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Abstract—In this paper, we propose an interactive system for gener-
ating artistic sketches from images, based on stylized multiresolution
B-spline curve model and livewire contour tracing paradigm. Our mul-
tiresolution B-spline stroke model allows interactive and continuous
control of style and shape of the stroke at any level of details. Es-
pecially, we introduce a novel mathematical paradigm called wavelet
frame to provide essential properties for multiresolution stroke edit-
ing, such as feature point preservation, locality, time-efficiency, good
approximation, etc. The livewire stroke map construction leads the
user-guided stroke to automatically lock on to the target contour, al-
lowing fast and accurate sketch drawing. We classify the target con-
tours as outlines and interior flow, and develop two respective livewire
techniques based on extended graph formulation and vector flow field.
Experimental results show that the proposed system facilitates quick
and easy generation of artistic sketches of various styles.

Keywords—Non-photorealistic rendering, Interactive sketch, Wavelet
frame, Multiresolution, B-spline, Livewire, Contour tracing

I. Introduction

Sketch is a simple form of drawing which consists of the
salient outlines of a target object. A well-drawn sketch typ-
ically contains a small number of curved lines (or strokes)
and yet effectively conveys the identifying characteristics to
the viewers, so that they can quickly recognize and appre-
ciate the subject without being distracted by redundant or
unimportant information. That is, generating a sketch re-
quires the capabilities for both identifying the key charac-
teristics and accurately drawing them with curved strokes,
which make it a difficult task for humans and computers
alike.

In this paper, we propose an interactive system for quick and
easy generation of artistic sketches from photographs. We
model the stroke as a stylized multiresolution B-spline curve
based on a novel mathematical paradigm called wavelet
frame, providing continuous smoothing and editing of the
stroke at multiple levels of details. The use of wavelet frame
ensures efficient smoothing/reconsturction/editing process
of the stroke and also preserves the feature points, which
are essential requirements in interactive sketch applications.
Also, to facilitate fast and accurate sketching of both the
outlines and the interior essentials of the target objects, we
develop two respective livewire contour tracing techniques
based on extended graph formulation and direction vector
flow field. Figure 1 shows an example sketch generated with
our system from a photograph.

(a) Input image (b) Sketch result(a) Input image (b) Sketch result

Fig. 1. A sketch generated with our system

A. Related Work

For the past decade or so, a wide variety of techniques have
been proposed in the field of non-photorealistic rendering
(NPR), for automatically creating simplified and artistic ren-
derings from arbitrary reference photographs [22], [3], [13],
[19], [23], [25], [5], [12], [10], [6]. While these techniques
all produce their own distinct artistic rendering styles and
simulate specific artistic media such as oil painting, pen-
and-ink illustration, watercolor painting, pencil drawing,
stippling, engraving, mosaics, stylization, etc., none of these
directly addresses the problem of creating a sketch render-
ing where the salient outlines of the subjects are clearly and
accurately depicted. Instead, the existing techniques mainly
use strokes to fill the interior of the objects, while their out-
lines are often obscured or implicitly formed by the aggre-
gate of the interior strokes. In some systems, while outline
sketching can be assisted by edge detection techniques [22],
[13], [6], the resulting boundary curves are often incomplete
or unclear. The part of the reason for this is that the result of
automatic edge detection is seldom perfect (see Fig. 2).

On the other hand, interactive 2D NPR systems such as
in [11], [21], [3], [25], [5], [27], [4], [24] provide flexibility
to the users in that strokes can be interactively placed at arbi-
trary positions. However, it is a time-consuming task, even
for a professional artist, to manually draw the strokes for
accurately tracing the outlines of the objects or for adding
tones or textures in their interior regions. While commer-
cial painting programs [4], [24] usually provide interactive
boundary selection tools (such as ‘magic wand’ or ‘lasso’),
their results are often rough and inaccurate, thus requiring



manual post-corrections. Also, the existing systems mainly
focus on the stroke placing process, and little effort has been
made for providing effective stroke smoothing/editing capa-
bility which is essential in producing creative, original art-
works.

