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Line drawing and screentoning are two distinct areas of study in non-photorealistic ren-
dering, where the former emphasizes object contours, while the latter conveys tone and

shading information on object surfaces. As these two problems are concerned with differ-

ent yet equally important features, either method seldom delivers a complete description
of the scene when used alone. Yet, research community has largely treated them as sep-

arate problems and thus resulted in two entirely different sets of solutions, complicating

both implementation and usage. In this paper, we present a stylistic image binarization
method called hybrid difference of Gaussians (HDoG) that performs both line drawing

and screentoning in a unified framework. Our method is based upon two different ex-

tensions of DoG operator: one for line extraction, and the other for tone description.
In particular, we propose an extension called adaptive DoG, that uses luminance as

weight to automatically generate screentone that adapts to the local tone. Experimental

results demonstrate that our hybrid method effectively generates aesthetically pleasing
image binarizations that encompass both line drawing and screentoning, closely resem-

bling professional pen-and-ink illustrations. Also, being based on Gaussian filtering, our
method is very fast and also easy to implement.
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1. Introduction

Non-photorealistic rendering (NPR) aims to convey visual information in a sim-

plified and/or stylized fashion. One of the most fundamental issues in NPR is line

drawing, that is, extracting and depicting object boundaries in the scene with a rel-

atively small number of lines, conveying salient structure information. Line draw-

ing often serves as the foundation for many NPR applications 1,2,3,4,5,6,7. While

line drawing is good at portraying the structural elements of the scene, it is not

equipped to deliver the tone, shading, and texture information on object surfaces.

To account for these missing elements, artists often use screentoning methods such

as halftoning 8,9,10, hatching 11,12,13, and stippling 14,15,16. These computerized

screentoning techniques convey tonal information using a set of simple black-and-
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Fig. 1. A pen-and-ink illustration by an artist

white primitives such as dots and line segments. However, they tend to rely on

complex algorithms that are difficult to implement. Also, the lack of contours may

lead to unclear object structures in complex regions. To avoid this, they would have

to deploy a large number of small primitives near object boundaries, while consum-

ing more resources. Relying on a dense set of small primitives also has a downside

of making the output look more like a dithered photograph instead of a stylistic

illustration.

Instead of pure line drawing or screentoning, we argue that the best way to

produce two-tone illustration of a scene is to combine the two methods into a

unified framework. Such a framework would allow for both the object contours

and the surface tone to be clearly depicted, as we often see in the professional

illustrations drawn by artists (see Fig. 1)a. In this paper, we present a novel image

binarization technique called hybrid difference of Gaussians (HDoG) that facilitates

automatic generation of such a high quality illustration. It is a unified framework

as described above, conveying both object contours and surface tone. Our method

is simple, easy to implement, and very fast.

The proposed method, as the name suggests, builds on difference of Gaussians

(DoG) 17. DoG operator is generally known as edge detector, and thus should nat-

urally take care of line drawing side of the task. Our contribution lies in how we

use DoG to describe surface tone. We show that DoG introduces a screentoning

effect in noisy environments, producing evenly distributed irregular-shaped primi-

tives of a given Gaussian scale. We also propose a simple mechanism to adaptively

distribute these screentone primitives to match the local tone. The resulting image

is then combined with the DoG lines to complete the illustration. Experimental re-

sults show that our framework consistently generates quality black-and-white image

stylizations. Moreover, the computational efficiency of DoG, along with its highly

ahttps://deviantart.com/wlbrndl1206/art/Scientific-Illustration-of-Canadian-Lynx-skull-

411864668
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parallelizable nature, ensures real-time performance even at HD image resolutions.

2. Related Work

2.1. Line Drawing

Line drawing has been in the core of 2D NPR, and a variety of methods have been

proposed for providing a structure-conveying abstraction of an image comprised of

clear and coherent strokes. For example, Canny edge detector 18 is often used for

line drawing purposes, which uses Gaussian blurred image gradient to extract thin

edge lines of one pixel width. Gooch et al. 29 introduced multiscale DoG operator to

detect salient lines from human facial photographs. Unlike Canny’s, DoG generates

lines of nonuniform width reflecting edge strength, which helps improve structure

recognition. Winnemöller et al. 4 subsequently used DoG operator in conjunction

with bilateral filter 20 for video abstraction. Kang et al. 21 proposed an anisotropic

DoG operator called flow-based Difference of Gaussians (FDoG) for improved line

coherence and reduced noise. Winnemöller then developed an extended DoG op-

erator (XDoG) 5 to generate a wider variety of grayscale image stylization effects

beyond line drawing.

