
DEFECTS OF CODES FROM HIGHER DIMENSIONAL ALGEBRAIC
VARIETIES

MAHIR BILEN CAN, ROY JOSHUA, AND G. V. RAVINDRA

Abstract. An MDS code is a code which achieves equality in the singleton bound. The
defect of a code measures how far it is from an MDS code. Amplifying on the relationship
between the weight distribution of a code and its dual code as in the well-known MacWilliams
identities, we show in this paper that there are indeed strong lower bounds on the defects
of codes or the dual codes.

1. Introduction

The Singleton bound provides an important relationship between the three parameters of
a linear code, namely

d ≤ n− k + 1,

where n denotes the length, k denotes the dimension, and d the minimum distance of the
code. A linear code is said to be Maximum Distance Separable (MDS) if equality is attained
above.

The defect of a code, denoted by s, measures how far it is from being an MDS code and
is defined to be

s = n− k + 1− d.
The well-known MacWilliams identities (see page 131, [MS]) involving the weight distribution
of a code and its dual code also provide important relationships between the parameters of
a code, the parameters of its dual code, and the defects. In particular, the dual of an MDS
code is also an MDS code, and the cardinality of the base field is an upper bound for both
n− k+ 1 and k+ 1 except in degenerate cases, that is, where either the code or its dual code
have dimension 1 or less. Summarizing, we have (see [MS, Chapter 11, section 3]):

For a non-degenerate, MDS linear code with parameters [n, k, d] that is defined
over a finite field Fq, we have n ≤ 2q.

The length of a linear evaluation code constructed by taking the sections of a line bundle
on a smooth projective algebraic variety of dimension m is typically of the order qm. It follows
that apart from the case where qm−1 ≤ 2, or when the code is degenerate in the sense above,
such codes cannot be MDS. Thus, MDS linear codes that are non-degenerate and defined on
algebraic varieties have to be defined on algebraic curves.

Since codes from higher dimensional varieties necessarily have non-trivial defects, it is
important to understand how the defects depend on the parameters of codes in this context.
A few preliminary remarks seem to be in order. First, one needs to observe that for all codes
constructed from algebraic varieties defined over a finite field Fq (referred to henceforth as
algebro-geometric codes), the length of the code, customarily denoted by n, is bounded above
by the number of Fq-rational points on the variety. The reason for this is simply that all
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such codes are obtained by evaluating the sections of a given line bundle at a specified set
of rational points. Next, the Hasse-Weil bound shows that

(1.0.1) n1 ≤ q + 1 + gb2q1/2c,

where, n1 denotes the maximum number of rational points on a smooth projective curve of
genus g defined over Fq, which by the above observations is an upper bound for the length of
the corresponding code, denoted n. This shows that for genus 0 curves, n is bounded above
by q + 1, so that one way to increase n is by considering higher genus curves. One can also
see from (1.0.1) that for n to be of the order q2 (for large q), one needs the genus to be of
the order q3/2; over large fields, this means that the genus g must be very large to get n to
be of the order q2.

An alternate approach to obtain n to be of the order qm, for any m ≥ 1, is to start with
rational algebraic varieties of dimension m over Fq (and therefore contain an open subvariety
isomorphic to an open subvariety of an affine space), and then evaluate the sections of a line
bundle over such a variety at most points in the above open subvariety. The most well-
known examples of this strategy are the affine and projective Reed-Muller codes obtained
from affine and projective spaces. Indeed, there are many other varieties which satisfy the
above conditions, such as higher-dimensional toric varieties and flag varieties.

A rather surprising finding made by the authors in this context is the following 1:

As the dimension of algebraic varieties increase, the defects of the correspond-
ing codes or their dual codes also increase in a precise and correlated manner.

In fact, we observed that the least possible defect (i.e., n− k + 1− d) is exactly of order
m − 1 in q, if the dimension of the algebraic variety chosen as above over Fq is m. For
example, linear codes that are non-degenerate and obtained from rational algebraic surfaces
over Fq, or their dual codes, will have defects of order at least q. Likewise, linear codes that
are non-degenerate and obtained from rational threefolds over Fq, or their dual codes, will
have defects of order at least q2, and so on. A goal of the present paper is to systematically
prove that these facts always hold true. Our analysis for proving this result and others in
the following theorems is surprisingly similar to the analysis in [MS, Chapter 11, section 3].

All algebraic varieties we consider in this paper are assumed to be irreducible, reduced
and defined over finite fields. For a variety X defined over a field Fq , we denote by X(Fq) the
set of Fq -rational points, and by |X(Fq)|, the cardinality of this set. Following a suggestion
from one of the referees, we have chosen to present our results initially as bounds on the
defect for a single code. Consequently, our first result is as follows:

Theorem 1.1. Let X denote an algebraic variety defined over a finite field Fq , where q ≥ 4.
Let C := C(X) denote an algebro-geometric code constructed from X(Fq) with defect s and
parameters [n, k, d], where n ≥ k ≥ 2. Let C⊥, k⊥, d⊥, s⊥ denote the dual code, its dimension,
the minimum distance, and its defect, respectively. In this notation, if d⊥ > 1 holds, then
we have the following inequalities:

(i) s ≥ dd/qe − 1,
(ii) (s+ s⊥) ≥ n/(3q) ≥ n/(4(q − 1)), and

1Despite having examined many results in the literature regarding the construction of codes from higher-
dimensional algebraic varieties (see § 5), we could not find any precise statement along these lines.
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(iii) (s+ s⊥) ≥ k/(2(q − 1)) ≥ k/(2q).

In particular, we have

max{s, s⊥} ≥ n/(6q) ≥ n/(8(q − 1)),

and
max{s, s⊥} ≥ k/(4(q − 1)) ≥ k/(4q).

�

Notice that the condition d⊥ > 1 is equivalent to the condition k > s⊥. Indeed, observe
that if d⊥ = 1 holds, then s⊥ = k holds, and vice versa. This observation implies that if
d⊥ = 1, then (s+ s⊥) ≥ k.

