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ABSTRACT. We prove a mild strengthening of a theorem of C̆esnavic̆ius which gives a criterion
for a vector bundle on a smooth complete intersection of dimension at least 3 to split into a
sum of line bundles. We also prove an analogous statement for bundles on a general complete
intersection surface.

1. INTRODUCTION

1.1. Recently, K. C̆esnavic̆ius (see [2]) has proved a conjecture of Dao ([4], 7.2.2) generalizing
the Grothendieck-Lefschetz theorem to arbitrary rank vector bundles. As an application, the
following result is proved.

Theorem 1 ([2], Theorem 1.2). Let X be a global complete intersection of dimension at least
3. A vector bundle E on X splits into a sum of line bundles of the form ⊕iOX(ai) if and only if
it satisfies the conditions

H1(X,EndE(ν)) = 0 = H2(X,EndE(ν)) ∀ ν ∈ Z.

For odd-dimensional hypersurfaces, Dao proves a stronger result:

Theorem 2 ([4], 8.3.4). A vector bundle E on an odd dimensional hypersurface of dimension
at least 3 splits into a sum of line bundles of the form ⊕iOX(ai) if and only if

H1(X,EndE(ν)) = 0 ∀ ν ∈ Z.

The approach of both Dao and C̆esnavic̆ius is purely algebraic and both these results follow
as a consequence of a statement in commutative algebra concerning the depth of modules on
the punctured spectrum of a local ring.

The purpose of this short note is twofold: firstly, to situate the above theorems in a purely
geometric context (both in terms of the results and techniques) and secondly, to recast the
proof in [2] in the language of geometry (as opposed to commutative algebra) to obtain a
strengthening of Theorem 1 – see Theorems 4 and 5 below. This helps us avoid invoking a
theorem of Huneke-Wiegand [7] in commutative algebra as done in [2]; instead we invoke a
result of Kempf [8] (and its strengthening due to Mohan Kumar [9]). Doing so enables us to
stay firmly in the realm of Grothendieck’s Lefschetz theory. We also note that the strengthening
that we obtain is at the cost of a stronger hypothesis – while the result in [2] is valid for arbitrary
complete intersections, the results here are stated only for smooth complete intersections.

An analogue of Theorem 1 with a similarly weakened hypothesis is shown to be true when X
is a general surface in P3 of degree d > 4 – see Theorem 7. The analogous Noether-Lefschetz
theorem for a general complete intersection surface with KX > 0 is more along the theorem in
[2] (see Theorem 8 for a precise statement).
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We have strived to keep the article self-contained by providing as many details as possible
(even for some standard proofs) at the risk of annoying the expert in the hope that it may provide
an easy entry-point for the beginner.

1.2. On the geometric side, this story begins with the following result of Kempf.

Theorem 3 ([8]). A vector bundle E on Pn for n > 2 splits into a sum of line bundles if and
only if

(1) H1(Pn,EndE(ν)) = 0 for all ν < 0, and
(2) E extends to a vector bundle on Pn+1.

In [9], it is shown (among other things) that (1) ⇒ (2) in the theorem above. A further
generalisation of this result to principal bundles appears in [1]. The proofs in all these theorems
use Grothendieck’s Lefschetz theory (see [3]) in an essential way.

A natural question then is to ask if there is a version of this theorem for hypersurfaces (and
more generally complete intersections) in projective space. Framed in this context, Theorem
2 of Dao then suggests a possible version of this theorem. Furthermore, an approach along
the lines of Grothendieck’s proof of the Lefschetz theorem for Picard groups suggests that the
proof of a splitting theorem for bundles on hypersurfaces should consist of the following two
steps:

• firstly, to show that under suitable hypotheses, the bundle E on X extends as a bundle to
an open set U ⊂ Pn and hence a reflexive sheaf F on all of Pn, and
• secondly, show that the hypotheses imply that the sheaf F splits into a sum of line

bundles on Pn.
Carrying out these two steps yields us the following result

Theorem 4. Let X ⊂ Pn be a smooth hypersurface of dimension at least 3. A vector bundle E
splits into a sum of line bundles if and only if

H1(X,EndE(ν)) = 0 = H2(X,EndE(ν)) ∀ν < 0.

