ON THE BASE CASE OF A CONJECTURE ON ACM BUNDLES OVER HYPERSURFACES

G. V. RAVINDRA AND AMIT TRIPATHI

ABSTRACT. We obtain an upper bound on the first Chern class and the Castelnuovo-Mumford regularity of an initialized rank 3 ACM bundle on a general hypersurface in \mathbb{P}^4 . As a corollary, we prove that a general hypersurface in \mathbb{P}^4 of degree $d \ge 4$ does not support a rank 3 Ulrich bundle. We also make progress on the base case of a generic version of a conjecture by Buchweitz, Greuel and Schreyer.

1. INTRODUCTION

We work over an algebraically closed field of characteristic 0. Let $X \subset \mathbb{P}^{n+1}$ be a smooth hypersurface of degree d. Let E be a vector bundle on X. We say that E is *arithmetically Cohen Macaulay* (ACM for short) if

$$H^{\iota}(X, E(k)) = 0$$
 for all $k \in \mathbb{Z}$, and $0 < i < n$.

By a well known result of Horrocks [8], any ACM bundle on \mathbb{P}^n , the case when d = 1, is a direct sum of line bundles. For higher degrees, the situation is much less understood. In this context, we have the following well known conjecture,

Conjecture 1 (Buchweitz, Greuel and Schreyer [3]). Let $X \subset \mathbb{P}^{n+1}$ be a smooth hypersurface. Any ACM bundle E on X of rank $u < 2^e$ for $e := \lfloor \frac{n-1}{2} \rfloor$, is a sum of line bundles.

We refer to [18] and references cited therein for progress on this conjecture. Since early 2000s, beginning with [11], a generic type BGS conjecture has been studied. A precise version was formulated in [17].

Conjecture 2 (Generic BGS). Let $X \subset \mathbb{P}^{n+1}$ be a general hypersurface of sufficiently high degree and E be an ACM bundle of rank u on X. If $u < 2^s$, where $s := \lfloor \frac{n+1}{2} \rfloor$, then E is a sum of line bundles.

We refer to [12], [13] and [14] for the rank two case. The case where rank E = 3 and dim $X \ge 4$ was settled in [17]. In this paper, we investigate the generic BGS conjecture for the remaining case i.e., rank E = 3 and dim X = 3.

Recall that a rank u ACM bundle on a hypersurface of degree d is *Ulrich* if the minimal number of generators of the graded module $H^0_*(X, E) := \bigoplus_{k \in \mathbb{Z}} H^0(X, E(k))$, is $u \cdot d$. There has been considerable interest in Ulrich bundles since the work of Eisenbud and Schreyer [5] in which they conjecture that every smooth projective variety supports an Ulrich bundle. The existence of an Ulrich bundle on a projective variety will imply that the variety has the same cone of cohomology table as the projective space of dimension equal to that variety. We refer the readers to [1] for more details and references.

Date: January 11, 2021.

²⁰¹⁰ Mathematics Subject Classification. 14J70(primary), and 13D02(secondary).

Key words and phrases. Vector bundles, exterior powers, hypersurfaces, arithmetically Cohen-Macaulay.

By the Grothendieck-Lefschetz theorem it follows that a smooth hypersurface of degree ≥ 2 and dimension ≥ 3 does not support an Ulrich line bundle. In [2], it was shown that a general threefold in \mathbb{P}^4 of degree ≥ 6 does not support a rank 2 Ulrich bundle. In this paper, we show that

Theorem 1. Let $X \subset \mathbb{P}^4$ be a general hypersurface of degree $d \ge 4$. Then X does not support a rank 3 Ulrich bundle.

By a result in [10], a general cubic threefold supports a family of rank 3 Ulrich bundles; so the degree bound in the above Theorem is sharp. This result is obtained as a corollary to a more general result which gives an upper bound on the first Chern class.

Theorem 2. Let $X \subset \mathbb{P}^4$ be a general hypersurface of degree $d \ge 3$. Let E be an initialized, indecomposable rank 3 ACM bundle on X. Then $c_1(E) \le d$.

Next, we prove several instances of the generic BGS conjecture.

Theorem 3. Let $X \subset \mathbb{P}^4$ be a general hypersurface of degree ≥ 3 and let E be an initialized ACM bundle of rank 3 on X. Assume that dim $H^0(X, E) \neq 1, 2$ and $c_1(E) \leq 0$. Then E is split.