Corollary 1.2. Let C(X) denote a self-dual algebro-geometric code defined over Fq (i.e.,
C(X) = C(X)⊥) , where q ≥ 4, with parameters [n, k, d] such that n ≥ k ≥ 2. Assume also
that d⊥ > 1. If one of the following conditions

(i) n > 8(q − 1), or
(ii) k > 4q

is satisfied, then the defect of the code C(X) must be at least 2. �

It is interesting to observe the implications of the above theorem for families of codes
constructed from families of algebraic varieties {Xm | m ∈ Z+} defined over Fq so that
the number of rational points on Xm is of order qfm, for some positive constant f . (Here
Z+ denotes the set of all positive integers.) Remarkably, this behavior seems typical for a
wide range of interesting codes constructed from families of algebraic varieties with steadily
increasing dimensions. To facilitate our discussion, we will adopt the following terminology
from complexity theory.

Definition 1.3. Let {rm} and {tm} be two infinite sequences of positive integers, where
m ∈ Z+. We will then write that

(i) {rm} ∈ Θ({tm}) if there exists an integer N � 0 and two positive constants α, β such
that αtm ≤ rm ≤ βtm for all m > N . If the inequalities αtm ≤ rm ≤ βtm hold for all
m > 1, then we will write that {rm} ∈ Θ̄({tm}).

(ii) {rm} ∈ Ω({tm}) if there exists an integer N � 0 and a constant α > 0 such that
αtm ≤ rm for all m > N . Similarly to the previous case, we will write {rm} ∈ Ω̄({tm})
if there exists a constant α > 0 such that the inequalities αtm ≤ rm hold for all m > 1.

We note in passing that, in Definition 1.3, the requirement that m > 1, rather than m ≥ 1,
is necessitated by the fact that the positive integer f in Theorems 1.4 and 1.7 could be 1, in
which case the computations in Theorems 1.4 and 1.7 will hold only for m > 1.

Assume that we are given a family {Xm} of algebraic varieties defined over a fixed finite
field Fq such that {|Xm(Fq)|} ∈ Ω({q fm}) for some fixed positive integer f > 0. Let {Cm}
denote a family of evaluation codes defined on Xm . Let nm, km, dm (resp. nm, k

⊥
m, d

⊥
m) denote

the parameters of Cm (resp. of the dual code, C⊥m). We will assume that nm ≥ km ≥ 2 for
all m. Let sm (s⊥m) denote the defect of the code Cm (C⊥m, respectively). Then we obtain the
following result by applying our previous theorem to the codes in the above family.

Theorem 1.4. In the above situation, further assume that both sm and s⊥m are positive for
all m > 1. Let q ≥ 4. Then the following assertions hold:
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(i) If {dm} ∈ Ω̄({qfm}), then {sm + 1} ∈ Ω̄({qfm−1}). In fact, if there exists a positive
constant α such that dm ≥ αqm holds for all m > 1, then we have

sm + 1 ≥ αqm−1 for every m > 1.

Moreover if α ≥ 1, where α is the positive constant above, then sm ≥ α
2
qfm−1, for every

m > 1.

For the next two assertions, we will assume in addition that d⊥m > 1 (equivalently km > s⊥m)
for every integer m > 1.

(ii) If {nm} ∈ Ω̄({qfm}), then {sm + s⊥m} ∈ Ω̄({qfm−1}). In fact, if α is a positive constant
such that nm ≥ αqfm for every integer m > 1, then

sm + s⊥m ≥
α

3
qfm−1 for every m > 1.

(iii) If {km} ∈ Ω̄({qfm}), then {sm + s⊥m} ∈ Ω̄({qfm−1}. In fact, if α is a positive constant
such that km ≥ αqfm every integer m > 1, then

sm + s⊥m ≥
α

2
qfm−1 for every m > 1.

�

We have two remarks in order.

Remark 1.5. Under the assumptions of (ii) or (iii),

• either there exists a subsequence {smi
}, with {mi} a strictly increasing sequence of

integers so that {smi
} ∈ Ω({qfmi−1}),

• or there exists a subsequence {s⊥mj
}, with {mj} a strictly increasing sequence of

integers so that {s⊥mj
} ∈ Ω({qfmj−1}).

Remark 1.6. The implications in (i) and (iii) are strict in the sense that the conclusion may
be true even if the hypothesis is false: this is shown in the examples worked out in § 4.

The aforementioned results do not apply directly to the case of codes constructed from
toric varieties, primarily due to the common practice of evaluating sections (of line bundles)
solely at the rational points on the dense torus. For relevant examples, we refer to [H]
and [SS]. For such toric codes, it is necessary to replace qfm everywhere by (q − 1)fm.
Consequently, we obtain the following variants of the above results.

Assume that we are given a family, {Xm}, of algebraic varieties defined over the fixed finite
field Fq , such that {|Xm(Fq)|} ∈ Ω({(q− 1)fm}) for some fixed positive integer f . Let {Cm}
denote a family of codes, with Cm defined on Xm , so that nm, km, dm (nm, k

⊥
m, d

⊥
m) denote the

parameters of the code Cm (the dual code C⊥m, respectively). Let sm (s⊥m) denote the defect
of the code Cm (C⊥m, respectively). Then we obtain the following theorem.

Theorem 1.7. Assume throughout that sm and s⊥m are both positive, and that d⊥m > 1
(equivalently, km > s⊥m), for all m > 1. Assume also that q ≥ 7. Let f denote the positive
integer chosen above. Then the following assertions hold:
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(i) If {dm} ∈ Ω̄({(q − 1)fm}), then {sm + 1} ∈ Ω̄({(q − 1)fm−1}). In fact, if there exists
a positive constant α such that the inequality dm ≥ α(q − 1)m holds for every m > 1,
then we have

sm + 1 ≥ α

2
(q − 1)m−1 for every m > 1.