In recent years, learning-based approaches have been used to improve semantic

accuracy of line drawing. Simo-Serra et al. 22 used convolutional neural network

(CNN) for cleaning up rough sketch. Similarly, Li et al. 23 and Kim et al. 24 pre-

sented CNN-based methods for extracting lines that are perceptually more mean-

ingful. These approaches, however, require lengthy processes of data collection and

machine learning.

Another way to generate lines is via segmentation. There are a variety of ap-

proaches to conducting data segmentation, including mean-shift 1,31,32, region grow-

ing 33, active contours 34, spectral/wavelet analysis 35,37,38, Markov chain 36, etc.

The output of such segmentation may be used to provide a baseline for higher-

level image stylizations 1,31,32. Also related is a topic of vectorization of line draw-

ings 39,40, where the focus is on extracting line primitives devoid of noise from a

binary image and converting them into scale-independent vector graphics which

may then be further edited, stored, and digitally reproduced.

2.2. Screentoning

Screentoning refers to representing shades of grayscale luminance with a repeating

pattern of black and white primitives. Computerized screentoning methods vary in

the shape of primitives used, such as dots, circles, polygons, and general shapes.

Salisbury et al. 11 presented an interactive pen-and-ink illustration system that uses

a variety of predefined black-and-white hatching patterns. Similar screentones were

later used for interactive generation of hatching illustration based on user-provided

direction field 12.

Deussen et al. 14 proposed a stipple drawing method based on Lloyd’s algorithm

(i.e., construction of a centroidal Voronoi diagram) that uniformly distributes dots
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over Voronoi cells. Secord 15 modified this algorithm to produce a weighted cen-

troidal Voronoi diagram that protects image features better. Mould 25 developed

a graph-based stippling method for improved protection of image features such as

edges. On the other hand, Son et al. 16 used texture synthesis to generate directional

stippling and hatching along computer-generated feature flow.

Halftoning, while similar to stippling in many ways, is mainly concerned with

visual approximation rather than artistic stylization. Thus, its goal is often to min-

imize visual error against the source and therefore tends to use smaller dots than

stippling. Notable algorithms include the one proposed by Ostromoukhov 8 based

on error diffusion. Kopf et al. 9 used recursive Wang tiles for multiscale halfton-

ing. Pang et al. 10 proposed a directional halftoning method that better preserves

oriented features.

Kaplan and Bosch 30 developed an innovative screentoning method called TSP

Art that uses connected line segments to represent grayscale tone. These line seg-

ments are formed by connecting neighboring stipple dots that are adaptively dis-

tributed to match local tone. Ostromoukhov and Hersch proposed screentoning

methods that support arbitrary primitive shapes 26,27. They define evolving screen

dot shape by a description of customized shape contours associated with specific

intensity levels, then perform shape blending to interpolate between the predefined

shape contours at all other intensity levels.

Technically speaking, our screentoning method is neither stippling nor hatching.

Instead, it uses irregular shaped primitives that are procedurally generated based

on the local intensity variation and the noise present. Also, unlike aformentioned

approaches, our method does not require any complex algorithm or procedure to

meticulously organize the primitive distribution, and thus is easy to implement and

highly efficient.

Another related topic is texture/screentone segmentation 41,42,43,44 that tackles

the problem of detecting and separating high-frequency details such as texture

or screentone from low-frequency structural elements. While these techniques are

designed to analyze screentone or texture patterns that are already present in the

input data, our proposed method is aiming to synthesize a screentone pattern that

does not exist in the input data.

3. Our Method

Fig. 2 shows the overview of our method. For line drawing, we perform FDoG

filtering 21 on Gaussian blurred input. For tone depiction, we introduce a modified

DoG called adaptive DoG (ADoG) that adjusts DoG filter’s sensitivity to noise

based on the brightness level in the neighborhood, resulting in a screentoning effect

in the filter response. The respective binary filter responses from FDoG and ADoG

are then merged via Boolean AND operator to complete the final output.
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Fig. 2. Process overview

3.1. Flow-based Difference of Gaussians

FDoG 21 is an anisotropic DoG filter where the filter kernel is curved along the dom-

inant edge direction in the local neighborhood. This data-dependent kernel shaping

delivers enhanced coherence of detected lines as well as reduced spurious edges

and noisy responses, making FDoG a powerful line drawing tool. FDoG requires a

feature-preserving smooth orientation field called edge tangent flow (ETF). Edge

tangent is a vector perpendicular to the dominant image gradient in the neighbor-

hood. For ease of implementation, we employ Gaussian-smoothed structure ten-

sor 28 to construct our ETF.