Recall that a vector bundle is said to be *simple*, if its only endomorphisms are homotheties i.e. $H^{0}(X, \mathcal{E}nd(E)) = 1$. For rank 3 ACM bundles with positive first Chern class, we obtain the following dichotomy:

Theorem 4. Let $X \subset \mathbb{P}^4$ be a general hypersurface of degree ≥ 3 . Let E be an initialized, indecomposable rank 3 ACM bundle on X. Assume that $c_1(E)$ is positive. Then either E is a simple bundle or its Castelnuovo-Mumford regularity is d - 1.

Acknowledgements. The second author was supported by a MATRICS grant from the Science and Engineering Research Board of India.

2. PRELIMINARIES

We recall some standard facts here about ACM bundles over smooth hypersurfaces. More details can be found in §2 of [17].

Let $X \subset \mathbb{P}^{n+1}$ be a smooth hypersurface of degree d. Let E be an arithmetically Cohen-Macaulay bundle on X of rank u. By [4], it admits a minimal resolution over \mathbb{P}^{n+1} of the form:

$$0 \to \widetilde{F}_1 \xrightarrow{\Phi} \widetilde{F}_0 \to E \to 0, \tag{1}$$

where \tilde{F}_0 and \tilde{F}_1 are sums of line bundles on \mathbb{P}^{n+1} . Restricting this resolution to X, we get a 4-term exact sequence

$$0 \to E(-d) \to \overline{F}_1 \xrightarrow{\Phi} \overline{F}_0 \to E \to 0.$$

Breaking this up into short exact sequences, we get

$$0 \to G \to \overline{F}_0 \to E \to 0 \text{ and},$$
 (2)

$$0 \to \mathsf{E}(-\mathsf{d}) \to \overline{\mathsf{F}}_1 \to \mathsf{G} \to 0. \tag{3}$$

where $G := \text{Image}(\overline{\Phi})$. It can be easily verified that G is also an ACM bundle and has the following minimal resolution over \mathbb{P}^{n+1} :

$$0 \to \widetilde{F}_0(-d) \xrightarrow{\Psi} \widetilde{F}_1 \to G \to 0.$$
(4)

The exact sequence (2) defines an element $\zeta \in \operatorname{Ext}_X^1(E, G) \cong \operatorname{H}^1(X, E^{\vee} \otimes G)$. By the Krull-Schmidt theorem, $\zeta = 0$ is equivalent to the splitting of E and G. Tensoring this sequence with E^{\vee} , and taking cohomology, we obtain the following long exact sequence of cohomology:

$$0 \to \mathrm{H}^{0}(X, G \otimes E^{\vee}) \to \mathrm{H}^{0}(X, \overline{F}_{0} \otimes E^{\vee}) \to \mathrm{H}^{0}(X, E \otimes E^{\vee}) \to \mathrm{H}^{1}(X, G \otimes E^{\vee}) \to \cdots.$$

It is standard that, under the coboundary map,

$$\mathrm{H}^{0}(X, \mathsf{E} \otimes \mathsf{E}^{\vee}) \to \mathrm{H}^{1}(X, \mathsf{G} \otimes \mathsf{E}^{\vee}),$$

the identity 1 is mapped to the element ζ .

Similarly, tensoring the sequence (3) with E^{\vee} , and taking cohomology, we get a boundary map $H^1(X, E^{\vee} \otimes G) \rightarrow H^2(X, \mathcal{E}ndE(-d))$ under which the element ζ maps to to η , the *obstruction class* of E (see Remark 1 below).

Remark 1. For any vector bundle E on a smooth hypersurface $X \subset \mathbb{P}^{n+1}$, the vanishing of the class $\eta \in H^2(X, \operatorname{EndE}(-d))$ is necessary and sufficient for E to extend to a bundle E_2 on $X_2 = V(f^2)$ where f is the polynomial defining X (see, for instance, [15] for details). In the case when E is an ACM bundle (of arbitrary rank), it can be easily shown, by elementary arguments, that E splits if and only if $\eta = 0$.

Since dim $X \ge 3$, we have $\operatorname{Pic}(X) \cong \mathbb{Z}$ by the Grothendieck-Lefschetz theorem. Using this isomorphism, we let $e := c_1(E) \in \mathbb{Z}$, so that $\wedge^u E \cong \mathcal{O}_X(e)$.

Remark 2. Throughout this paper, E will denote an indecomposable, rank 3 ACM bundle. In particular, $\wedge^2 E \cong E^{\vee}(e)$ is also an indecomposable, rank 3 ACM bundle.