Moreover if α ≥ 1, where α is the positive constant above, then sm ≥ α
3
(q − 1)fm−1,

for every m > 1.
For the next two assertions, we relax our assumption q ≥ 7 to q ≥ 4.

(ii) If {nm} ∈ Ω̄({(q−1)fm}), then {sm+s⊥m} ∈ Ω̄({(q−1)fm−1}). In fact, if α is a positive
constant such that nm ≥ α(q − 1)fm holds for every m > 1, then we have

sm + s⊥m ≥
α

4
(q − 1)fm−1 for every m > 1.

(iii) If {km} ∈ Ω̄({(q−1)fm}), then {sm+s⊥m} ∈ Ω̄({(q−1)fm−1}). In fact, if α is a positive
constant such that km ≥ α(q − 1)fm holds for every m > 1, then we have

sm + s⊥m ≥
α

2
(q − 1)fm−1 for every m > 1.

�

We have the corresponding remarks.

Remark 1.8. Under the assumptions of (ii) or (iii),

• either there exists a subsequence {smi
}, with {mi} a strictly increasing sequence of

integers so that {smi
} ∈ Ω({(q − 1)fmi−1}),

• or there exists a subsequence {s⊥mj
}, with {mj} a strictly increasing sequence of

integers so that {s⊥mj
} ∈ Ω({(q − 1)fmj−1}).

Remark 1.9. The implications in (i) and (iii) are strict in the sense that the conclusion may
be true even if the hypothesis is false: this is shown in the examples worked out in § 4.

We are now ready to give a brief overview of the remaining parts of our paper. The next
section begins with a concise review of fundamental terminology essential for the subsequent
discussions. Proceeding to the third section, we conduct a thorough analysis of defects in
connection with the MacWilliams identities, which establishes the weight distributions of a
code and its dual code. Here we also discuss the proofs of all the theorems stated in the
introduction. The main goal of the fourth section is to show by explicit examples that the
various implications discussed in the main results of the paper, such as in Theorem 1.4(i)
and (iii) as well as in Theorem 1.7(i) and (iii) are strict. We do this by focusing on families
of codes constructed primarily from projective spaces or products of projective spaces. § 5
provides a brief survey of Algebraic geometry codes constructed from surfaces and other
higher dimensional algebraic varieties. Since lower bounds for the minimum distances of
these codes are known, we use the Griesmer bound to provide a lower bound for their
defects as in Theorem 1.1(i).

Acknowledgment. The authors would like to thank both the reviewers for providing
valuable comments that were very helpful to the authors in revising the manuscript.
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2. Basic terminology

•We fix a finite field Fq with characteristic p and consider only algebraic varieties defined
over Fq . Since we will only consider linear codes, a code C will denote a finite dimensional
vector space over Fq . Such codes we consider will always be obtained as follows.

• We fix a projective algebraic variety X over Fq along with a chosen line bundle L.

• We also fix a set of n1 Fq -rational points on X, and evaluate sections of the line bundle
L at these points to define the code C.

Therefore, the length of the code C (denoted n) will be bounded above by n1. The letter
k will denote the dimension of the code C, which is in fact its dimension as a vector space
over Fq . The letter d will denote the minimum distance of the code C.

Definition 2.1. Given a linear code C, with parameters [n, k, d], the defect of the code C,
denoted by s, is defined by s = n+ 1− k− d. We will also say C is an AsMDS-code in this
case.

The terminology of Definition 2.1, which is adopted from [FW], gives us a convenient way
to express how far a given code is from an MDS-code. For example, one of our conclusions
is that all non-degenerate surface codes, where the surfaces are defined over Fq and the
number of rational points on them is of order q2, seem to be AsMDS-codes for s ≥ 1. See
the examples worked out in the last section.

Clearly an A0MDS-code is an MDS code, and an A1MDS-code is what is often called an
almost MDS code. It is known (see [MS, Chapter 11, section 3]) that the dual of an MDS
code is necessarily an MDS code, while no such restriction remains in place for the codes
with defect greater than or equal to 1.

For i ∈ {0, 1, . . . , n}, we will use Ai to denote the number of code words with weight i in a
given code C with parameters [n, k, d]. Clearly, for every i ∈ {0, . . . , n}, we have Ai ≥ 0. This
simple fact will turn out to have important consequences in view of the MacWilliams-Sloane
relationship between the weight distribution of the given code C and the weight distribution
of the corresponding dual code C⊥.

3. Relationship between the defect and the other code parameters

We begin with the first such relationship, which is between the minimum distance d, the
defect s, and q.

Proposition 3.1. (See [FW, Lemma 2].) For a [n, k, d] code C defined over a finite field
Fq , with n ≥ k ≥ 2, we have

d ≤ q(s+ 1).

In particular, s ≥ dd/qe − 1.

Proof. By the Griesmer bound, one first observes that:

(3.0.2) n ≥
k−1∑
i=0

⌈
d

qi

⌉
.
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Therefore, if the inequality d > q(s+ 1) was true, then it would follow that

n ≥ d+ (s+ 2) +
k−1∑
i=2

⌈
(s+ 1)

qi−1

⌉
≥ d+ s+ 2 + k − 2 = d+ s+ k = n+ 1

since, by definition s = n− k+ 1− d. This contradiction proves that d ≤ q(s+ 1). Now the
last statement follows readily from this. �

3.1. Proofs of part (i) of Theorems 1.1, 1.4 and 1.7. One may first of all observe that
the statement d ≤ q(s+ 1) readily proves the first statement in Theorem 1.1.

Next we consider the remaining two statements. Observe that it suffices to prove the fol-
lowing statement: Let {Cm} denote a family of codes defined over Fq , so that the parameters
of Cm are [nm, km, dm] with sm the corresponding defect. Let f be a positive integer so that
if {dm} ∈ Ω({qfm}) ( ∈ Ω({(q− 1)fm}) resp.), then {sm} ∈ Ω({qfm−1}) (∈ Ω({(q− 1)fm−1})
for all q ≥ 7, respectively).

