarding the poset Am−1(l).

Let P be a finite poset. Let K be a field. The incidence algebra of P over K, denoted 
I(P, K), is the K-algebra of all functions f : Int(P ) → K, where Int(P ) is the set of all 
intervals of P . The addition of functions is defined, as usual, by the pointwise addition, 
and the multiplication is defined by

(fg)(s, u) =
∑

s≤t≤u

f(s, t)g(t, u).

Let [s, u] be a nonempty interval from P . If [s, u] has only two elements, then we say 
that u covers s in P . A chain in [s, u] is a strictly increasing sequence of elements from 
[s, u]. A multichain in [s, u] is a weakly increasing sequence of elements from [s, u]. The 
length of a (multi)chain is defined as the number of entries of the sequence minus one. A 
maximal chain is a chain that is not a part of another chain in [s, u]. If t0 < t1 < · · · < tr
is a chain in P , then the integer r is called the length of the chain. The poset P is said 
to be a graded, if every maximal chain in P has the same length. In this case, there is 
a unique function 
 : P → N, called the rank function, such that 
(x) = 0 for every 
minimal element x ∈ P , and 
(u) = 
(s) + 1 if u covers s in P .

If P has a unique minimal (resp. maximal) element, then we denote it by 0̂ (resp. 
by 1̂). Now we proceed with the assumption that P is a finite graded poset with 0̂
and 1̂. Furthermore, we assume that P has at least two elements (hence 0̂ �= 1̂). For 
a ∈ {i ∈ Z : i ≥ 2}, let Z(P, a) denote the number of multichains of the form 0̂ ≤ t1 ≤
t2 ≤ · · · ≤ ta−1 ≤ 1̂ in P . We call Z(P, a) the zeta polynomial of P . This name is justified 
with the fact [15, Proposition 3.12.1 a.] that Z(P, a) is indeed a polynomial function of 
a. A closely related function, called the zeta function of P , is defined as follows:
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ζ(s, u) =
{

1 if s ≤ u,

0 otherwise.

It is not difficult to check that, for s ≤ u, ζr(s, u) is the number of multichains of the 
form s = s0 ≤ s1 ≤ · · · ≤ sr = u. In particular, we see that ζa(0̂, ̂1) = Z(P, a) for every 
a ∈ {i ∈ Z : i ≥ 2}.

Note that the zeta function is actually an element of the incidence algebra, I(P, K). 
The identity element of I(P, K) is the function δ : Int(P ) → K defined by

δ(s, u) =
{

1 if s = u,

0 otherwise.

It is easy to check that

(ζ − δ)(s, u) =
{

1 if s < u,

0 otherwise.

Hence, (ζ − δ)r(s, u) gives the number of chains s = s0 < s1 < · · · < sr = u of length r
from s to u.

Proposition 5.1. Let h(r, m, l) denote the number of chains α(i1) > α(i2) > · · · > α(ir)
of length r from 0̂ to 1̂ in Am−1(l). Then h(r, m, l) is given by the following equivalent 
formulas:

1. h(r, m, l) =
∑r

c=0(−1)r−c
(
r
c

)
det
[(

m−l+c
i−j+c

)]
1≤i,j≤m−l

,

2. h(r, m, l) =
∑r

c=0(−1)r−c
(
r
c

)∏m−l
i=1

∏c
j=1
∏m−l

s=1
i+j+s−1
i+j+s−2 .

Proof. We expand the function (ζ − δ)r in the incidence algebra of Am−1(l),

(ζ − δ)r =
r∑

c=0

(
r

c

)
ζc(−δ)r−c =

r∑
c=0

(
r

c

)
ζc(−1)r−c.

Then we evaluate this expansion on the interval [0̂, ̂1]:

(ζ − δ)r(0̂, 1̂) =
r∑

c=0
(−1)r−c

(
r

c

)
ζc(0̂, 1̂)

=
r∑

c=0
(−1)r−c

(
r

c

)
Z(Am−1(l), c).