Remark 1. Recall that when X is a smooth complete intersection of dimension at least 3, Pic(X)
is generated by OX(1) by the Grothendieck-Lefschetz theorem. Hence the conclusion of the
theorem above is the same as Theorem 1.

Remark 2. The (idea of the) proof here and Dao’s result ([4], 7.2.2) suggest that the vanishing
for H1 in positive twists in op. cit. can perhaps replace the H2 vanishing above; i.e., that the
conditon that H1(X,EndE(ν)) = 0 for ν > 0 implies that the bundle E on X extends to an
open set U ⊂ Pn. Note that when dimX = 3, this is precisely the case as H1 is dual to H2.
When X = Pn−1, such an extension is automatic since one can take the pull-back of E along the
projection map π : Pn \p→ Pn−1 for any point p ∈ Pn \Pn−1. In fact, in [9], Mohan Kumar
proves that E extends as a bundle to Pn by considering pull-backs along two distinct points
p, q ∈ Pn \ Pn−1, and shows that the vanishing of H1(Pn−1,EndE(ν)) for all ν < 0 implies,
once again by Grothendieck’s Lefschetz theory, that both these extensions are isomorphic in
some open set V ⊂ Pn \ {p, q} containing Pn−1, and hence can be patched to give an extension
bundle on Pn.

Using Theorem 4 as the base case, we prove the following mild strengthening of Theorem 1:

Theorem 5. Let X ⊂ Pn be a smooth complete intersection of dimension at least 3 and multi-
degree (d1, · · · , dr) with 1 < d1 6 · · · 6 dr. A vector bundle E on X splits into a sum of line
bundles if and only if
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(a) H1(X,EndE(ν)) = 0 ∀ν < 0.
(b) H2(X,EndE(ν)) = 0 ∀ν ∈ Z.

It has been noted elsewhere by the authors that Lefschetz theorems seemingly always occur
in pairs – a Grothendieck-Lefschetz theorem for smooth hypersurfaces in high dimensions, and
a Noether-Lefschetz theorem for generic hypersurfaces (usually of sufficiently high degree) in
lower dimensions. With this in view, we now proceed to the next result, namely a criterion for
a bundle on a surface in P3 to split into a sum of line bundles.

Let E be a bundle on a generic hypersurface of degree d in a smooth projective 3-fold Y with
ample polarisation OY(1). Let η ∈ H2(X,EndE(−d)) be the obstruction class whose vanish-
ing is necessary and sufficient for E to extend to a bundle on X1 – the first order thickening of
X in Y (see [10] for details). Theorem 4 obviously fails when Y = P3 because the hypothesis
on H2, which is the top cohomology of the self-dual bundle EndE and hence dual to its zeroth
cohomology, can never hold by Serre’s theorem. However, the fact that E lives on a generic
hypersurface implies that under the Kodaira-Spencer map

H2(X,EndE(−d))→ Hom
(
H0(X,OX(d)),H

2(X,EndE)
)
, η 7→ (g 7→ g.η)

the class η maps to 0, i.e., for any g ∈ H0(X,OX(d)), g.η = 0 in H2(X,EndE). Using these
ideas, in op. cit., we proved the following extension theorem.

Theorem 6 ([10], Theorem 2). Let Y be a smooth 3-fold and X ⊂ Y be a general, ample
hyperplane section of Y. Let E be a bundle on X such that the “multiplication” map

H0(X,EndE⊗ KX(a))⊗ H0(X,OX(b))→ H0(X,EndE⊗ KX(a+ b))

is surjective ∀a, b > 0. Then there exists a Zariski open setU ⊂ Y containing X and a bundle
Ẽ on U such that Ẽ⊗ OU

∼= E.

As a consequence of this, we have the following version of Theorem 4 for surfaces in P3:

Theorem 7. Let X ⊂ P3 be a general surface of degree d > 4. A vector bundle E on X splits
into a sum of line bundles of the form ⊕iOX(ai) if it satisfies the following

(a) H1(X,EndE(ν)) = 0 ∀ν < 0.
(b) the multiplication map

H0(X,EndE(a))⊗ H0(X,OX(b))→ H0(X,EndE(a+ b))

is surjective ∀a, b > 0.
Similar techniques also yield the following (slightly weaker) Noether-Lefschetz theorem for

bundles on a general complete intersection surface.