We will first consider the case where {dm} ∈ Ω({qfm}). In this case, we first observe that,
as f > 0 and m > 1,

(3.1.1) (qfm/q)− 1 = qfm−1 − 1 ≥ qfm−1/2, q ≥ 2.

Observe that, by Proposition 3.1,

sm ≥ dm/q − 1.

Therefore, if {dm} ∈ Ω(qfm), that is, dm ≥ αqfm, for some positive constant α, then,

sm + 1 ≥ αqfm−1 in general, and if α ≥ 1, then,

sm ≥
α

2
qfm−1 for all q ≥ 2.

This proves the statement when {dm} ∈ Ω({qfm}).
Next we consider the case where {dm} ∈ Ω({(q − 1)fm}). In this case, we observe that

(q − 1)fm

q
≥ 1

2
(q − 1)fm−1 for all q ≥ 2,(3.1.2)

1

2
(q − 1)fm−1 − 1 ≥ 1

3
(q − 1)fm−1 for all q ≥ 7.

Since dm ≥ α(q − 1)fm for some α > 0, we have that

sm + 1 ≥ α
(q − 1)fm

q
≥ 1

2
α(q − 1)fm−1 for all q ≥ 2,

where the first inequality follows from Proposition 3.1 and the second by the (first) inequality
in (3.1.2). The second inequality in (3.1.2) shows that, when α ≥1, sm is bounded below by
1
3
α(q − 1)fm−1, for all q ≥ 7 and this completes the proof when {dm} ∈ Ω({(q − 1)fm}). �

7



3.2. The goal of this section is to provide a proof of the statements (ii) and (iii) in Theo-
rems 1.1, 1.4 and 1.7. However, in order to do this we need to first establish relationships
between the defect s and the dimension k, as well as between s and n − k (which is the
dimension of the dual code). This needs a considerably deeper analysis of the weight distri-
bution for the given code and the dual code making use of the MacWilliams-Sloane relations.
We begin with the following Lemma.

Lemma 3.2. For any positive integers n and q, the following hold:

(i) 2 qn+···+q+1
qn−1+···+q+1

− 1 ∈ Θ(q), q ≥ 1,

(i)’ 2 qn+···+q+1
qn−1+···+q+1

− 1 ∈ Θ(q − 1), q ≥ 3,

(ii) qn+···+q+1
qn−1+···+q+1

∈ Θ(q), q ≥ 1, and,

(ii)’ qn+···+q+1
qn−1+···+q+1

∈ Θ(q − 1), q ≥ 3.

Proof. We first consider (i). Observe that

qn + ...+ 1 = (qn+1 − 1)/(q − 1) and qn−1 + ...+ 1 = (qn − 1)/(q − 1).

Therefore:
qn + · · ·+ q + 1

qn−1 + · · ·+ q + 1
=
qn+1 − 1

qn − 1
.

Next,

q + (q − 1)/(qn − 1) = (q(qn − 1) + (q − 1))/(qn − 1)(3.2.1)

= (qn+1 − q + q − 1)/(qn − 1)

= (qn+1 − 1)/(qn − 1).

Therefore,

2((qn+1 − 1)/(qn − 1))− 1 = 2(q + ((q − 1)/(qn − 1)))− 1 ≥ 2q − 1 ≥ q

for all q ≥ 1. Moreover,

2((qn+1 − 1)/(qn − 1))− 1 = 2(q + ((q − 1)/(qn − 1)))− 1 ≤ 2(q + 1)− 1

= 2q + 2− 1 = 2q + 1 ≤ 3q for all q ≥ 1.

Therefore, (i) follows.

Next, we consider (i)’. For this, we observe:

(3.2.2) 2
qn + · · ·+ q + 1

qn−1 + · · ·+ q + 1
− 1 = 2(q + (q − 1)/(qn − 1))− 1 ≥ 2(q/2)− 1 = q − 1

One may also see that

(3.2.3) 2
qn + · · ·+ q + 1

qn−1 + · · ·+ q + 1
− 1 = 2(q + (q − 1)/(qn − 1))− 1 ≤ 2q + 1 ≤ 4(q − 1), q ≥ 3.

Taken together, these prove that

2
qn + · · ·+ q + 1

qn−1 + · · ·+ q + 1
− 1 ∈ Θ(q − 1), for q ≥ 3.

Next, we consider (ii). Clearly,

2q ≥ q + 1 ≥ q + (q − 1)/(qn − 1) =
qn + · · ·+ q + 1

qn−1 + · · ·+ q + 1
≥ q,
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which proves (ii). Next, observe that

qn + · · ·+ q + 1

qn−1 + · · ·+ q + 1
= q +

q − 1

qn − 1
≤ q + 1 ≤ 2(q − 1), for q ≥ 3.

Clearly, q + q−1
qn−1 ≥ q − 1. Thus

qn + · · ·+ q + 1

qn−1 + · · ·+ q + 1
∈ Θ(q − 1), for q ≥ 3.

This proves (ii)’ and completes the proof of the Lemma. �

Next, we recall the MacWilliams identities (see page 131, [MS])

(3.2.4)
n−r∑
i=0

(
n− i
r

)
Ai = qk−r

r∑
i=0

(
n− i
r − i

)
A⊥i , for r = 0, . . . , n,

where Ai (resp. A⊥i ) denotes the number of code words of weight i in the code C (resp. the
dual code C⊥). These provide us with the following relations:

(3.2.5)
n−r∑
i=d

(
n− i
r

)
Ai = qk−r

(
n

r

)
−
(
n

r

)
, for r = 0, . . . , d⊥ − 1.

Here d⊥ denotes the minimum distance of the dual code. Recall that s (resp. s⊥) denotes
the defect of the given code C (resp. its dual code C⊥). Then clearly one has:

d = n− k − s+ 1, and(3.2.6)

d⊥ = n− (n− k)− s⊥ + 1 = k − s⊥ + 1.

Next, we let

s⊥ = s− s′, and(3.2.7)

r = d⊥ − 1 = k − s⊥.