Given a grayscale image I ∈ [0, 1], let (Ix, Iy) denote image gradient. The

smoothed structure tensor S is then defined as

S =

(
A B

B C

)
(1)

where A = Gσ ∗ Ix2, B = Gσ ∗ IxIy, and C = Gσ ∗ Iy2. The operator ∗ denotes

convolution with 2-dimensional Gaussian kernel Gσ of scale σ. We set σ = 5 by

default.

Now, ETF is constructed by taking the minor eigenvector of S. More specifically,

the edge tangent direction θ at each pixel is obtained as

θ = arctan

(
−2B

C −A+
√

(C −A)2 + 4B2

)
(2)

Fig. 3b shows an ETF obtained from Fig. 3a.

In the next step, we extract lines by performing anisotropic DoG filtering on

image I with respect to ETF. For each pixel x, we set a rectangular filter kernel

deformed along the tangent axis (see Fig. 3c). Note that tangent axis is a steamline
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Fig. 3. FDoG: (a) Input (b) ETF (c) Anisotropic kernel at x (d) Kernel magnified (e) DoG
responses accumulated at x

of ETF centered at x. We then apply 1-dimensional DoG filter along gradient axes

perpendicular to the tangent axis (see Fig. 3d). The DoG operator is defined as:

DoG(x) = Gσc(x)− ρ ·Gσs(x) (3)

where Gσc
and Gσs

denote center and surrounding Gaussian kernels, respectively

(see Fig. 3e). The default scale of the center kernel is set as σc = 1.0, and the

surrounding kernel σs as 1.6 times the size of σc. Parameter ρ controls sensitivity

to brightness contrast in the neighborhood. We let it range in [0.97, 1.0] with the

default value of ρ = 0.99. The higher the value, the noisier the response.

Finally, the individual DoG outputs within the kernel are accumulated along

the tangent axis using another Gaussian function Gσm as blending weight, to form

FDoG filter response at x (see Fig. 3e), which is then converted to a black-and-white

line map via binary thresholding. The default value of σm is 3.0.

3.2. Adaptive Difference of Gaussians

As described in Eq. 3, DoG detects edges using the discrepancy between center-

surrounding Gaussian kernels. DoG operator elicits either a positive or negative

response where there is a brightness contrast (see Fig. 4). Near an edge, these

responses form a line. In a noisy region, an irregular pattern emerges out of rapidly

fluctuating positive and negative responses. Moreover, in Eq. 3, the Gaussian scale

σc controls the size of these irregular primitives, and ρ controls how strongly DoG

responds to brightness contrast. We exploit these properties to construct a DoG-

based tone descriptor.

An ideal screentone descriptor should evenly distribute primitives where the

density of distribution is inversely proportional to the brightness of local tone. Thus,



May 24, 2022 20:22 WSPC/INSTRUCTION FILE ws-ijig-final

Gaussian Image Binarization 7

Fig. 4. DoG operator

we modify Eq. 3 so that DoG response would produce higher frequency patterns in

a dark region. This means the contrast sensitivity parameter ρ should be a function

of pixel location x:

ADoG(x) = Gσc
(x)− ρ(x)Gσs

(x) (4)

with ρ(x) defined as:

ρ(x) = τ + (1− τ)(1− tanh(s · I(x))) (5)

where τ is the minimum sensitivity (= 0.99 by default). The idea is to let the

contrast sensitivity range within [τ, 1] and be inversely proportional to the local tone

I(x), which means more primitives will be generated in dark regions. Hyperpolic

tangent function, tanh, is used to control the density of primitive distribution and

thus the overall tone of the illustration. The control parameter s further helps in

this regard. Fig. 5 and Fig. 6 illustrate the effect of s. The default value of s is set

to 2. Since the contrast sensitivity is now adaptively defined, we call this scheme

adaptive difference of Gaussians (ADoG).