(a) Input image (b) Edge detection(a) Input image (b) Edge detection

Fig. 2. Limitation of automatic edge detection

B. Overview

The next section discusses the mathematical details of our
stroke model, including the B-spline wavelet frame theory.
In Section 3, we show how the outlines are sketched, ren-
dered, and edited based on our extended livewire technique
and multiscale stroke model. In Section 4, we present an-
other livewire technique that works on a vector flow field,
to assist the sketching of the interior essentials of the target
objects. Section 5 shows various experimental results and
finally, Section 6 concludes this paper.

II. Stroke Model

A sketch is typically represented by a set of smooth stroke
curves. In general, the use of smoother curves makes the
resulting sketch look more abstracted, stylish, and artistic.
Thus, for effective sketch generation, we need a stroke curve
model which provides smoothing and editing in multiple
levels of details. The representative model with this capa-
bility was introduced in [9], based on classical wavelet for-
mulation of cubic B-spline curve. Although this model is
an elegant and powerful tool for multiscale curve manipu-
lation, it has some limitations to be used for sketch appli-
cation. First, the endpoints of the curve are not preserved
while smoothing. Fig. 3 shows an example of this phe-
nomenon. Especially, note that discontinuities occur at the
4 feature points on the upper lip boundary, represented by
the endpoints of 3 consecutive strokes. Another limitation is
that the analysis filters do not have local support, and thus
the changes made to the control points cannot be localized
and spread all over the control points (and the detail coef-
ficients) in the next level. The resulting analysis process
may also slow down the interactive feedback of sketch pro-
cess. To overcome these limitations, we propose a novel
stroke model based on a more flexible multiresolution anal-
ysis scheme called wavelet frame. Since it is out of the scope
of this paper to fully explore its mathematical background,

we briefly summarize its formulation in this section. More
interested readers are referred to [20], [2].

(a) Original strokes (b) Smoothed strokes(a) Original strokes (b) Smoothed strokes

Fig. 3. Smoothing with classical wavelet formulation

A. Multiresolution analysis

Let Φj(u) = [φj
1(u), . . . , φj

mj
(u)], u ∈ [0, 1], j = 0, . . . , n

be a sequence of vector-valued functions that satisfy the
equations Φj−1(u) = Φj(u)P j for some refinement matri-
ces P j . Let V j be the spaces of linear span of Φj , which
satisfy V 0 ⊂ V 1 ⊂ · · · ⊂ V n. We call {V j} a mul-
tiresolution analysis (MRA). We define W j as a comple-
ment subspace of V j in V j+1, that is, V j+1 = V j + W j .
We further let W j be the spaces spanned by Ψj(u) =
[ψj

1(u), . . . , ψj
�j

(u)], where Ψj−1(u) = Φj(u)Qj . The ba-

sis functions of Ψj(u) are called wavelet frames, in contrast
to the classical wavelets for which V j+1 = V j ⊕ W j is
required [1].

B. Classical approach on curves

Consider a sequence of curves f j(u) = Φj(u)Cj , u ∈
[0, 1], where Cj = [cj

1, . . . , c
j
mj

]T is a set of control points
for the curve at resolution level j. The analysis phase of
f j(u) is implemented through two analysis matrices Aj and
Bj in the form of

Cj−1 = AjCj , Dj−1 = BjCj , (1)

where Dj−1 gives the wavelet coefficients. The synthesis
phase is given by

Cj = P jCj−1 + QjDj−1, (2)

which relies on the perfect reconstruction condition,

P jAj + QjBj = Ij , (3)

or equivalently,

[
P j Qj

] [
Aj

Bj

]
= Ij . (4)

where Ij is the identity matrix of the corresponding size.

C. Wavelet frame approach

The classical approach, which includes the biorthogonal and
semi-orthogonal cases, is established on an exact system,
where dim(V j+1) = dim(V j) + dim(W j). In this pa-
per, we adopt a redundant system, where dim(V j+1) <
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dim(V j)+dim(W j), in order to acquire the desirable prop-
erties we need. We rewrite (3) as

QjBj = Ij − P jAj . (5)

One can show that for any mj−1×mj matrix Aj , rank(Ij−
P jAj) ≥ mj −mj−1. For an exact system, Aj must satisfy

rank(Ij − P jAj) = mj − mj−1 (6)

due to the fact that rank(Qj) = rank(Bj) = mj − mj−1.
But for a redundant system, this restriction is removed, thus
we have more freedom in selecting Aj .