In view of these, one may observe that the summation in (3.2.5) goes from i = d = n− k −
s+1 = n−k−s⊥−s′+1 to n−r = n−d⊥+1 = n−k+s⊥. We first take r = d⊥−1 = k−s⊥

in (3.2.5) to obtain:
(3.2.8)(
k + s− 1

k − s⊥

)
An−k−s+1+

(
k + s− 2

k − s⊥

)
An−k−s+2+· · ·+

(
k − s⊥

k − s⊥

)
An−k+s⊥ = (qs

⊥−1)

(
n

k − s⊥

)
.

Next, we take r = d⊥ − 2 = k − s⊥ − 1 in (3.2.5) to obtain:

(3.2.9)

(
k + s− 1

k − s⊥ − 1

)
An−k−s+1 +

(
k + s− 2

k − s⊥ − 1

)
An−k−s+2 + · · ·+

(
k − s⊥ − 1

k − s⊥ − 1

)
An−k+s⊥+1

= (qs
⊥+1 − 1)

(
n

k − s⊥ − 1

)
.
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Next, we proceed to compare the terms on the left-hand-side of (3.2.8) with the corresponding
terms on the left-hand-side of (3.2.9). We have the binomial coefficient

(
k+s−i
k−s⊥−1

)
on the left-

hand-side of (3.2.9), while the corresponding term on the left-hand-side of (3.2.8) is
(
k+s−i
k−s⊥

)
.

Now we obtain (with ∗ denoting multiplication):(
k + s− i
k − s⊥ − 1

)
=

(
k + s⊥ + s′ − i
k − s⊥ − 1

)
(3.2.10)

=
(k + s⊥ + s′ − i)!

(k − s⊥ − 1)!(2s⊥ + s′ − i+ 1)!

=
(k + s⊥ + s′ − i)!(k − s⊥)

(k − s⊥)!(2s⊥ + s′ − i)!(2s⊥ + s′ − i+ 1)

=
(k + s⊥ + s′ − i)!

(k − s⊥)!(2s⊥ + s′ − i)!
∗ (k − s⊥)

(2s⊥ + s′ − i+ 1)

=

(
k + s⊥ + s′ − i

k − s⊥

)
∗ (k − s⊥)

(2s⊥ + s′ − i+ 1)

≥
(
k + s⊥ + s′ − i

k − s⊥

)
∗ (k − s⊥)

2s⊥ + s′
=

(
k + s− i
k − s⊥

)
∗ (k − s⊥)

2s⊥ + s′
,

where one obtains the last inequality from the observation that 2s⊥ + s′ − i + 1 ≤ 2s⊥ + s′

and since we will assume k > s⊥ (which, in view of (3.2.7) is equivalent to d⊥ > 1) and
i ≥ 1.

Therefore, a comparison of the left-hand-side of (3.2.9) and (3.2.8) shows that the sum
of all the terms on the left-hand-side of (3.2.9) except the last term is greater than or
equal to the sum of all the terms on the left-hand-side of (3.2.8) multiplied by the factor
k−s⊥
2s⊥+s′

. Clearly the last term equals the sum of all the terms on the right-hand-side of (3.2.8)

multiplied by the factor k−s⊥
2s⊥+s′

. Moreover, the latter equals

(qs
⊥ − 1)

(
n

k − s⊥

)
k − s⊥

2s⊥ + s′
= (qs

⊥ − 1)

(
n

k − s⊥ − 1

)
(n− k + s⊥ + 1)(k − s⊥)

(k − s⊥)(2s⊥ + s′)
.

One may also observe from (3.2.6) that s′ = s− s⊥, so that 2s⊥ + s′ = s+ s⊥.

Therefore, from (3.2.8) and (3.2.9), we obtain:

(3.2.11)

0 ≤ An−k+s⊥+1 ≤ (qs
⊥+1 − 1)

(
n

k − s⊥ − 1

)
− (qs

⊥ − 1)

(
n

k − s⊥ − 1

)
∗ (n− k + s⊥ + 1)

s+ s⊥

= (q − 1)

(
n

k − s⊥ − 1

)[
(qs
⊥

+ · · ·+ q1 + 1)− (qs
⊥−1 + · · ·+ q1 + 1) ∗ (n− k + s⊥ + 1)

s+ s⊥

]
.

Since An−k+s⊥+1 ≥ 0, it follows that

(3.2.12) (s+ s⊥)
qs
⊥

+ · · ·+ q1 + 1

qs⊥−1 + · · ·+ q1 + 1
≥ n− k + s⊥ + 1.
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Bringing the term s⊥ to the left-hand-side provides us with the inequality,

(3.2.13) (s+ s⊥)
qs
⊥

+ · · ·+ q1 + 1

qs⊥−1 + · · ·+ q1 + 1
− s⊥ ≥ n− k + 1.

Replacing the given code C by its dual code C⊥, and observing that for C⊥, the dimension
of the code is n− k, while the defect for the code C is s, we also obtain from (3.2.12):

(3.2.14) (s+ s⊥)
qs + · · ·+ q1 + 1

qs−1 + · · ·+ q1 + 1
≥ k + s+ 1 ≥ k.

Bringing the term s to the left-hand-side, then provides us with the inequality,

(3.2.15) (s+ s⊥)
qs + · · ·+ q1 + 1

qs−1 + · · ·+ q1 + 1
− s ≥ k + 1.

These results set the framework for completing the proofs of parts (ii) and (iii) of Theo-
rems 1.1, 1.4 and 1.7, which we discuss next.

Proofs of parts (ii) and (iii) of Theorems 1.1, 1.4 and 1.7. Without loss of
generality, we may assume that s⊥ ≥ s (if necessary, by renaming C as C⊥). Then, on
adding the left-hand-sides of the two inequalities in (3.2.13) and (3.2.15), we obtain:

(3.2.16) (s+ s⊥)

(
2
qs
⊥

+ · · ·+ q1 + 1

qs⊥−1 + · · ·+ q1 + 1
− 1

)
≥ n.