2.1. A filtration. We recall a convenient notation from [17],

Definition 1. On $\wedge^{r}\overline{F}_{0}$, we have the following filtration (see Ex. II.5.16 of [6]) via sequence (2):

$$\wedge^{\mathrm{r}} \mathrm{G} = \mathrm{E}_{\mathrm{r},0} \subset \mathrm{E}_{\mathrm{r},1} \subset \ldots \subset \mathrm{E}_{\mathrm{r},\mathrm{r}-1} \subset \mathrm{E}_{\mathrm{r},\mathrm{r}} = \wedge^{\mathrm{r}} \mathrm{F}_{0}.$$

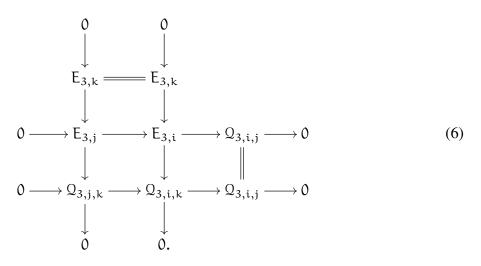
For every pair i > j, we define

$$Q_{r,i,j} := \operatorname{coker}(E_{r,j} \to E_{r,i}).$$

In particular, we have

$$\mathcal{Q}_{r,i,i-1} = \operatorname{coker}(\mathsf{E}_{r,i-1} \to \mathsf{E}_{r,i}) = \wedge^{i} \mathsf{E} \otimes \wedge^{r-i} \mathsf{G}.$$
 (5)

Thus we have diagrams (for $3 \ge i > j > k \ge 0$):



We are now in a position to state results from [17] and [12] which we will need,

Theorem 5 (Theorem 5.7 of [17]). Let $X \subset \mathbb{P}^4$ be a smooth hypersurface of degree d. Let E be a rank 3 ACM bundle. Then

- (a) $\wedge^3 G$ is ACM.
- (b) The graded module $H^1_*(X, \wedge^2 E \otimes G)$ is generated by ζ in degree -e. ¹ Similarly, $H^1_*(X, Q_{3,2,0})$, and $H^2_*(X, \wedge^2 E \otimes E(-d))$ are also 1-generated.
- (c) There is a natural map $H^1_*(X, \mathcal{Q}_{3,2,0}) \to H^1_*(X, \wedge^2 E \otimes G)$ which is an isomorphism.

Proof. Parts (a) and (b) are Theorem 5.7 in [17]. By the bottow row of diagram (6), there is a natural map $Q_{3,2,0} \rightarrow Q_{3,2,1}$ which induces the map in part (c) as $Q_{3,2,1} = \bigwedge^2 E \otimes G$ by (5). The proof of Theorem 5.7 in [17] shows explicitly that the induced map of cohomologies

$$\mathrm{H}^{1}_{*}(\mathbf{X}, \mathcal{Q}_{3,2,0}) \to \mathrm{H}^{1}_{*}(\mathbf{X}, \wedge^{2} \mathsf{E} \otimes \mathsf{G}).$$

$$\tag{7}$$

is surjective (page 30, [17]). By Theorem 5, both these graded modules are 1-generated, therefore this map is an isomorphism. \Box

Using the fact that $H^2_*(X, EndE)$ is generated by η (part (b) above) and Corollary 3.8 in [12], we have

Theorem 6. Let $X \subset \mathbb{P}^4$ be a general hypersurface of degree $d \ge 3$. Let E be an indecomposable ACM bundle on X. Then $H^2(X, End(E)(k)) = 0$ for $k \ge 0$.

3. REGULARITY AND CHERN CLASS BOUNDS

Definition 2. We say that a vector bundle E on X is *initialized* if $H^0(X, E(-t)) = 0$ for every t > 0, and $H^0(X, E) \neq 0$. It follows that, for an initialized vector bundle E, its first syzygy bundle G satisfies $H^0(X, G(a)) = 0$ for $a \leq 0$.

The following result derives, what can be termed a poor man's bound for the Castelnuovo-Mumford regularity of an arbitrary rank ACM bundle E which we will denote by m(E). We will later improve this bound for the rank 3 case.

Proposition 7. Let E be an initialized rank \mathfrak{u} ACM bundle on a smooth degree d hypersurface $X \subset \mathbb{P}^{n+1}$ with first Chern class e. Then $\mathfrak{m}(E) \leq (\mathfrak{u} - 1)d - e - 1$.