D. Selection of analysis and synthesis matrices

We choose the popular endpoint-interpolating cubic B-
splines for the Φj(u)’s. (See [9] for the P j’s.) In design-
ing Aj’s, we would like to have the following properties: 1)
Endpoint preservation; 2) Locality; 3) Good approximation;
4) Computational efficiency.

To have the property of endpoint preservation for all the lev-
els of curves f j(u), we require that f j(0) = f j−1(0) and
f j(1) = f j−1(1) for j = 1, . . . , n. That is, cj

1 = cj−1
1 and

cj
mj

= cj−1
mj−1

, which means that Aj should have the follow-
ing form by the first equation of (1),

Aj =

⎡
⎣1 0 . . . 0
∗ . . . . . . ∗
0 . . . 0 1

⎤
⎦ . (7)

To have the locality property, we require that each control
point in {cj−1

1 , . . . , cj−1
mj−1

} is determined by only a fixed

number of consecutive control points in {cj
1, . . . , c

j
mj

}. In
other words, all except a fixed number (independent of j) of
consecutive entries of each row of Aj are zeros.

For better approximation, Aj should be close to the pseudo
inverse of P j in view of

f j(u) − f j−1(u) = Φj(u)(I − P jAj)Cj .

The procedure of customizing Aj is based on the above dis-
cussion. First, we take a shift-invariant approximation of a
truncated version of the pseudo inverse of P j . Here, all the
entries of i-th row are truncated except those with consec-
utive indices from 2(i − 1) − τ to 2(i − 1) + τ , where τ
is a control parameter. Also, the shift-invariant property of
a matrix means that the non-zero entries of the (k + 1)-th
row are derived by shifting the non-zero entries of the k-th
row 2 positions to the right. We require the shift-invariant
property for all rows except the first three and the last three
rows of Aj . Then we change the first and the last rows of the
resulting matrix to the form of (7) to complete our Aj . After
that, by the matrix factorization of the right hand side of (5),
Qj’s and Bj’s can be derived with the locality property, so
that both analysis and synthesis filters are linear and hence
very efficient.

We note that there is no guarantee for an exact system to
obtain all the desirable properties above. For example, in
the method of [9], one cannot simply change the first row
and the last row of Aj to force the form of (7) in order to
achieve the endpoint preservation property, because the new
Aj would not satisfy the condition (6) for an exact system
any more.

E. Redundant system approach for curve editing

As shown in [9], in order to preserve the multilevel structure
during curve editing, we need the following constraints:

AjP j = BjQj = I, AjQj = BjP j = 0. (8)

But for a redundant system, (8) is not true in general due to
the fact that [P j Qj ] is not a square matrix, which means that
we cannot use the same analysis phase as in (1) while pre-
serving the multilevel structure during curve editing. Thus,
we make an adjustment based on a matrix extension tech-
nique, that is, we extend [P j Qj ] to an invertible square ma-
trix. Equation (4) ensures that there exist P j

a , Qj
a, Aj

a, and
Bj

a, such that

[
P j Qj

P j
a Qj

a

] [
Aj Aj

a

Bj Bj
a

]
= Ij

+, (9)

where Ij
+ is the identity matrix of appropriate size. We asso-

ciate each Cj with an (�j + mj−1 − mj)-dimensional aux-
iliary vector Cj

a, which can be chosen zero initially. The
analysis phase for the redundant system is modified from
(1) by adding some correction term as follows,

Cj−1 = AjCj + Aj
aCj

a, Dj−1 = BjCj + Bj
aCj

a, (10)

as is illustrated in the following diagram.
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The role of the terms Aj
aCj

a and Bj
aCj

a in (10) is to preserve
the multilevel structure between level j and level j − 1. Cj

a

is not used in rendering the curve f j(u).