Theorem 8. LetX ⊂ Pr+2 be a general complete intersection surface of multi-degree (d1, · · · , dr)
such that

∑
i di > r + 3. A vector bundle E on X splits into a sum of line bundles of the form

⊕OX(ai) if and only if
(i) H1(X,EndE(ν)) = 0 ∀ν ∈ Z.

(ii) the multiplication map

H0(X,EndE(a))⊗ H0(X,OX(b))→ H0(X,EndE(a+ b))

is surjective ∀a, b ∈ Z such that H0(X,EndE(a)) 6= 0 and b > 0.

Remark 3. Note that OX is a direct summand of EndE for any vector bundle E. For condition
(b) in Theorem 7 (respectively (ii) in Theorem 8) to hold, we will require it to hold for the
structure sheaf OX as well. This is how the condition on the (multi-) degree comes into play.



4 G. V. RAVINDRA AND AMIT TRIPATHI

2. PRELIMINARY RESULTS

In this section we prove some results which will be used in the proofs of the theorems stated
above.

Lemma 1. Let Y be any ringed space. Let F and G be sheaves of modules on Y such that
Hp(Y,Extq(F,G)) = 0 for all p > 1, q > 1. Then for i > 2 there exists a long exact sequence

· · · → H0(Y,Exti−1(F,G))→ Hi(Y,Hom(F,G))→ Exti(F,G)→ H0(Y,Exti(F,G))→ · · ·
(1)

Proof. There exists a local-to-global Ext spectral sequence:

Ep,q2 = Hp(Y,Extq(F,G))⇒ Extp+q(F,G).

This means that there is a filtration on Exti(F,G):

0 ⊆ Fi ⊆ Fi−1 ⊆ · · · ⊆ F1 ⊂ F0 = Exti(F,G)

with Ep,i−p∞ = Fp/Fp+1.
Since this is a first quadrant sequence and by assumption, Ep,q2 = 0 for p > 0, q > 0, we get

F0/F1 = E0,i∞ ∼= Ker(E0,ii+1 → Ei+1,0
i+1 ) ∼= Ker(E0,i2 → Ei+1,0

2 ),

F1 = F2 = · · · = Fi, and Fi ∼= Ei,0∞ ∼=
Ei,02

Im(E0,i−1
2 → Ei,02 )

.

Putting all this together will yield the claimed sequence. �

Recall that the singular locus of any coherent sheaf F, denoted by Sing(F), is the locus of
points where F is not locally free.

Lemma 2. Let Y be a smooth projective variety of dimension n > 3 and ample polarisation
OY(1). Let F be a reflexive sheaf on Y such that the singular locus of F is a finite set of points.
Then we have for i = 0, 1,

Hi(Y, F(ν)) = 0 ∀ ν� 0.

Proof. For i = 0, the statement follows since F is a torsion-free sheaf. Recall that Serre duality
gives an isomorphism

Hi(Y, F(ν))∨ ∼= Extn−i(F(ν),ωY).

Since dim Sing(F) = 0, we see that Hp(Y,ExtqY(F(ν),ωY)) = 0 for all p > 1, q > 1.
Therefore by Lemma 1 we have the following sequence for i > 2:

· · · → Hi(Y,Hom(F(ν),ωY))→ Exti(F(ν),ωY)→ H0(Y,Exti(F(ν),ωY))→ · · · .(2)

Since F is reflexive, depth(Fx) > 2 (Proposition 1.3 of [5]), and so by the Auslander-
Buchsbaum formula, we have Ext iY(F,ωY)) = 0 for i > n − 2. Thus, letting i = n − 1
in equation (2) yields a surjection

Hn−1(Y,Hom(F(ν),ωY))� Extn−1(F(ν),ωY).

By Serre vanishing theorem, Hn−1(Y,Hom(F(ν),ωY)) = 0 for ν� 0. Therefore

H1(Y, F(ν))∨ ∼= Extn−1(F(ν),ωY) = 0 for ν� 0.

�
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Corollary 1. Let Y be a smooth, projective variety of dimension n > 3 with ample polarisation
OY(1) and let X ⊂ Y be a smooth degree d hypersurface. Let E be a bundle on X such
that H1(X,EndE(ν)) = 0 for all ν < 0. Further assume that E extends to a reflexive sheaf
F on Y which is a bundle away from at most a finite set (in the complement of X). Then
H1(Y,End F(ν)) = 0 for ν < 0.