Proof. Let m = (u-1)d - e - 1. It suffices to show that $H^n(X, E(m-n)) = 0$. Equivalently, we need to show that

$$H^{0}(X, \wedge^{u-1}E(-e-m+d-2)) = H^{0}(X, \wedge^{u-1}E(-(u-2)d-1)) = 0$$

As before, let $X_i = V(f^i)$ where f is the polynomial defining X. Taking exterior powers of sequence (1), we get

$$0 \to \wedge^{u-1}\widetilde{F_1} \to \wedge^{u-1}\widetilde{F_0} \to \mathcal{F}_{u-1} \to 0,$$

where $\wedge^{u-1}\widetilde{F_0} = \oplus \mathcal{O}_{\mathbb{P}}(\mathfrak{a}_{\mathfrak{i}_1} + \mathfrak{a}_{\mathfrak{i}_2} + \ldots + \mathfrak{a}_{\mathfrak{i}_{u-1}})$, and \mathfrak{F}_{u-1} is a $\mathfrak{O}_{X_{u-1}}$ -module. Since E is initialized, we have $H^0(\mathbb{P}^{n+1}, \mathfrak{F}_{u-1}(-1)) = 0$.

The following sequence, derived in [18, Proposition 3.5], completes the proof

$$0 \to \wedge^{\mathfrak{u}-1} \mathsf{E}(-(\mathfrak{u}-2)\mathfrak{d}) \to \mathcal{F}_{\mathfrak{u}-1} \to \mathcal{F}_{\mathfrak{u}-1}|_{X_{\mathfrak{u}-2}} \to 0.$$

¹See discussion in §2.

Lemma 8. Let $X \subset \mathbb{P}^{n+1}$ be a smooth hypersurface and let E be an initialized, rank 3 vector bundle on X with first Chern class e.

(*i*) If e > 0 then $h^0(X, E^{\vee}) \in \{0, 1\}$. Further, in this case $H^0(X, E^{\vee}(-1)) = 0$. (*ii*) If $e \leq 0$ then $H^0(X, \wedge^2 E(-1)) = 0$ and $h^0(X, \wedge^2 E) \leq h^0(X, E)$.

Proof. (i). Suppose $H^0(X, E^{\vee}) \neq 0$ and let $s \in H^0(X, E^{\vee})$ be a non-zero section with zero scheme Z := Z(s). Consider the associated Koszul complex

$$0 \to \wedge^{3} E \to \wedge^{2} E \to E \to \mathcal{O}_{X} \to \mathcal{O}_{Z} \to 0.$$

Breaking it into short exact sequences

$$0 \to \wedge^3 \mathsf{E} \to \wedge^2 \mathsf{E} \to \mathcal{F}' \to 0, \tag{8}$$

$$0 \to \mathcal{F} \to \mathsf{E} \to \mathsf{I}_{\mathsf{Z},\mathsf{X}} \to 0, \text{ and}$$
(9)

$$\mathfrak{O} \to \mathfrak{I}_{\mathsf{Z},\mathsf{X}} \to \mathfrak{O}_{\mathsf{X}} \to \mathfrak{O}_{\mathsf{Z}} \to \mathfrak{O}.$$

In the above, we have $\mathfrak{F}' \subseteq \mathfrak{F}$ with equality if and only if s is a *regular* section. Rewriting sequence (8) as $0 \to \mathcal{O}_X(e) \to \mathbb{F}'(e) \to \mathfrak{F}' \to 0$ and tensoring these sequences by $\mathcal{O}_X(-e)$, we get

$$h^{0}(X, E^{\vee}) = h^{0}(\mathcal{O}_{X}) + h^{0}(\mathcal{F}'(-e)) \leq h^{0}(\mathcal{O}_{X}) + h^{0}(\mathcal{F}(-e)) \leq 1 + h^{0}(X, E(-e)) = 1.$$

Twisting every term in the above inequalities by $\mathcal{O}_X(-1)$, it is clear that $H^0(X, E^{\vee}(-1)) = 0$.

(ii). If $H^0(E^{\vee}) = 0$, then there is nothing to prove as $\wedge^2 E = E^{\vee}(e)$ and $e \leq 0$. Otherwise, from the exact sequences above, we get

$$h^{0}(\wedge^{2}\mathsf{E}(-1)) = h^{0}(\mathfrak{O}_{\mathsf{X}}(e-1)) + h^{0}(\mathfrak{F}'(-1)) \leqslant h^{0}(\mathfrak{F}(-1)) \leqslant h^{0}(\mathsf{E}(-1)) = 0.$$

A similar argument proves the last assertion.