When Cj−1 is modified, Cj and Cj
a would change accord-

ingly, and their changes satisfy ∆Cj = P j∆Cj−1 and
∆Cj

a = P j
a∆Cj−1. The synthesis phase is kept the same

as in (2). The multilevel structure requires that ∆Cj−1 =
Aj∆Cj + Aj

a∆Cj
a and 0 = Bj∆Cj + Bj

a∆Cj
a, or equiva-

lently, I = AjP j + Aj
aP j

a and 0 = BjP j + Bj
aP j

a , which
is guaranteed by (9).
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F. Application to sketching

We apply the redundant system designed above, which
contains the major analysis and synthesis matrices
Aj , Bj , P j , Qj , together with the fine-tune compensation
matrices Aj

a, Bj
a, P j

a , Qj
a, to our stroke model with the anal-

ysis phase (10) and the synthesis phase (2). Note that P j
a

and Qj
a do not appear in (10) and (2). P j and Qj are of

sizes (2j +3)× (2j−1 +3) and (2j +3)× (2j +2), respec-
tively. The sizes of Aj and Bj are the same as those of the
transposes of P j and Qj , respectively. Our system enjoys
all the desirable properties including endpoint preservation,
local support, good approximation, and linear time complex-
ity in both phases. Fig. 4 shows that our stroke model pre-
serves the feature points while smoothing the original figure
of Fig. 3.

(a) Original strokes (b) Smoothed strokes(a) Original strokes (b) Smoothed strokes

Fig. 4. Preserving feature points while smoothing

III. Sketching Outlines

We decompose the structure of each target object into two
components: the outlines and the interior flow. Note that
these two components represent the object boundaries and
their interior regions, respectively. This section discusses
the method for sketching the outlines of the target objects.
Figure 5 shows our outline sketching process.

For effective outline tracing, we modify/extend the exist-
ing livewire algorithms [18], [7], [8], [16]. Livewire (also
called Intelligent Scissors) is a highly interactive segmenta-
tion paradigm based on dynamic programming. Modeling
the input image as a 2D graph, livewire constructs on the
fly a path map in which for each node the minimum-cost
path from the user-specified starting node is recorded. As
the user steers the livewire curve around the target contour,
the system displays the recorded minimum-cost path leading
to the current cursor location, giving the impression that the
livewire automatically locks on to the target contour. Among
all the interactive segmentation techniques, livewire is most
suited for our sketch application since it gives the tightest
control to the user and does not require post-correction.

Although this paradigm greatly facilitates the boundary
tracing process, there are some limitations in the existing
livewire algorithms: First, since the algorithm is built on 2D
graph and each node can be visited only once in a path, a
self-intersecting contour cannot be accurately traced. Also,
since the cost of a path is computed as a sum of the local
costs of single edges in the path, it is not possible to incor-
porate high-order internal curve energy (such as curvature)
which is useful for reducing the digression rate, especially

around noisy or unclear edges. To overcome these limita-
tions, we develop an improved livewire algorithm based on
an extended cost function and a 3D graph.

A. Cost Function

Our livewire technique is used to find the optimal stroke
(rather than path) among all the candidate strokes starting
from the user-specified starting point (called seed point) p0,
and thus we will use the term stroke map instead of path
map. While each stroke is recorded in the stroke map as
a sequence of pixels ([p0,p1, ...,pn]), it is displayed and
edited in the form of multiresolution B-spline curve by using
the pixel sequence as control points. Our local cost function
for computing the cost of each candidate stroke in the stroke
map is defined as follows:

c(pk−1,pk,pk+1) = α|pk+1 − pk|2
+β|pk+1 − 2pk + pk−1|2 + γcext(pk,pk+1) (11)

where α, β, and γ are weight parameters. As in the formu-
lation of active contour [17], |pk+1 −pk|2 denotes the first-
order continuity of the stroke, and |pk+1 − 2pk + pk−1|2
models its curvature (bending energy). These two terms rep-
resent the internal curve energy which is newly added in
our livewire formulation. cext(pk,pk+1) denotes the ex-
ternal energy which is inversely proportional to the gradi-
ent magnitudes of the pixels involved. Note that our local
cost is defined for three (instead of two) successive pixels
pk−1,pk,pk+1. Thus, unlike previous livewire algorithms,
we need to define a graph node as a combination of two
neighboring pixels pi and pi+1 since the internal energy
spans two consecutive arcs. Then the recurrence relation
for our livewire dynamic programming is written as:

cc(pk,pk+1) = min
pk−1

{cc(pk−1,pk) + c(pk−1,pk,pk+1)}
(12)

where cc(pk,pk+1) denotes the cumulative cost of a stroke
ending with an arc (pk,pk+1).