Fig. 5. Plots of 1 − tanh(s · x)

Fig. 7 shows comparison with regular DoG. In case of regular (non-adaptive)

DoG, the same degree of contrast sensitivity is used everywhere and thus the number

of primitives does not necessarily increase in dark regions (see Fig. 7b). With ADoG,

however, the density of primitive distribution adaptively changes with the level
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of brightness in the neighborhood, and thus better represents the dark tone (see

Fig. 7c).

Fig. 6. Effect of scale parameter on tone variation

Fig. 7. Regular DoG vs. Adaptive DoG: (a) Input (b) DoG (c) ADoG

The effect of ADoG may be further amplified by adding Gaussian noise to I.

Again, we must ensure that the amount of noise added is adaptively determined

by the local tone. Specifically, we randomly sample noise from a Gaussian function

Gσ, where the scale σ is a function of pixel location x:

σ(x) = c · (1− tanh(s · I(x))) (6)

which uses the same tone-dependent weight as in Eq. 5. Therefore, the amount of

intensity perturbation will be inversely proportional to the local tone I(x), meaning
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the darker the region, the denser the primitive distribution. The noise scale factor

c is typically set to 0.01. This formula helps generate more high-frequency intensity

fluctuations in darker regions. Fig. 8 illustrates that with the presence of adaptive

noise, the dark regions with little intensity fluctuations are now represented better

with increased screentone density.

Fig. 8. Effect of adaptive noise: (a) Input (b) Without noise (c) With noise

Fig. 9 shows that the rotationally symmetric nature of center-surrounding Gaus-

sians (as shown in Fig. 4) ensures regular spacing of irregular primitives even in a

highly noisy environment, where the size of spacing is determined by the Gaussian

scale. This regular spacing of primitives is key to why ADoG output looks stylistic

rather than noisy.

Fig. 9. Primitive spacing by ADoG: (a) Dark region (b) Gaussian noise added (c) ADoG

3.3. Hybrid Difference of Gaussians

With FDoG and ADoG output images generated and binarized, we combine them

into the final image as follows:

HDoG(x) = FDoG(x) ∧ADoG(x) (7)

where we use pixel-wise logical AND operator (∧). This is to preserve all the black

primitives present in the two images, considering they are both binarized into either
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Fig. 10. The operation of HDoG

0 (black) or 1 (white). Note that this would be the same as applying logical OR

operator (∨) on the inverted images (where 1 would represent lines and primitives),

then invert the result back. That is,

∼(∼FDoG ∨ ∼ADoG) = FDoG ∧ADoG (8)

which is a well-known De Morgan’s law (∼ denotes logical negation). Fig. 10 illus-

trates this operation, which we call hybrid difference of Gaussians (HDoG). Note

that HDoG output conveys both structure and tone information well, while either

ADoG or FDoG comes up short in this regard.

When creating black-and-white art, artists often seek to find the optimal scale

for the primitives whether they are dots, polygons or arbitrary shapes. If primitives

are too large, it becomes harder to protect important structures and features in

the scene. If primitives get too small, the output may end up looking too realistic

to pass as non-photorealisic art (e.g., like a dithered photograph on a newspaper).

Thus, it is prudent to avoid using primitives that are too big or too small. One

challenge, though, is that the dark tone is harder to represent with medium or large

sized primitives. This is because the bigger the primitives, the larger the spacing

between them, and our framework is no exception. To address this, we propose a

simple extension to Eq. 7:

HDoG = FDoG ∧ADoGs ∧ADoGs′ (9)

where s and s′ denote the scale parameter in Eq. 5. That is, we run a second ADoG

filter with a larger scale factor s′, in order to generate additional screentone in some
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of the darkest regions without affecting brighter ones (see Fig. 6). We empirically

set s′ = 4s. Fig. 11 illustrates the effect of the second ADoG, with which the darkest

tone in the picture is represented more effectively (see Fig. 11c).

Fig. 11. Effect of second ADoG: (a) Input (b) Without second ADoG (c) With second ADoG

4. Results

Fig. 13 presents HDoG results from the test images of Fig. 12. The test results

show that our HDoG filter converts an arbitrary photograph into an artistic styl-

ization composed of line drawing and computer generated screentone, which closely

resembles human art (such as Fig. 1). In particular, the combination of FDoG and

ADoG complements each other and effectively conveys both the structual elements

and the shading information, making the resulting art look more complete. Note

that either FDoG or ADoG, when used alone, would have been lacking in this re-

gard. Our method works well on a wide variety of images of different subjects, such

as humans, animals, and inanimate objects.