Corollary 9. Let (X, E) be as above and let m denote the Castelnuovo-Mumford regularity of E.

(*i*) If e > 0, then $m \le d - 1$. (*ii*) If $e \le 0$, then $m \le d - e - 1$.

Proof. (i). When e > 0, then $H^0(X, E^{\vee}(-1)) = 0$ by Lemma 8. Since E is ACM, therefore, m is the smallest integer such that $H^n(X, E(m - n)) = 0$. Equivalently, by Serre duality, we have $H^0(X, E^{\vee}(n - m + d - n - 2)) = H^0(X, E^{\vee}(d - m - 2)) = 0$. Thus we must have $m \leq d - 1$.

(ii). When $e \leq 0$, then $H^n(X, E(d - e - 1 - n)) = 0 \iff H^0(X, \wedge^2 E(-1)) = 0$. The latter vanishing happens by part (ii) of Lemma 8.

4. PROOF OF MAIN RESULTS

4.1. **Rank** 3 **Ulrich bundles.** We will now prove that a general hypersurface of degree $d \ge 4$ does not support an Ulrich bundle. This result will follow as a consequence of Theorem 2 which we prove now.

Proof of Theorem 2. We first claim that there is an isomorphism of graded modules.

$$\mathrm{H}^{1}_{*}(\mathbf{X}, \mathsf{E}_{3,2}) \cong \mathrm{H}^{2}_{*}(\mathbf{X}, \mathcal{E}nd(\mathsf{E})(e-d)).$$
 (10)

By Definition 1, we have a short exact sequence

 $0 \rightarrow \mathsf{E}_{3,0} \rightarrow \mathsf{E}_{3,2} \rightarrow \mathfrak{Q}_{3,2,0} \rightarrow 0.$

 \square

where $E_{3,0} = \wedge^3 G$. By Theorem 5, $\wedge^3 G$ is ACM, therefore we have an isomorphism.

$$\mathrm{H}^{1}_{*}(\mathbf{X}, \mathsf{E}_{3,2}) \cong \mathrm{H}^{1}_{*}(\mathbf{X}, \mathfrak{Q}_{3,2,0}). \tag{11}$$

Tensoring sequence (3) with $\wedge^2 E$, we get an isomorphism

$$\mathrm{H}^{1}_{*}(\mathbf{X}, \wedge^{2}\mathsf{E}\otimes\mathsf{G}) \cong \mathrm{H}^{2}_{*}(\mathbf{X}, \wedge^{2}\mathsf{E}\otimes\mathsf{E}(-\mathsf{d})). \tag{12}$$

The RHS in (11) is isomorphic to the LHS in (12) (see Theorem 5 (c)). Since rank(E) = 3, we have $\wedge^2 E \cong E^{\vee}(e)$; putting these together, we have the isomorphism claimed in (10).

Now suppose $e \ge d + 1$. By Theorem 6, $H^2(X, \mathcal{E}ndE(k)) = 0$ for $k \ge 0$. From the above series of isomorphisms, we get

$$\mathrm{H}^{1}(X, \mathbb{E}_{3,2}(-1)) \cong \mathrm{H}^{2}(X, \mathcal{E}\mathrm{nd}(\mathbb{E})(e-d-1)) = 0.$$

By definition 1, $E_{3,2}$ sits in a sequence

$$0 \to \mathsf{E}_{3,2} \to \wedge^3 \overline{\mathsf{F}}_0 \to \wedge^3 \mathsf{E} \to 0,$$

and so we see that the map

$$\mathrm{H}^{0}(\mathbf{X}, \wedge^{3}\overline{\mathrm{F}}_{0}(-1)) \twoheadrightarrow \mathrm{H}^{0}(\mathbf{X}, \wedge^{3}\mathrm{E}(-1))$$

is a surjection. This is a contradiction as the term on the left vanishes by the hypothesis that E is initialized whereas the term on the right is non-zero. \Box

As an immediate application, we have

Corollary 10 (Theorem 1). A general hypersurface $X \subset \mathbb{P}^4$ of degree $d \ge 4$, does not support a rank 3 Ulrich bundle.