B. Graph Formulation

Since our recurrence relation (Eq. 12) depends on two con-
secutive pixels and a single pixel in an image only has
a constant number of neighbors (at most 8), it requires a
3-dimensional graph where two pixels constitute a single
node. Given an input image with N pixels, the correspond-
ing graph will be constructed with N × 8 nodes, based on
the 8-neighbor system. Each node is represented by 3 num-
bers (x, y, z), where x and y denote the location in the im-
age and z denotes the source neighboring pixel from which
it is connected. That is, (x, y) denotes position and z de-
notes direction. A single pixel p can have 8 distinct nodes
in the graph indicating that these nodes will be treated in-
dependently even though they all lead to the same pixel p.
A graph arc is created between any two nodes p and q in
the neighboring positions. Our livewire algorithm is essen-
tially an extended version of dynamic programming running
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Input image Outline sketching ResultInput image Outline sketching ResultInput image Outline sketching ResultInput image Outline sketching Result

Fig. 5. Outline sketching

on this 3D graph, based on the recurrence relation in Eq. 12
and the cost function in Eq. 11.

Fig. 6 shows some advantages of our livewire formulation.
Note that with the use of 3D graph as well as the extended
cost function, the user is provided with more flexibility to
customize the tracing operation according to the character-
istics of the input image. For example, by adjusting the
weight values (α, β, γ) of our cost function, various differ-
ent tracing results can be obtained from the same outline. It
is even possible to produce a self-intersecting stroke since
a single pixel is now associated with multiple graph nodes
(Fig. 6(c)). Also, the incorporation of high-order internal
energy contributes to improving the accuracy and smooth-
ness of tracing in the region with noisy or unclear edges,
consuming less seed points (Fig. 6(b)).

(a) Clean (b) Noisy (c) Twisted(a) Clean (b) Noisy (c) Twisted

Fig. 6. Flexibility of our scheme

C. Stroke Map Localization

One problem of the original livewire algorithm is that it is
time-consuming to compute the optimal path for every pixel
in the entire image, and thus it slows down the feedback at
the seed point selection. To resolve this problem, we em-
ploy the stroke map localization strategy from our previous
work [16]. Based on this strategy, at each time the stroke
map is constructed only in a local window centered at the
current cursor. As the cursor moves, the stroke map is ex-
panded to the new local window and incrementally updated.
This ensures real-time performance of the outline tracing
task regardless of the image size, and also improves the ac-
curacy of tracing in that it reduces the digression ratio by
computing the optimal stroke only in the user-guided win-
dow sequence.

D. Stroke Rendering and Editing

Following the user’s interactive cursor movement around
the target outline, the system expands the stroke map and

instantly displays the optimal stroke up to the current cur-
sor location, giving the impression that the outline stroke is
automatically and accurately drawn by the computer. This
greatly eases the tracing process since the tedium of manual
contour tracing is removed, and yet the user is allowed to
have high-level control over the sketching process through
operations like steering the cursor, selecting the desired
stroke, placing a new seed point to extend the outline, or
signaling to complete the current stroke, etc.

Fig. 7. Example stroke styles

During the interactive outline tracing process, the system
renders strokes as stylized multiresolution B-spline curves.
Each stroke selected in the stroke map is converted to
an endpoint-interpolating multiresolution B-spline curve by
sampling the control points from its original pixel sequence
and applying our analysis filters. Including the two end-
points, (2j + 3) control points are sampled with maximum
possible integer j. As shown in Fig. 7, the resulting curve
is displayed with a specific user-defined style by employ-
ing existing stroke stylization techniques [15]. During in-
teraction, the smoothness of the stroke can be controlled by
adjusting its level of details (see Fig. 8). The linear interpo-
lation between adjacent-level curves is supported as in [9]
to allow continuous stroke smoothing and reconstruction.
Also, each stroke in the stroke sequence can be displayed
in its own distinct level of details (see Fig. 8(d)). Note that
the stroke curve can be smoothed and reconstructed without
deviating from the cursor (or the seed point) since the end-
points of the stroke are preserved as described in Section II.