But we know from [15, Exercise 149] that Z(Am−1(l), c) = det
[(

m−l+c
i−j+c

)]
1≤i,j≤m−l

. The 

following identity is well-known:
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det
[(

a+b
a+i−j

)]
1≤i,j≤r

=
r∏

i=1

a∏
j=1

b∏
s=1

i + j + s− 1
i + j + s− 2 . (5.2)

This particular identity can be proved by using the plane partition identities developed 
by MacMahon in [8]. Alternatively, one can use certain recurrences to prove it. This is 
explained in [6, Section 2.3]. If we set a = c and b = r = m − l in (5.2), then we see that

Z(Am−1(l), c) =
m−l∏
i=1

c∏
j=1

m−l∏
s=1

i + j + s− 1
i + j + s− 2 .

This finishes the proof of our proposition. �
We are now ready to present our dimension count for the higher Grassmann codes. 

Recall that in the proof of Proposition 3.9, in line (3.10), we found a formula for the 
number of positive exponents that we can place on e variables so that the resulting 
monomial has degree t:

g(t, e, q − 1) =
� t−e
q−1 �∑
j=0

(−1)j
(
e

j

)(
t− 1 − (q − 1)j

e− 1

)
.

Now by using Proposition 5.1, we obtain the main result of this section.

Theorem 5.3. Let CGr(l,V )(ν) denote the q-ary degree ν Grassmann code on Gr(l, V ). If 
ν < (q − 1)d, then the dimension of CGr(l,V )(ν) is given by the formula

dimCGr(l,V )(ν) =
∑

t ∈ [ν]
t ≡ ν mod q − 1

min{t,d}∑
r=1

h(r,m, l)g(t, r, q − 1),

where

h(r,m, l) =
r∑

c=0
(−1)r−c

(
r

c

)m−l∏
i=1

c∏
j=1

m−l∏
s=1

i + j + s− 1
i + j + s− 2 ,

and

g(t, r, q − 1) =
� t−r
q−1 �∑
j=0

(−1)j
(
r

j

)(
t− 1 − (q − 1)j

r − 1

)
.

Proof. Let M be a standard monomial of degree ν. If the exponent of a Plücker variable 
in M is greater than q − 1, then we can reduce this monomial without changing its 
values. Therefore, the dimension of our code is equal to the number of reduced standard 
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monomials. Indeed, we claim that these standard monomials are linearly independent. 
Otherwise, we find a linear combination of them that is equal to zero. But thanks to our 
Fq-Nullstellensatz Theorem 4.9, this is not possible.

We now proceed to calculate the number of reduced standard monomials of degree t, 
where t ∈ [ν] and t ≡ ν mod q−1. As we mentioned at the beginning of this subsection, 
first, we count the number of supports of these standard monomials. The number of 
supports with r Plücker variables in them is given by h(r, m, l) of Proposition 5.1. Next, 
we count the number ways of placing positive exponents, which add up to t, on the 
variables of our support. This number is found in the proof of Proposition 3.9, in line 
(3.10). Now our result follows at once by combining these two counts. �
6. The minimum distance of a higher Grassmann code

In this section, we present bounds on the minimum distance of a higher Grassmann 
code.

The following restatement of a result of Kasami, Lin, and Peterson will be useful for 
our purposes.

Lemma 6.1. Let Zf = {w ∈ AN (Fq) : f(w) = 0} be a hypersurface in AN (Fq), where 
f ∈ Fq[x1, . . . , xN ] is a polynomial such that deg f = r(q − 1) + s with 0 ≤ s < q − 1. 
Then we have |Zf | ≤ qN − (q − s)qN−r−1.