Proof. By the proof of Theorem 2 in [16], we know that if E is a rank 3 Ulrich on a degree d hypersurface then $c_1(E) = \frac{3(d-1)}{2}$. Combining with Theorem 2, we must have

$$\frac{3(d-1)}{2} \leqslant d, \quad \text{ i.e. } \quad d \leqslant 3.$$

For possible future use, we note the following

Corollary 11. *Let* m *denote the Castelnuovo-Mumford regularity of* E. *We have the following bounds*

$$\begin{cases} \frac{2d-e-3}{3} \leqslant m \leqslant d-1, & e > 0\\ \frac{2d-e-3}{3} \leqslant m \leqslant d-e-1, & e \leqslant 0. \end{cases}$$

Proof. Upper bounds are already proved in Corollary 9.

To see the lower bound, we observe that $E^{\vee}(d-m-1)$ is an initialized rank 3 ACM bundle with first Chern class -e + 3(d-m-1). Applying Theorem 2 to $E^{\vee}(d-m-1)$ gives the lower bound.

4.2. Rank 3 ACM bundles with $c_1 \leq 0$.

Remark 3. We will often use $H^0(X, \wedge^3 G) = H^0(X, \wedge^2 G) = 0$. This can be easily seen using the following series of inclusions

$$\mathrm{H}^{0}(\mathrm{X}, \wedge^{2}\mathrm{G}) \hookrightarrow \mathrm{H}^{0}(\mathrm{X}, \mathrm{G} \otimes \mathrm{G}) \hookrightarrow \mathrm{H}^{0}(\mathrm{X}, \mathrm{G} \otimes \mathrm{F}_{0}) = \mathfrak{0}.$$

Similarly, one can show $H^0(X, \wedge^3 G) = 0$.

Lemma 12. Let $X \subset \mathbb{P}^4$ be a general hypersurface with $d \ge 3$ and assume that $c_1(E) \le 0$. Then we have the following

- $\mathrm{H}^{0}(\mathbf{X}, \wedge^{2} \mathrm{E} \otimes \mathrm{G}) = \mathbf{0},$
- $\mathrm{H}^{0}(\mathbf{X}, \wedge^{2}\mathbf{G}\otimes \mathbf{E}) = \mathbf{0}$, and
- $\mathrm{H}^{0}(X, \mathbb{E}_{3,1}) = 0.$

Proof. Consider the cohomology exact sequence associated to (3):

$$\mathrm{H}^{0}(X, \wedge^{2}\mathsf{E}\otimes\mathsf{F}_{1}) \to \mathrm{H}^{0}(X, \wedge^{2}\mathsf{E}\otimes\mathsf{G}) \to \mathrm{H}^{1}(X, \wedge^{2}\mathsf{E}\otimes\mathsf{E}(-d)).$$

By Lemma 8, the first term vanishes. Further, we have

$$\mathrm{H}^{1}(\mathrm{X}, \wedge^{2}\mathrm{E}\otimes\mathrm{E}(-\mathrm{d}))\cong\mathrm{H}^{1}(\mathrm{X}, \operatorname{\mathcal{E}nd}\mathrm{E}(e-\mathrm{d}))\cong\mathrm{H}^{2}(\mathrm{X}, \operatorname{\mathcal{E}nd}\mathrm{E}(2\mathrm{d}-e-5))^{\vee}=0,$$

where the last vanishing is by Theorem 6. Therefore, $H^0(X, \wedge^2 E \otimes G) = 0$.

Let $s \in H^0(X, E)$ be any non-zero section and consider the associated Koszul complex. As in Lemma 8, we may break it up into short exact sequences,

$$0 \to \wedge^{3} E^{\vee} \to \wedge^{2} E^{\vee} \to \mathfrak{G}' \to 0, \text{ and} \\ 0 \to \mathfrak{G} \to E^{\vee} \to \mathfrak{I}_{\mathfrak{C}} \times \to 0.$$

Tensoring these sequences with G(e), we get

$$h^{0}(\mathsf{E}\otimes\mathsf{G}) = h^{0}(\mathsf{G}) + h^{0}(\mathfrak{G}'\otimes\mathsf{G}(e))$$

$$\leqslant h^{0}(\mathfrak{G}\otimes\mathsf{G}(e)) \leqslant h^{0}(\mathsf{E}^{\vee}\otimes\mathsf{G}(e)) = h^{0}(\wedge^{2}\mathsf{E}\otimes\mathsf{G}) = \mathfrak{0}.$$
(13)

Consider the following series of vector space inclusions

$$\mathrm{H}^{0}(X, \wedge^{2} G \otimes E) \subset \mathrm{H}^{0}(X, G \otimes G \otimes E) \subset \mathrm{H}^{0}(X, G \otimes F_{0} \otimes E) = 0.$$
(14)

The last vanishing is by equation (13).