Fig. 14 shows how the results of ADoG and FDoG are combined to form HDoG

binarizations with some additional sample images. ADoG nicely captures a wide

range of shades that exist in the scene, which FDoG is not equipped to do. See how

ADoG and FDoG respond differently on the inside of the shell (middle row). FDoG

however does a good job of capturing structure and object boundaries with clear

and coherent lines. It should be noted that ADoG itself is an edge detector as it

was derived from DoG operator. However, the edge detection capability of ADoG

is not as strong as that of FDoG. See for an example the flower image in the top

row, where the boundaries of individual petals are clearly captured with FDoG, but

not as much with ADoG. Then the combined HDoG result on the right delivers the

best of both worlds.

Fig. 15 provides comparison with some of the existing image binarization meth-

ods. The second column shows results of a multi-scale stippling technique developed

by Kopf et al 9. This technique uses a set of carefully planned recursive Wang tiles

and thus obtains faithful reproduction of local tone as well as rigorously spaced

dot primitives everywhere. One limitation of such pure stippling is that it is not
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Fig. 12. Test images

Fig. 13. Results

well-equipped to clearly depict the structural elements, such as surface contours

and object boundaries. It typically requires a large number of primitives near edges

to do so, resulting in an output looking more like a dithered photograph than an

artistic stylization.
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Fig. 14. Example ADoG, FDoG, and HDoG results

The third column shows results of TSP Art algorithm by Kaplan et al 30. This

algorithm generates an artistic screentone pattern by connecting the dots that are

carefully distributed to match local tone. It typically consumes a less number of

primitives than pure stippling and thus leaves, somewhat deliberately, many of the

structural elements in the scene vague. For example, in the second row of TSP Art,

the shape of Audrey Hepburn’s nose is quite unclear.

On the other hand, our algorithm (4th column) does not go through a lengthy

procedure to meticulously place each primitive in the right place. Yet, as demon-

strated by the experimental results, our method is quite effective in capturing and

delivering both structural and tonal elements that are perceptually important, not

unlike hand-drawn professional illustrations.

Operation Time complexity

ETF construction (Eq. 1) O(N)

FDoG filtering (Eq. 3) O(N)

ADoG filtering (Eq. 4) O(N)

Adaptive Gaussian noise (Eq. 6) O(N)

HDoG filtering (Eq. 7) O(N)

Overall O(N)

Table 1. Time complexity of each step of our algorithm.
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Fig. 15. Comparison with existing binarization methods

Table 1 shows performance analysis of our algorithm. As shown in the table,

the overall time complexity of our algorithm is O(N), where N denotes the number

of pixels in the source image. This is due to the fact that every major step in our

algorithm involves Gaussian filtering, which is a well-known linear operator. Even

a 2-dimensional Gaussian, such as the ones used in Eq. 1 and Eq. 4, is mathemati-

cally separable into two 1-dimensional Gaussians along x and y axes, respectively,

without sacrificing accuracy. Other steps, such as the logical AND (∧) in Eq. 7

and the subtraction (−) of center-surrounding Gaussians in Eq. 4, are all pixel-wise

local operators. Thus, the entire process of our algorithm, both the Gaussian-based

components and the local operations, is highly parallelizable and GPU-friendly. Not
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surprisingly, the GPU implementation of HDoG filter runs in real time, processing

images of HD resolutions (of over 1M pixels) at 1000+ fps on a system equipped

with Intel Core i7-7700HQ and Nvidia GeForce GTX 1050.

5. Conclusions

We have presented a simple yet effective binary image stylization method based

on Gaussian filtering. We proposed a novel hybrid difference of Gaussians (HDoG)

framework that relies on DoG operator for both line drawing and tone description.

In particular, our adaptive DoG filter is designed to quickly generate screentone

that captures local tone and shading information in the image. The generated line

map and tone map are then combined to produce a high quality binary stylization

that resembles professional pen-and-ink drawing. Our algorithm is highly efficient

and easily implementable on GPU.

Possible future research directions include exploring different styles of screentone

pattern that can be generated within the current framework, and finding ways to

parameterize the control of the primitive shapes. Extending current framework

to video while preserving temporal coherence between frames would be another

interesting yet challenging task.
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5. H. Winnemöller, “XDoG: Advanced Image Stylization with eXtended Difference-of-
Gaussians”, Proc. Non-Photorealistic Animation and Rendering, 21(3), p. 147–156,
2011.