Proof. The proof is a direct consequence of [5, Theorem 5] and the correspondence be-
tween the linear [n, k, d]q codes and the [n, k, d]q-systems as explained in [16, Proposition 
1.1.4]. �
Theorem 6.2. Let CGr(l,V )(ν) denote the q-ary degree ν Grassmann code on Gr(l, V ). Let 
r and s be the nonnegative integers defined by ν− 1 = r(q− 1) + s, where 0 ≤ s < q− 1. 
If ν < (q − 1)d, then the minimum distance of CGr(l,V )(ν) is bounded as follows:

(q − s)ql(m−l)−r−1 ≤ d ≤ (q − 1 − s)ql(m−l)−r−1.

Proof. The idea of the proof is similar to the idea of the proof of [1, Theorem 4.1, 
Part 2.], where we assumed that ν < q − 1. We proceed with the assumption that 
q − 1 ≤ ν < (q − 1)d.

It follows from the argument we had in the second paragraph of the proof of [1, Theo-
rem 4.1] that our problem of finding the minimum distance for CGr(l,V )(ν) is equivalent 
to the problem of determining the number of Fq-rational points of the intersection of 
Gr(l, V ) with a degree ν hypersurface in P (

∧l
V ) ∼= P e. Note that, since r and s are 

defined by ν − 1 = r(q − 1) + s, we have 1 ≤ r < d. Note also that we always have the 
strict inequality, d < e. Let x0, . . . , xe denote the Plücker coordinates of P (

∧l
V ). For 

our upper bound, we consider the following homogeneous polynomial of degree ν:



16 M.B. Can et al. / Finite Fields and Their Applications 89 (2023) 102211
F := xr+1

s∏
j=1

(xr+1 − bjxr)
r−1∏
i=0

(xq−1
r+1 − xq−1

i ), (6.3)

where bi ∈ Fq \ {0} and bi �= bj for every {i, j} ⊂ {1, . . . , s} such that i �= j. We will 
analyze the Fq-rational points of the intersection {F = 0} ∩Gr(l, V ) in P (

∧l
V ) ∼= P e.

First, we choose an appropriate one-parameter subgroup of SLn(Fq) such that the 
boundary of Gr(l, V ) is given by the intersection {xr+1 = 0} ∩ Gr(l, V ), and the addi-
tional equation xr = 0 gives a Borel subgroup stable divisor in ∂Gr(l, V ), denoted by Z. 
We now analyze the zeros of (6.3) following the steps:

1. M ∈ Gr(l, V ) such that xr+1(M) = xr(M) = 0;
2. M ∈ Gr(l, V ) such that xr+1(M) = 0 and xr(M) �= 0;
3. M ∈ Gr(l, V ) such that xr+1(M) �= 0, xr(M) �= 0, but

⎛
⎝ s∏

j=1
(xr+1 − bjxr)

r−1∏
i=0

(xq−1
r+1 − xq−1

i )

⎞
⎠ (M) = 0.

In the first case, that is, {M ∈ P (
∧l

V ) : xr+1(M) = xr(M) = 0} ∩Gr(l, V ), F is zero 
on every point of Z. The count of Fq-rational points of Z is well-known:

|Z| =
[
m

l

]
− ql(m−l) − ql(m−l)−1.

In the second case, F is zero on the complement of Z in ∂Gr(l, V ). This count is also 
well-known,

|∂Gr(l, V ) \ Z| = ql(m−l)−1.

Finally, in the third case, the set

{M ∈ Gr(l, V ) : xr+1(M)�=0, xr(M)�=0,

⎛
⎝ s∏

j=1
(xr+1 − bjxr)

r−1∏
i=0

(xq−1
r+1−xq−1

i )

⎞
⎠ (M)=0}

(6.4)

is the intersection of an open set with a hypersurface in the affine space Gr(l, V ) \
∂Gr(l, V ) ∼= Al(m−l. To work with the coordinates on this affine space, we set xr+1 = 1.

G :=
s∏

j=1
(1 − bjxr)

r−1∏
i=0

(1 − xq−1
i ) = 0 (xr �= 0).