From Lemma 3.2(i), we have that

2
qs
⊥

+ · · ·+ q1 + 1

qs⊥−1 + · · ·+ q1 + 1
− 1 ∈ Θ(q).

In fact, the proof of Lemma 3.2(i) shows that

q ≤ 2
qs
⊥

+ · · ·+ q1 + 1

qs⊥−1 + · · ·+ q1 + 1
− 1 ≤ 3q, since q ≥ 1.

In view of (3.2.16), these prove both statements in Theorems 1.1(ii) and 1.4(ii), since q ≥ 4
by assumption. Next, from Lemma 3.2(i)’, we have that

2
qs
⊥

+ · · ·+ q1 + 1

qs⊥−1 + · · ·+ q1 + 1
− 1 ∈ Θ(q − 1), where q ≥ 3.

In fact, the proof of Lemma 3.2(i)’ shows that

q − 1 ≤ 2
qs
⊥

+ · · ·+ q1 + 1

qs⊥−1 + · · ·+ q1 + 1
− 1 ≤ 4(q − 1), (q ≥ 3).

In view of (3.2.16), this proves the statement in Theorem 1.7(ii).

Next, we observe from Lemma 3.2(ii) that

qs + · · ·+ q1 + 1

qs−1 + · · ·+ q1 + 1
∈ Θ(q)
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(and from Lemma 3.2(ii)’, that it belongs to Θ(q − 1), for q ≥ 3, respectively). In fact, the
proof of Lemma 3.2(ii) and (ii)’ show that

q − 1 ≤ q ≤ qs + · · ·+ q1 + 1

qs−1 + · · ·+ q1 + 1
≤ 2(q − 1) ≤ 2q, (q ≥ 3).

Therefore, in view of the above observations, (3.2.14) proves the statements in Theorems 1.1(iii), 1.4(iii)
and 1.7(iii). �

Proofs of the statements in Remarks 1.5 and 1.8. Assume towards a contradiction
that the statement in Remark 1.5 is false. Then it follows that lim

m→∞
sm/q

fm−1 = 0 =

lim
m→∞

s⊥m/q
fm−1, so that lim

m→∞
(sm + s⊥m)/qfm−1 = 0, which contradicts the conclusion that

{sm + s⊥m} ∈ Ω({qfm−1}). One may prove the statement in Remark 1.8 in a similar manner.

Proof of Corollary 1.2. If C(X) is self-dual then s = s⊥. Theorem 1.1 (ii) implies that
(s + s⊥) ≥ n/(4(q − 1)). If C(X) is self-dual and s ≤ 1, then s + s⊥ ≤ 2. In this case,
our claim follows from the inequality 2 ≥ (s + s⊥) ≥ n/(4(q − 1)). Likewise, under our
assumptions, Theorem 1.1 (iii) implies that 2 ≥ k/(2q). Hence, our claim follows in this case
also. �

4. Examples of codes from projective spaces

The main goal of this section is to show by explicit examples that the various implications
discussed in the main results of the paper such as in Theorem 1.4(i) and (iii) as well as in
Theorem 1.7(i) and (iii) are strict. For this purpose, we will consider the following three
families of codes constructed from algebraic varieties defined over Fq:

• Xm = Pm, m ≥ 2,
• Xm = (P2)×m, and
• Xm = (P1)×m.

Example 4.1. Let Xm = Pm and O(r) the r-th tensor power of the structure sheaf O(1) on
Pm. The polytope corresponding to the line bundle O(r) is the regular r-simplex with a side
given by r and all but one face along the coordinate planes, one vertex at the origin and the
other vertices being

(r, 0, . . . , 0), (0, r, 0, . . . , 0), . . . , (0, . . . , 0, r).

We also require that r ≤ q − 1.

Now we will compute the parameters of the corresponding codes, where we evaluate sec-
tions of the line bundle O(r) at all the Fq-rational points on the open affine subspace Am.

Therefore, n = qm, that is, f = 1. The bound worked out in [LN, Theorem 6.13] shows that
the maximum number of zeros of a degree r polynomial in m-variables is rqm−1. These are
the maximum number of zeros on an affine space of dimension m. Therefore, the minimum
distance is given by

dm = qm − rqm−1.

It follows that {dm} ∈ Θ({qm}). To see that qm − rqm−1 > αqm, just choose 0 < α < 1/q.

The volume of the hyper-pyramid gives the dimension of the corresponding code. There-
fore, it is given by km = rm/m!, which is the formula for the volume of the above r-simplex

12



with side given by r. Clearly, the limit of this term is 0, as m→∞. Therefore

sm = nm + 1− dm − km = qm + 1− (qm − rqm−1)− rm/m! = rqm−1 − rm/m! + 1.

As lim
m→∞

rm/m! = 0, it follows that {sm} ∈ Ω({qm−1}) (and hence {sm + s⊥m|m} ∈ Ω({qm−1})
), for each fixed q. However, observe that {km} clearly does not belong to Ω({qm}). This
shows that the implication in Theorem 1.4(iii) is indeed strict.

Next, we consider the same example, but where the sections of the line bundle O(r) are
evaluated only at the rational points on the dense torus. In this case, n = (q−1)m. The same
argument as in [LN, Theorem 6.13] (see also [SS, Theorem 2.1]), but where one evaluates
only at the rational points on the dense torus, shows that the maximum number of zeroes of
a degree r polynomial in m variables, when evaluated at the rational points of a split torus
of dimension m is r(q − 1)m−1. Therefore, the minimum distance is given by

dm = (q − 1)m − r(q − 1)m−1.

It follows that {dm} ∈ Θ({(q − 1)m}). To see that (q − 1)m − r(q − 1)m−1 > α(q − 1)m, just
choose 0 < α < 1/(q − 1). Then we obtain

sm = nm + 1− dm − km
= (q − 1)m + 1− (q − 1)m + r(q − 1)m−1 − rm/m!