6. T. Lindemeier, S. Pirk, and O. Deussen, “Image stylization with a painting machine
using semantic hints”, Computers and Graphics, 37(5), p. 293–301, 2013.

7. J. Lu, C. Barnes, C. Wan, P. Asente, R. Mech, and A. Finkelstein, “DecoBrush: drawing
structured decorative patterns by example”, ACM Transactions on Graphics, 33(3),
90:1-90:9, 2014.

8. V. Ostromoukhov, “A Simple and Efficient Error-diffusion Algorithm”, Proc. ACM
SIGGRAPH, 21(3), p. 567–572, 2001.

9. J. Kopf, D Cohen-Or, O. Deussen, and D. Lischinski, “Recursive Wang Tiles for Real-
Time Blue Noise”, ACM Transactions on Graphics, 25(3), p. 509-518, 2006.

10. W. Pang, Y. Qu, T. Wong, D. Cohen-Or, and P. Heng, “Structure-Aware Halftoning”,
ACM Transactions on Graphics, 27(3), 89:1-89:8, 2008.

11. M. Salisbury, S. Anderson, R. Barzel, and D. Salesin, “Interactive pen-and-ink illus-
tration”, Proc. ACM SIGGRAPH, 21(3), p. 101-108, 1994.

12. M. Salisbury, M. Wong, J. Hughes, and D. Salesin, “Orientable textures for image-
based pen-and-ink illustration”, Proc. ACM SIGGRAPH, 21(3), p. 401-406, 1997.



May 24, 2022 20:22 WSPC/INSTRUCTION FILE ws-ijig-final

16 H. Kang and I. Stamoulis

13. T. Umenhoffer, L. Szecsi, and L. Szirmay–Kalos, “Hatching for Motion Picture Pro-
duction”, Computer Graphics Forum, 30(2), p. 533-542, 2011.

14. O. Deussen, H. Stefan, V. Cornelius, and S. Thomas, “Floating Points: A Method for
Computing Stipple Drawings”, Computer Graphics Forum, 19(3), p. 41-50, 2000.

15. A. Secord, “Weighted Voronoi Stippling”, Proc. Non-photorealistic Animation and
Rendering, p. 37–43, 2002.

16. M. Son, Y. Lee, H. Kang, and S. Lee, “Structure grid for directional stippling”,
Graphical Models, 73(3), p. 74 - 87, 2011.

17. D. Marr and E. Hildreth, “Theory of edge detection”, Proc. Royal Society of London
B: Biological Sciences, 207(1167), p. 187–217, 1980.

18. J. Canny, “A Computational Approach to Edge Detection”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(6), p. 679-698, 1986.

19. D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space
analysis”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), p.
603-619, 2002.

20. C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images”, Proc.
International Conference on Computer Vision, p. 839–846, 1998.

21. H. Kang, S. Lee, and C. Chui, “Coherent Line Drawing”, Proc. Non-photorealistic
Animation and Rendering, p. 43–50, 2007.

22. E. Simo-Serra, S. Iizuka, K. Sasaki, and H. Ishikawa, “Learning to Simplify: Fully
Convolutional Networks for Rough Sketch Cleanup”, ACM Transactions on Graphics,
35(4), 121:1–121:11, 2016.

23. C. Li, X. Liu, and T. Wong, “Deep Extraction of Manga Structural Lines”, ACM
Transactions on Graphics, 36(4), 117:1–117:12, 2017.

24. B. Kim, O. Wang, A. Oztireli, and M. Gross, “Semantic Segmentation for Line Draw-
ing Vectorization Using Neural Networks”, Computer Graphics Forum, 37(2), p. 329-
338, 2018.

25. D. Mould, “Stipple placement using distance in a weighted graph”, Proc. Computa-
tional Aesthetics, p. 45–52, 2007.

26. V. Ostromoukhov and R. Hersch, “Artistic Screening”, Proc. ACM SIGGRAPH, p.
219–228, 1995.

27. V. Ostromoukhov and R. Hersch, “Multi-color and artistic dithering”, Proc. ACM
SIGGRAPH, p. 101–108, 1999.

28. J. Kyprianidis and H. Kang, “Image and Video Abstraction by Coherence-Enhancing
Filtering”, Computer Graphics Forum, 30(2), p. 593–602, 2011.