This polynomial is zero in Al(m−l)(Fq) unless
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xr �= b−1
j for j ∈ {1, . . . , s}, (6.5)

xi = 0 for i ∈ {0, . . . , r − 1}. (6.6)

But there are exactly (q− 1 − s)ql(m−l)−r−1 points satisfying (6.5) and (6.6). Hence, the 
vanishing set of G in {xr �= 0} ∩ Al(m−l)(Fq) contains ql(m−l) − (q − 1 − s)ql(m−l)−r−1

points. Now, by combining our findings, we see that the total number of zeros of the 
homogeneous polynomial F on Gr(l, V ) is given by

([
m

l

]
q

− ql(m−l) − ql(m−l)−1

)
+ ql(m−l)−1 + ql(m−l) − (q − 1 − s)ql(m−l)−r−1.

Equivalently, we have

|{F = 0} ∩Gr(l, V )| =
[
m

l

]
q

− (q − 1 − s)ql(m−l)−r−1.

Therefore, an upper bound for the minimum distance of Grassmann code of order ν is 
given by

[
m

l

]
q

−
([

m

l

]
q

− (q − 1 − s)ql(m−l)−r−1

)
= (q − 1 − s)ql(m−l)−r−1. (6.7)

Next, we will provide a lower bound for the minimum distance. To this end, let Q
be a homogeneous degree ν polynomial from Fq[x1, . . . , xs+1] such that the intersection 
HQ ∩Gr(l, V ) attains the maximum number of Fq-rational points among all such inter-
sections. Here, HQ denotes the hypersurface in P (

∧l
V ) defined by Q. It follows that the 

intersection of HQ with the open cell of Gr(l, V ) is nonempty. Since we want to find the 
extremities, in light of Lemma 6.1, we assume generously that this intersection attains 
the maximum number ql(m−l)−(q−s)ql(m−l)−r−1 on this open cell. We assume also that 
HQ contains the boundary ∂Gr(l, V ). Note that |∂Gr(l, V )| =

[
m
l

]
q
− ql(m−l). Hence, 

under our assumptions, we see that

|HQ ∩Gr(l, V )| ≤ ql(m−l) − (q − s)ql(m−l)−r−1 +
[
m

l

]
q

− ql(m−l)

=
[
m

l

]
q

− (q − s)ql(m−l)−r−1. (6.8)

Since (6.8) is an upper bound for the number of zeros of Q on Gr(l, V ) over Fq, a lower 
bound for the minimum distance is given by

[
m

l

]
q

−
([

m

l

]
q

− (q − s)ql(m−l)−r−1

)
= ql(m−l)−r − sql(m−l)−r−1. (6.9)

By combining (6.7) and (6.9), we finish the proof of our assertion. �
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7. The dual of a higher Grassmann code

In his results about the dual of a projective Reed-Müller code, Sorensen makes use of 
the following lemma:

Lemma 7.1. ([14, Lemma 6]) Let d(t, m, q) denote the number of monomials of the form 
xi0

0 · · ·xim
m with 0 ≤ ij ≤ q − 1, and 

∑m
j=0 ij = x. If 0 ≤ s < q − 1, then the following 

properties hold:

1. d(t, m, q) = d((m + 1)(q − 1) − t, m, q),
2.
∑

t < (m + 1)(q − 1)
t = s mod q − 1

d(t, m, q) =
∑

0 < t ≤ (m + 1)(q − 1)
t = s mod q − 1

d(t, m, q) = qm+1−1
q−1 .

We have an analogous result for the Grassmannian Gr(l, V ). For ν ∈ {0, 1, . . . , (q −
1)d}, let κ(ν) denote the number of standard monomials pi1α(j1) · · · p

ir
α(jr) such that ∑r

j=1 ij = ν and ij ∈ {0, . . . , q − 1} for all j ∈ {1, . . . , r}.