Level 6.7 Level 4.5 Level 2.3 Example SketchLevel 6.7 Level 4.5 Level 2.3 Example Sketch

Fig. 8. Continuous level control while tracing

Each constructed outline is in general composed of a se-
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quence of strokes, separated by the seed points. These seed
points can be directly used as feature points which need pre-
serving, and can be post-edited: a new seed can be added
to split a stroke; a seed can be removed to merge strokes; a
seed can be moved to change the end points of the two asso-
ciated strokes simultaneously. Also, any stroke curve may
be interactively post-edited in any level. The stroke can be
locally edited by ordinary B-spline curve editing, and it can
also be globally edited (to change the overall sweep of the
curve) by editing the curve in a lower resolution and then
return back to its original resolution (see Fig. 9). The lat-
ter operation is especially important in sketch application,
and yet very difficult to achieve with a single-level B-spline
model (since B-spline has a local support).

Smoothing Editing ReconstructionSmoothing Editing Reconstruction

Fig. 9. Multiresolution stroke editing

IV. Sketching Interior Flow

While outlines are the most essential components in sketch
drawings, artists often put a collection of strokes in the inte-
rior of the objects also, in order to add depth or richness to
the sketch. In general, artists draw (or paint) strokes to de-
pict these interior elements of the object, which are usually
a combination of the color, tone, or texture information of
the corresponding local region. These elements, as a whole,
are often perceived by artists to form a virtual ‘flow’ in the
interior, as we can see in many traditional paintings or il-
lustrations. In this section, we describe how to effectively
generate this interior flow, and based on which how to guide
the user’s stroke placement (and alignment) in the interior of
the objects.

A. Generating Tangent Vector Flow

The main factor which governs the direction of the interior
flow is the neighboring outlines. That is, the flow vector at
a pixel can be defined by its tangent vector (the perpendicu-
lar vector of the image gradient). Unlike the outline pixels,
however, the interior pixels often form small textures or a
homogeneous region and thus their tangent vectors may be
unrelated to those of the nearby ‘dominant’ outlines, or their
magnitudes may be so small that their directions are mean-
ingless. Thus, to force the tangent vectors of all the interior
pixels to follow the flow of the dominant outlines, we em-
ploy the gradient vector flow construction algorithm based
on variational formulation [26].

The tangent vector flow field is defined by v(x, y) =
[u(x, y), v(x, y)] that minimizes the following energy func-

tional:

E(v) =
∫∫

|∇I⊥|2|v−∇I⊥|2+µ(u2
x+u2

y+v2
x+v2

y)dxdy

(13)
where ∇I⊥ = (− ∂I

∂y , ∂I
∂x ) and µ is a regularization parame-

ter. Note that we use the image tangent vectors ∇I⊥ instead
of the gradient vectors ∇I = ( ∂I

∂x , ∂I
∂y ) used in [26]. For a

pixel where |∇I⊥| is large, its flow vector v is more affected
by the first term and thus tends to resemble the original tan-
gent vector. That is, the dominant outlines are preserved.
When |∇I⊥| is small, its v is more affected by the second
term and adjusts its direction according to the neighboring
vectors to create a smoothly varying field around it. Based
on calculus of variations, the above energy functional is min-
imized by solving the following Euler equations:

µ∇2u − (u +
∂I

∂y
)((

∂I

∂x
)2 + (

∂I

∂y
)2) = 0 (14)

µ∇2v − (v − ∂I

∂x
)((

∂I

∂x
)2 + (

∂I

∂y
)2) = 0 (15)

where ∇2 is a Laplacian operator. These equations are
solved numerically, starting from the initial v (set as ∇I⊥),
and terminating when a steady state is reached. Fig. 10 illus-
trates tangent vector flow fields obtained from sample im-
ages. As shown in the figure, the tangent vector flow can
also be generated from an outline sketch only, in which case
the vectors are aligned more strictly with the outlines.