From the left vertical row of diagram (6), we have a sequence

$$0 \to \wedge^3 G \to E_{3,1} \to \wedge^2 G \otimes E \to 0.$$

Therefore, by Remark (3) and the series of inclusions in (14) above, we have $H^{0}(X, E_{3,1}) = 0$.

We are now in a position to prove Theorem 3.

Proof of Theorem 3. If $c_1(E) < 0$ then by our hypothesis that $h^0(E) \ge 3$, we have that $H^0(X, E_{3,2}) \cong H^0(X, \wedge^3 \overline{F}_0) \neq 0$.

If $c_1(E) = 0$, then the natural map

$$\mathrm{H}^{0}(X, \wedge^{3}\mathrm{E}) \to \mathrm{H}^{1}(X, \mathrm{E}^{\vee} \otimes \mathrm{G})$$

is injective with $1 \rightarrow \zeta$. In particular, $H^0(X, E_{3,2}) \neq 0$, whenever $c_1(E) \leq 0$.

We will now derive a contradiction, by showing that, under the additional hypothesis of the hypersurface being general, $H^0(X, E_{3,2}) = 0$. To see this, consider the sequence

$$0 \rightarrow E_{3,1} \rightarrow E_{3,2} \rightarrow \wedge^2 E \otimes G \rightarrow 0.$$

By Lemma 12, it is sufficient to show that $H^0(X, \wedge^2 E \otimes G) = 0$. For this, we consider the sequence obtained by tensoring (3) by $\wedge^2 E$:

$$0 \to \wedge^2 E \otimes E(-d) \to \wedge^2 E \otimes \overline{F}_1 \to \wedge^2 E \otimes G \to 0.$$

By Lemma 8, $\mathrm{H}^{0}(X, \wedge^{2} E \otimes \overline{F}_{1}) = 0$ and by Theorem 6,

$$\mathrm{H}^{1}(\mathrm{X}, \wedge^{2}\mathrm{E}\otimes\mathrm{E}(-\mathrm{d}))\cong\mathrm{H}^{1}(\mathrm{X}, \operatorname{\mathcal{E}nd}\mathrm{E}(e-\mathrm{d}))\cong\mathrm{H}^{2}(\mathrm{X}, \operatorname{\mathcal{E}nd}\mathrm{E}(2\mathrm{d}-e-5))=0.$$

since $e \leq 0$ and $d \geq 3$. Thus we are done.

4.3. Rank 3 ACM bundles with positive first Chern class.

Lemma 13. Let X be general and E a rank 3 ACM bundle with $c_1(E) > 0$. Then

 $h^{0}(X, \mathcal{E}nd(E)) = h^{0}(X, E) \cdot h^{0}(X, E^{\vee}) + 1.$

In particular, E is simple, if and only if, $h^{0}(E^{\vee}) = 0$.

Proof. We first claim that $H^0(X, E^{\vee} \otimes G) = 0$. By Theorem 6,

 $H^{1}(X, \mathcal{E}ndE(-d)) \cong H^{2}(X, \mathcal{E}ndE(2d-5)) = 0 \ \forall \ d \geq 3.$

Since $c_1(E) > 0$, by Lemma 8, we have $H^0(X, E^{\vee} \otimes F_1) = 0$. The claimed vanishing, $H^0(X, E^{\vee} \otimes G) = 0$ now follows from the exact sequence below (the cohomology sequence associated to (3) tensored with E^{\vee})

$$\mathrm{H}^{0}(\mathrm{X},\mathrm{E}^{\vee}\otimes\mathrm{F}_{1})\to\mathrm{H}^{0}(\mathrm{X},\mathrm{E}^{\vee}\otimes\mathrm{G})\to\mathrm{H}^{1}(\mathrm{X},\mathrm{EndE}(-\mathrm{d})).$$

Therefore, we have (from the cohomology sequence associated to (2))

$$0 \to H^{0}(X, E^{\vee} \otimes F_{0}) \to H^{0}(X, \mathcal{E}nd(E)) \to H^{1}(X, E^{\vee} \otimes G) \to 0.$$

The last term is a 1-dimensional vector space by Theorem 5 (b). This completes the proof. \Box

This gives the following

Corollary 14 (Theorem 4). Let E be an initialized rank 3 ACM bundle on a general hypersurface $X \subset \mathbb{P}^4$ of degree $d \ge 3$. Assume that $c_1(E) > 0$. Then either E is simple or reg(E) = d - 1.