= r(q − 1)m−1 − rm/m! + 1.

As lim
m→∞

rm/m! = 0, it is clear that {sm} ∈ Ω({(q − 1)m−1}), for each fixed q. However,

observe that {km} clearly does not belong to Ω({(q−1)m}). This shows that the implication
in Theorem 1.7(iii) is also indeed strict.

Example 4.2. Here, the variety Xm will be (P2)×m. The line bundle we use on P2 will
be O(r) which corresponds to the triangle with vertices (0, 0), (r, 0), (0, r). We will choose
r � q, where r is a positive integer. We evaluate sections of the above line bundle at all
points of the affine subspace A2m. Therefore, the parameters of the resulting code on P2 are:

n = q2, k = (r + 1)(r + 2)/2, and d = q2 − rq.

Invoking [vL, 2.5], the parameters of the resulting product code on Xm = (P2)
×m are then

given by

[nm, km, dm] = [q2m, ((r + 1)m(r + 2)m)/2m, (q2 − rq)m].

Therefore, in this case {nm} ∈ Θ({q2m}) and {dm} ∈ Ω({q2m}) for q sufficiently large and
for a fixed m > 1 (for then, viewing dm as a polynomial in q, the complexity is determined by
the leading term in q). Clearly, we have f = 2 in this example. Since r � q by assumption,
we have

km = ((r + 1)m(r + 2)m)/2m � (q(q + 1))m/2m.

Therefore, {km} does not belong to Ω({q2m}).
Now, we have

sm = q2m + 1− (q2 − rq)m − ((r + 1)m(r + 2)m)/2m

= q2m−1 + lower order terms in q.
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In other words, we have {sm} ∈ Ω({q2m−1}) for all sufficiently large q. This example also
shows that the implication in Theorem 1.4(iii) is indeed strict.

Next, we consider the same example, but where we evaluate sections of the line bundle
O(r) only at the rational points in the dense torus in P2. Therefore, the parameters of the
resulting code on P2 are given by

n = (q − 1)2, k = (r + 1)(r + 2)/2, and d = (q − 1)2 − r(q − 1).

Invoking [vL, 2.5] (see also [SS, Theorem 2.1]), the parameters of the resulting product code
on Xm = (P2)

×m are then given by

[nm, km, dm] = [(q − 1)2m, ((r + 1)m(r + 2)m)/2m, ((q − 1)2 − r(q − 1))m].

Therefore, in this case {nm} ∈ Θ({(q − 1)2m}) and {dm} ∈ Ω({(q − 1)2m}) for q sufficiently
large and for a fixed m > 1 (for then, viewing dm as a polynomial in q, the complexity is
determined by the leading term in q). Clearly, we have f = 2 in this example. Moreover,

km = ((r + 1)m(r + 2)m)/2m � ((q − 1)q)m/2m.

Consequently, {km} does not belong to Ω({(q − 1)2m}).

We observe that

sm = (q − 1)2m + 1− ((q − 1)2 − r(q − 1))m − ((r + 1)m(r + 2)m)/2m

= (q − 1)2m−1 + lower order terms in q.

It follows that {sm} ∈ Ω({(q − 1)2m−1}), where q is a sufficiently large prime power. This
example also shows that the implication in Theorem 1.7(iii) is indeed strict.

Example 4.3. In this final example, we will let Xm = (P1)×m. The code we choose on P1

will be a Reed-Solomon code with parameters

n = q, k = q − 1, d = 2,

which is clearly an MDS code. Here we are assuming q � 2. Invoking [vL, 2.5] once more,
we compute the parameters of the resulting product codes to be given by

nm = qm, km = (q − 1)m, and dm = 2m.

In this case, clearly {km} belongs to Ω({(q−1)m}), and therefore to Ω({qm}) for q sufficiently
large, but {dm} does not belong to Ω({qm}), for any q > 2. We compute:

sm = qm + 1− (q − 1)m − 2m.

One can see that on expanding (q − 1)m using the binomial theorem in powers of q, the
leading term in q, which is qm, cancels off leaving terms in qm−1 and lower order terms. (One
may also observe that as q � 2, the term qm−2 > 2m.) Therefore, {sm} ∈ Ω({qm−1}) for
q sufficiently large and m > 1. Moreover, the resulting family of codes are all non-MDS
codes for m > 1. This example shows that the implication in Theorem 1.4(i) is indeed strict.
(Clearly, in this example f = 1.)
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Next we consider the same example, but where we evaluate sections of the line bundle
O(r) only at the rational points in the dense torus in P1. The code we choose on P1 will be
a Reed-Solomon code with parameters

n = (q − 1), k = q − 2, d = 2,

which is clearly an MDS code. Invoking again [vL, 2.5], we compute the parameters of the
resulting product codes to be given by

[nm, km, dm] = [(q − 1)m, (q − 2)m, 2m].

In this case, clearly {km} belongs to Ω({(q − 2)m}), and therefore to Ω({(q − 1)m}) for q
sufficiently large, but {dm} does not belong to Ω({(q − 1)m}), for any q > 2. We compute:

sm = (q − 1)m + 1− (q − 2)m − 2m.

Therefore, {sm} ∈ Ω({(q − 1)m−1}) for q sufficiently large and for a fixed m > 1. Moreover,
the resulting family of codes are all non-MDS codes for m > 1. This example shows that
the implication in Theorem 1.7(i) is indeed strict. (Clearly, in this example also, f = 1.)

Remark 4.1. It is important that we consider only families of codes all of which are not
MDS, that is, whose defects are positive. Otherwise, the conclusions will not hold, as can be
seen by taking degenerate MDS codes. For example, one may take n = q, k = q and d = 1
as an example of a degenerate MDS code constructed from P1. Then the resulting product
codes on Xm = (P1)×m will also be degenerate MDS codes and therefore, in these cases both
sm and s⊥m will be 0 for all m.