Lemma 7.2. The numbers κ(ν) satisfy the following properties:

(1) κ(ν) = κ((q − 1)d − ν).
(2) If r is a nonnegative integer such that 0 ≤ r < q − 1, then we have

∑
ν ∈ [(q − 1)d]

ν = r mod q − 1

κ(ν) =
[
m

l

]
q

.

Proof. The map pi0α(0) · · · p
ie
α(e) �→ pq−1−i0

α(0) · · · pq−1−ie
α(e) gives a bijection between the stan-

dard monomials of degree ν and the standard monomials of degree (q − 1)d − ν whose 
variables have exponents at most q − 1. Hence, the proof of (1) follows.

For (2), we already know from Lemma 7.1 that if there are no restrictions on the 
supports of the monomials pi0α(0) · · · p

ie
α(e), then there are q

e+1−1
q−1 monomials of the form 

pi0α(0) · · · p
ie
α(e) with 

∑r
j=1 ij = ν and ij ∈ {0, . . . , q − 1} for all j ∈ {1, . . . , r}. In other 

words, such monomials are in bijection with the Fq-rational points of the projective space 
P . The additional condition of standardness, that is,

α(j1) > · · · > α(jr)

gives the points that are contained in the image of Gr(l, V )(Fq) in the set of Fq-rational 
points of P (

∧l
V ). Our assertion follows from this observation. �

Remark 7.3. The inner sum in Theorem 5.3, that is, 
∑min{t,d}

r=1 h(r, m, l)g(t, r, q − 1) is 
equal to κ(t). In other words, we have the following formula
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dimCGr(l,V )(ν) =
∑

t ∈ [ν]
t ≡ ν mod q − 1

κ(t).

We are now ready to describe the duals of the higher Grassmann codes. The proof of 
our result is similar to the Sorensen’s proof of the corresponding result [14, Theorem 2]
for the projective Reed-Müller codes.

Theorem 7.4. Let ν ∈ [(q−1)d −1]. Let CGr(l,V )(ν) denote the q-ary degree ν Grassmann 
code on Gr(l, V ). If μ is defined by the equation μ := (q − 1)(d − 1) − ν, then we have 
Then the dual of CGr(l,V )(ν) is given by one of the following two cases:

CGr(l,V )(ν)⊥ =

⎧⎪⎪⎨
⎪⎪⎩
CGr(l,V )(μ) if ν �= 0 mod (q − 1),

CGr(l,V )(μ) if ν = 0 mod (q − 1).

Proof. We begin with the assumption that ν �= 0 mod q − 1.
Recall that the length of a higher Grassmann code (of some degree) on Gr(l, V )

is n =
[
m
l

]
q
. Let F (p•) and G(p•) be two homogeneous polynomials in Plücker co-

ordinates viewed as Fq-rational sections in H0(Gr(l, V ), OGr(l,V )(ν)) and H0(Gr(l, V ),
OGr(l,V )(μ)), respectively. The codewords corresponding to F (p•) and G(p•) are given 
by the vectors (F (P1), . . . , F (Pn)) and (G(P1), . . . , G(Pn)) in Fn

q , respectively. The in-
ner product of these two vectors is given by the sum of the values of the homogeneous 
polynomial (FG)(p•). Clearly, the degree of (FG)(p•) is (q− 1)(d − 1). Thus, by Propo-
sition 4.2, we know that 

∑
P∈Gr(l,V )(Fq)(FG)(P ) = 0. In other words, the inner product 

of the codewords of F (p•) and G(p•) are orthogonal. Hence, we proved the inclusion 
CGr(l,V )(ν)⊥ ⊇ CGr(l,V )(μ). We proceed to prove the opposite inclusion.

In light of Remark 7.3, we calculate the following sum:

dimCGr(l,V )(ν) + dimCGr(l,V )(μ) =

⎛
⎜⎝ ∑

t ∈ [ν]
t ≡ ν mod q − 1

κ(t)

⎞
⎟⎠+

⎛
⎜⎝ ∑

t ∈ [μ]
t ≡ μ mod q − 1

κ(t)

⎞
⎟⎠ .