Fig. 10. Example tangent vector flow fields

B. Flow-based Livewire

The constructed tangent vector flow field can be used to sug-
gest a direction for each stroke to be placed in the interior of
the objects. As in the case of outline tracing, however, it
is a difficult task to accurately place the interior strokes by
manually tracing the flow of vectors. Thus, we propose a
new type of livewire technique where the livewire follows
the flow of the vector field. To our knowledge, all exist-
ing livewire algorithms have been designed on a scalar field
where each node is associated with a scalar value (such as
pixel intensity or gradient magnitude), rather than a (direc-
tion) vector value.
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We construct a 2D graph from an image where the node is
represented by each pixel and the arc by the link between
neighboring pixels. Each node p = (x, y) is associated
with a direction vector v(p) = v(x, y) = [u(x, y), v(x, y)].
Given the starting node specified by the user, our goal is
to construct a stroke map where a minimum-cost stroke
(from the starting node) is recorded for each node in the
graph. Here, the minimum-cost stroke is defined as the
stroke which best follows the local flow of the vector field.
Thus, the cost function for an arc c(p,q) between neighbor-
ing pixel p and q is defined as follows:

c(p,q) = 1 − |v(p) · (q − p)|
|v(p)| |q − p| (16)

where v(p) denotes the flow vector at pixel p and |q−p| de-
notes the displacement vector from p to q. Also, |v(p)·(q−
p)|/|v(p)| |q−p| computes the cosine of the angle between
v(p) and |q−p|. That is, the cost of an arc is proportional to
the angle formed by the arc and the desired direction. Based
on the new cost function and the graph structure, the dy-
namic programming is applied to construct the stroke map,
and the user can easily trace the flow of the direction vec-
tors by interactively steering the cursor and selecting from
the candidate strokes in the map. Fig. 11 shows how our
flow-based livewire algorithm works. Instead of snapping
to the nearby outlines (Fig. 11(b)), the livewire now follows
the given interior direction flow (Fig. 11(c)).

(a) Input image (b) Outline stroke (c) Interior stroke(a) Input image (b) Outline stroke (c) Interior stroke

Fig. 11. Flow-based livewire

Our stylized multiresolution B-spline curves are once again
used for modeling, rendering, and editing interior strokes.
There are various ways to stylize the interior strokes (see
Fig. 12). For example, the stylization technique in [15] can
be applied to simulate ordinary pen strokes or brush strokes.
The strokes can also be textured to produce realistic paint-
ing effects [14], and the strokes may be alpha-blended on
the canvas to simulate watercolor painting [13]. In addition,
each interior stroke can also be displayed as a collection of
strokes as in [21], to expedite the sketch process and reduce
the tedium of placing individual strokes for making collec-
tive tonal or textural effects.

V. Experimental Results

Fig. 13 contains various sketch results generated with our
interactive sketch system. As shown in Fig. 13(a), our sys-
tem can be used to produce technical (rather than artistic)
illustrations of commercial products, by reducing styliza-
tions and focusing on accurate outline capture. This type

Oil painting Watercolor Pen and inkOil painting Watercolor Pen and ink

Fig. 12. Stylizations of interior strokes

of illustrations are often required in the product manuals or
assembly instruction guides. Fig. 13(b) shows that our out-
line tracing scheme works well even for complex foreground
outlines and background structure. The interiors of some re-
gions are colored with the flood-filling method to produce
the cartoon-style sketch. In Fig. 13(c) and Fig. 13(d), the
interior strokes are stylized to simulate oil painting and wa-
tercolor blending effects, respectively. Fig. 13(e) and Fig. 1
show the sketches generated from complex portrait pho-
tographs. Note that in Fig. 1, the feathers hanging from
the hat are sketched by tracing the interior flow. Also, in
Fig. 13(e), interior strokes are used to generate double out-
lines (for the shirt). This is an often-used trick by illustrators
to reveal the outlines more clearly. Fig. 13(f) shows that by
tracing, smoothing, and editing the curves in multiresolu-
tion we can easily create an exaggerated, cartoon-like figure
from a photograph. All the results in this paper have been
generated in 3-20 minutes by non-professional users. Our
system is implemented on Pentium 4 PC (3 GHz CPU, 1
GB Memory and NVIDIA� GeForce FX 5950 GPU).

VI. Conclusions

We have presented an interactive system for generating artis-
tic sketches from images, based on stylized multiresolution
B-spline model and livewire contour tracing paradigm. As
shown in our experimental results, the proposed system fa-
cilitates quick and easy generation of artistic sketches of var-
ious styles from photographs. We are currently extending
our wavelet frame formulation to non-uniform B-spline to
handle the strokes with more flexibility and efficiency. Also,
we will incorporate more various stroke styles and devise a
technique to let the system select optimal styles automati-
cally from the style database.
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