5. Examples of Codes from Higher dimensional algebraic varieties

In this section, we will discuss various examples of codes that are constructed from higher
dimensional algebraic varieties, for which good estimates for code parameters are known.
There are in fact many papers that work out explicit bounds for the parameters of algebro-
geometric codes constructed from surfaces: rational surfaces (see [C]), low rank surfaces
(see [LS], [Z]), del Pezzo surfaces (see [L], [BC]), Abelian surfaces (see [ABHP2]), families
of surfaces with special conditions (see [ABHP]), any surfaces (see [CLP]). There are also
a few papers, such as [L] and [H2], that work out explicit bounds for the parameters of
algebro-geometric codes constructed from other higher dimensional varieties.

We will then observe that Theorem 1.1(i) applies to provide lower bounds for their defects.
We will assume that q ≥ 4, n ≥ k ≥ 2 and d⊥ > 1 in all these examples, so that we are able
to invoke Theorem 1.1(i). Observe that the inequality q(s+ 1) ≥ d implies s ≥ dd/qe − 1.

Example 5.1. The Grassmann code (See, for example, [L, Theorem 7.22].) Here, we
consider the Grassmannian of ` planes in m-space over the finite field Fq. For a ∈ Z+, let

[a]q :=
qa − 1

q − 1
.

Then it is well-known that the parameters of the resulting code are given by

• n =
[
m
l

]
q

:= [m]q [m−1]q ···[m−l+1]q
[1]q [2]q ···[l]q ,

• k =

(
m
`

)
,

• d = q`(m−`).
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Now we make use of the inequality q(s+ 1) ≥ d = q`(m−`) to obtain

s ≥ q`(m−`)−1 − 1.

Example 5.2. The higher Grassmann code (See [CJR]).) Once again, we start with
Gr(`,m), the Grassmannian of `-planes in Am, defined over Fq. However, we will consider
higher embeddings instead of the usual Plücker embedding, so that we consider the degree
ν code CGr(`,m)(ν), where ν − 1 = r(q − 1) + τ , 0 ≤ τ ≤ q − 1. Then clearly n is the same

as in the last example. It is shown that d is bounded below by (q − τ)q`(m−`)−r−1 (Theorem
6.2, op. cit.). Therefore, again making use of the inequality q(s+ 1) ≥ d, we obtain:

s ≥ (q − τ)q`(m−`)−r−2 − 1.

One may observe that the projective Reed-Muller codes are special cases of the Higher
Grassmann codes, obtained by taking ` = 1.

Example 5.3. Codes from del Pezzo surfaces (See [L, Theorem 7.24].) A del Pezzo
surface X is a projective surface of degree m in Pm on which the anti-canonical line bundle
K−1X is ample. It is shown in [L, Theorem 7.24] that associated to one of the integers
` = 0, 1, . . . , 6, one can construct an associated del Pezzo surface, denoted X`, over Fq, with
q > 4. The resulting code C(X`) has parameters n = q2 + q+ 1 + `q, k = 10− ` and d given
such that there is a positive constant α so that d ≥ αq2. Therefore, again making use of the
inequality q(s+ 1) ≥ d, we obtain:

s ≥ αq − 1.

Example 5.4. Codes from Quadric hypersurfaces in projective space (See [L, 7.4.1].)
These are the zero sets of degree 2 homogeneous polynomials in Fq[x0, · · · , xm]. Given such
a hypersurface X, the number of rational points on it is well-known:

|X(Fq)| = qm−1 + · · ·+ q + 1 + (w − 1)q (m−1)/2,

where w is an integer called the character of X. For codes constructed on such varieties, one
may take n = |X(Fq)|. It is known that k = m+ 1 and that

d =


qm−1 if w = 2

qm−1 − q(m−2)/2 if w = 1

qm−1 − q(m−1)/2 if w = 0.

Once again using the bound q(s+ 1) ≥ d, we see that

s ≥


qm−2 − 1 if w = 2

qm−2 − q
(m−2)

2
−1 − 1 if w = 1

qm−2 − q
(m−1)

2
−1 − 1 if w = 0.

Example 5.5. Codes from Surfaces obtained by restriction of scalars from elliptic
and hyperelliptic curves (See [Z, §4 and §5].) One may start with the prime field F7

and consider the finite Galois extension F72 . Then starting with an elliptic or hyperelliptic
curve over F72 one considers the surface over F7 obtained by the restriction of scalars from
SpecF72 to SpecF7. A table of parameters of various codes constructed on the resulting
surfaces are discussed in [Z, section 5]. In each case, one may obtain a lower bound for the
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defect s, making use of the inequality q(s + 1) ≥ d. As an example, one finds a code with
parameters [50, 11, 27], for which s ≥ d27/7e − 1 ≥ 3. (The actual defect in this case is
50 − 11 − 27 + 1 = 13.) The reader may work out lower bounds for s in a similar manner
for the remaining examples of codes considered there and conclude that it is at least 1 in
all cases (i.e., these are all AsMDS-codes for s ≥ 1), while the actual defect in all these
examples may be even a bit higher.

Example 5.6. Bounds on surface codes with special conditions (See [ABHP].) Let
X denote an algebraic surface defined over Fq. Let S be a set of rational points on X, H be
a rational effective ample divisor on X avoiding S, and let r a positive integer. Then a lower
bound for the minimum distance of the corresponding algebraic geometry code d(X, rH, S)
is given under various conditions on the canonical divisor KX. For example, if KX is nef,
then it is found that

d(X, rH, S) ≥ |S| − rH2(q + 1 + m)−m(πrH − 1),

where H2 denotes the self-intersection number of H, πrH is the virtual arithmetic genus of
rH, and m = b2q1/2c. Making use of the inequality q(s+ 1) ≥ d(X, rH, S), one obtains

s ≥ d(X, rH, S)/q − 1 ≥ |S|/q − rH2(1 + (1 + m)/q)−m/q(πrH − 1)− 1.

When |S| is of order qm, one can see from these inequalities that |S|/q is of order qm−1.
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