(7.5)

Let us consider the remainders of ν and μ modulo q − 1. In other words, by using 
their ordinary divisions, we write ν = aν(q − 1) + bν and μ = aμ(q − 1) + bμ, where 
{bμ, bν} ⊂ [q−2] and {aμ, aν} ⊂ Z+. The first summation on the right hand side of (7.5)
is given by

∑
t ∈ [ν]

t ≡ ν mod q − 1

κ(t) = κ(ν) + κ(ν − (q − 1)) + · · · + κ(ν − aν(q − 1)). (7.6)
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We want to understand how the second summation in (7.5) completes (7.6). Since μ +ν =
(q− 1)(d − 1), we have (q− 1)(d − 1) < ν + (aμ + 1)(q− 1) < (q− 1)d. At the same time 
we have∑

t ∈ [μ]
t ≡ μ mod q − 1

κ(t) = κ(μ)+κ(μ− (q − 1))+ · · ·+κ(μ− aμ(q − 1))

= κ((q − 1)(d − 1) − ν)+ · · ·+κ((q − 1)(d − 1) − ν − aμ(q − 1))

= κ((q − 1)+ν)+ · · ·+κ(ν+(aμ+1)(q − 1)) (by Lemma 7.2 (1)).

By adding (7.6) to the last sum we found, we see that (7.5) is given by

dimCGr(l,V )(ν)+ dimCGr(l,V )(μ) = κ(bν)+κ(bν+(q − 1))+ · · ·+κ(ν+(aμ+1)(q − 1))

=
[
m

l

]
q

(by Lemma 7.2 (2)). (7.7)

Since the dimension of the dual of CGr(l,V )(ν) is given by 
[
m
l

]
q
− dimCGr(l,V )(ν), which 

is equal to dimCGr(l,V )(μ) by (7.7), we conclude that CGr(l,V )(ν)⊥ = CGr(l,V )(μ).
We now proceed with the assumption that ν = 0 mod q−1. In this case, by using sim-

ilar arguments as in the previous case, we find that dimCGr(l,V )(ν) + dimCGr(l,V )(μ) =[
m
l

]
q
− 1. Notice that although ν = 0 mod (q − 1), ν cannot be exactly 0 since 

ν ∈ [(q − 1)d − 1]. Hence, the higher Grassmann code CGr(l,V )(μ) does not contain 
the all-one vector 1n, viewed as the evaluation of the constant polynomial 1 at all points 
of Gr(l, V )(Fq). Therefore, the dimension of the all-one extended code CGr(l,V )(μ) is 
1 + dimCGr(l,V )(μ). In particular, we have the following identity for the sum of the 
dimensions:

dimCGr(l,V )(ν) + dimCGr(l,V )(μ) =
[
m

l

]
q

. (7.8)

Now, as in the previous case, let

F (p•) ∈ H0(Gr(l, V ),OGr(l,V )(ν)) and G(p•) ∈ H0(Gr(l, V ),OGr(l,V )(μ))

be two Fq-rational sections. Since the degree of (FG)(p•) is (q − 1)(d − 1), we see from 
Proposition 4.2 that 

∑
P∈Gr(l,V )(Fq)(FG)(P ) = 0. At the same time, by using Proposi-

tion 4.2 once more, we see also that (F (P1), . . . , F (Pn)) ·a1n = 0 for all a ∈ Fq. It follows 
that a · b = 0 for every a ∈ CGr(l,V )(ν) and for every b ∈ CGr(l,V )(μ). Hence, in light of 
(7.8), we see that CGr(l,V )(μ) is the dual of the code CGr(l,V )(ν). This finishes the proof 
of our theorem. �
Data availability

No data was used for the research described in the article.
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