29. B. Gooch, E. Reinhard, A. Gooch, “Human facial illustrations”, ACM Transactions
on Graphics, 23(1), p. 27-44, 2004.

30. C. Kaplan, R. Bosch, “TSP Art”, Proc. Bridges: Mathematical Connections in Art,
Music and Science, p. 310-308, 2005.

31. J. Collomosse, D. Rowntree, P. Hall, “Stroke Surfaces: Temporally Coherent Artistic
Animations from Video”, IEEE Transactions on Visualization and Computer Graphics,
11(5), p. 540–549, 2005.

32. J. Wang, Y. Xu, H. Shum, M. Cohen, “Video Tooning”, ACM Transactions on Graph-
ics, 23(3), p. 574–583, 2004.

33. N. Shrivastava, J. Bharti, “Automatic Seeded Region Growing Image Segmentation
for Medical Image Segmentation: A Brief Review”, International Journal of Image and
Graphics, 20(3), 2020.

34. W. Wang, C. Chung, “Image Segmentation with Complementary Use of Edge and
Region Information”, International Journal of Image and Graphics, 11(4), p. 549-570,
2011.



May 24, 2022 20:22 WSPC/INSTRUCTION FILE ws-ijig-final

Gaussian Image Binarization 17

35. E. Regentova, D. Yao, S. Latifi, J. Zheng, “Image Segmentation using Ncut in the
Wavelet Domain”, International Journal of Image and Graphics, 6(4), p. 569-582, 2006.

36. Atiampo, Armand Kodjo and Loum, Georges Laussane, “Unsupervised Image Seg-
mentation with Pairwise Markov Chains Based on Nonparametric Estimation of Copula
Using Orthogonal Polynomials”, International Journal of Image and Graphics, 16(4),
p. 1-15, 2016.

37. A. Ouahabi, C. Depollier, L. Simon, D. Koume, “Spectrum Estimation from Ran-
domly Sampled Velocity Data”, IEEE Transactions on Instrumentation and Measure-
ment, 47(4), p. 1005-1012, 1998.

38. A. Ouahabi, “Review of wavelet denosing in medical imaging”, Proc. IEEE interna-
tional workshop on systems, signal processing and their applications, p. 19-26, 2013.

39. X. Hilaire, K. Tombre, “Robust and accurate vectorization of line drawings”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(6), p. 890-904, 2006.

40. M. Alvarez, M. Algorri, “Vectorization and Line Detection for Automatic Image
Recognition”, International Journal of Image and Graphics, 11(3), p. 439-470, 2011.

41. C. Yao, S. Hung, G. Li, I. Chen, R. Adhitya Y. Lai, “Manga Vectorization and Ma-
nipulation with Procedural Simple Screentone”, IEEE Transactions on Visualization
and Computer Graphics, 23(2), p. 1070-1084, 2017.

42. K. Ito, Y. Matsui, T. Yamasaki, K. Aizawa, “Separation of Manga Line Drawings and
Screentones”, Proc. Eurographics - Short Papers, p. 73-76, 2015.

43. D. Meriem, O. Abdeldjalil, B. Hadj, B. Adrian, K. Denis, “Discrete wavelet for multi-
fractal texture classification: application to medical ultrasound imaging”, Proc. IEEE
International Conference on Image Processing, p. 637-640, 2010.

44. A. Ouahabi, “Multifractal analysis for texture characterization: A new approach based
on DWT”, Proc. International Conference on Information Science, Signal Processing
and their Applications, p. 698-703, 2010.

Photo and Bibliography

Henry Kang is an Associate Professor of Computer Science

at the University of Missouri – St. Louis, USA. He received

his M.S. and Ph.D. in computer science from the Korea Ad-

vanced Institute of Science and Technology (KAIST) in 1996 and

2002, respectively. His current research interests include com-

puter graphics, data visualization, image/video processing, and

computer animation.

Ioannis Stamoulis graduated the International Baccalaureate

Diploma Program at Anatolia College, Greece, with the second

highest overall grade in 2019. Since October 2019, he is an un-

dergraduate student at the University of Oxford, reading for a

degree in Mathematics and Computer Science under the Depart-

ment of Computer Science.


	Introduction
	Related Work
	Line Drawing
	Screentoning

	Our Method
	Flow-based Difference of Gaussians
	Adaptive Difference of Gaussians
	Hybrid Difference of Gaussians

	Results
	Conclusions