Proof. By Corollary 9, $m \leq d - 1$. If $H^0(E^{\vee}) = 0$, then E is simple by Lemma 13. So let $H^0(E^{\vee}) \neq 0$ and assume that m < d - 1. Then $E' := E^{\vee}(d - m - 1)$ is a rank 3, initialized, indecomposable bundle on X and

$$H^{0}(E'^{\vee}) = H^{0}(E(1 + m - d)) = 0.$$

Thus, E' is simple which implies that E is simple.

REFERENCES

- [1] Beauville, Arnaud. An introduction to Ulrich bundles. Eur. J. Math. 4 (2018), no. 1, 26–36.
- [2] Beauville, Arnaud, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39-64.
- [3] R.-O. Buchweitz, G.-M. Greuel, F.-O. Schreyer; *Cohen–Macaulay modules on hypersurface singularities II*, Invent. Math. 88 (1987) 165–182.
- [4] Eisenbud, David., *Homological algebra on a complete intersection*, with an application to group representations. Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64.
- [5] Eisenbud, David and Schreyer, Frank-Olaf (with an appendix by Weyman, Jerzy), *Resultants and Chow forms via exterior syzygies*. J. Amer. Math. Soc. 16 (2003), no. 3, 537–579.
- [6] Hartshorne, Robin., *Algebraic geometry*, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977. xvi+496 pp.

- [7] Hartshorne, Robin., Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121–176.
- [8] Horrocks, G., *Vector bundles on the punctured spectrum of a local ring*, Proc. London Math. Soc. (3) 14 (1964) 689–713.
- [9] Kleiman, Steven L., *Geometry on Grassmannians and applications to splitting bundles and smoothing cycles*. Inst. Hautes Études Sci. Publ. Math. No. 36, (1969), 281–297.
- [10] Lahoz, Martí; Macrì, Emanuele; Stellari, Paolo. *Arithmetically Cohen-Macaulay bundles on cubic threefolds*. Algebr. Geom. 2 (2015), no. 2, 231–269.
- [11] Madonna, C., A splitting criterion for rank 2 vector bundles on hypersurfaces in \mathbf{P}^4 . Rend. Sem. Mat. Univ. Politec. Torino 56 (1998), no. 2, 43–54 (2000).
- [12] Mohan Kumar, N.; Rao, A.P.; Ravindra, G.V., *Arithmetically Cohen-Macaulay bundles on hypersurfaces*, Comment. Math Helvetici 82 (2007), No. 4, 829–843.
- [13] Mohan Kumar, N., Rao, A.P., Ravindra, G.V., *Arithmetically Cohen-Macaulay bundles on three dimensional hypersurfaces*, International Math Research Notices (2007) no. 8, Art. ID rnm025, 11 pp.
- [14] Ravindra, G.V., *Curves on threefolds and a conjecture of Griffiths-Harris*, Math Annalen 345 (2009), no. 3, 731–748.
- [15] Ravindra, G. V., Tripathi, Amit, *Extensions of vector bundles with application to Noether-Lefschetz theorems*, Commun. Contemp. Math. 15 (2013), no. 5, 1350003, 20 pp.
- [16] Ravindra, Girivaru V., Tripathi, Amit. *Remarks on higher-rank ACM bundles on hypersurfaces*, C. R. Math. Acad. Sci. Paris 356 (2018), no. 11-12, 1215–1221.
- [17] Ravindra, G. V., Tripathi, Amit, Rank 3 ACM bundles on general hypersurfaces in \mathbb{P}^5 . Adv. Math. 355 (2019), 106780, 33 pp. Comm. Algebra 44 (2016), no. 3, 1011–1017.
- [18] Tripathi, Amit, *Rank 3 arithmetically Cohen-Macaulay bundles over hypersurfaces*, J. Algebra 478 (2017), 1–11.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI – ST. LOUIS, ST. LOUIS, MO 63121, USA. *Email address*: girivarur@umsl.edu

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY – HYDERABAD, 502285, INDIA. *Email address*: amittr@gmail.com