Proof. We have a short exact sequence

0→ End F(ν− d)→ End F(ν)→ EndE(ν)→ 0.

Taking cohomology and using the hypothesis, we get a surjection

H1(Y,End F(ν− d))� H1(Y,End F(ν)) ∀ν < 0.

The statement now follows from Lemma 2. �

Lemma 3. Let X ⊂ Y be as above. For i 6= 0, assume that we have a reflexive sheaf F such
that

(a) the map Exti(F(ν),ωY)→ Exti(F(ν− d),ωY) is an isomorphism ∀ ν < 0.
(b) Ext i(F,ωY) is supported on a finite set in Y \ X.

Then the map Exti(F(ν),ωY) → H0(Y,Ext i(F(ν),ωY)) is an isomorphism ∀ ν < 0. In
addition, if the map in (a) is an injection ∀ ν > 0, then so is the map above.

Proof. The local-to-global spectral sequence in Lemma 1 yields the following sequence:

Hi(Y,F∨ ⊗ωY(−ν))→ Exti(F(ν),ωY)→ H0(Y,Ext i(F(ν),ωY))→ Hi+1(Y,F∨ ⊗ωY(−ν)).

For −ν� 0, the extreme terms vanish by Serre vanishing, and so we have an isomorphism

Exti(F(ν),ωY) ∼= H0(Y,Ext i(F(ν),ωY)) ∀ − ν� 0.

On the other hand, the natural inclusion OY(−d) ↪→ OY yields a commutative square:

(3)
Exti(F(ν),ωY) → H0(Y,Ext i(F(ν),ωY))

↓ ↓∼=
Exti(F(ν− d),ωY) → H0(Y,Ext i(F(ν− d),ωY)).

The right vertical arrow is an isomorphism for all ν ∈ Z since the sheaf Ext i(F(ν),ωY) is
supported on a finite set in the complement of X. The result now follows since the horizontal
arrows are isomorphisms for ν� 0. �

Corollary 2. In the situation above, let Z ⊂ Y be a smooth hypersurface defined by g ∈
H0(Y,OY(a)) for some a > 0 such that Z ∩ Sing(F) = ∅. Then the natural map

Exti(F(ν),ωY)→ Exti(F(ν− a),ωY)

is an isomorphism ∀ ν < 0. In addition, if the map in Lemma 3(a) is an injection ∀ ν > 0,
then so is the map above.

Proof. Since Z does not meet Sing(F), we see that multiplication by g induces an isomorphism

g× : Ext i(F(ν),ωY)→ Ext i(F(ν− a),ωY).

The statement is now immediate from the commutative square (3) with ‘d’ replaced by ‘a’ and
the vertical maps induced by g. �
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3. PROOFS OF THEOREMS 4 AND 5

In this section we prove the Grothendieck-Lefschetz theorem for vector bundles on hyper-
surfaces and complete intersections stated in the introduction.

Proof of Theorem 4. Let Xk be the k-th order thickening of X given by the vanishing of fk+1

where f is the defining polynomial of X. The obstruction for a bundle F on Xk−1 to lift to a
bundle F ′ on Xk is given by an element ηk ∈ H2(X,EndE(−kd)) (i.e., given F, there exists F ′

on Xk such that F ′|Xk−1
∼= F if and only if ηk = 0).

The hypothesis that H2(X,EndE(−ν)) = 0 for all ν > 0 implies that the bundle E extends to
every thickening Xk of X, and consequently by Grothendieck’s Lefschetz conditions (see [3]),
there exists a formal bundle Ê on the formal completion X̂. By Grothendieck’s algebraization
theorem (see op. cit.), there exists an open set U ⊂ Pn containing X and a bundle FU on U
such that FU ⊗ OX

∼= E. Let F be the reflexive sheaf obtained by extending FU as a coherent
sheaf on X followed by replacing it with its double dual. Since F is a bundle along X, and X is
ample, this means that there is a finite set S ⊂ Pn \X such that F is a bundle when restricted to
the complement Pn \ S. By Corollary 1,

(4) H1(Y,End F(ν)) = 0, ν < 0.

The hypothesis on E applied to the cohomology sequence associated to the exact sequence

(5) 0→ End F(−d)→ End F→ EndE→ 0,

yields an isomorphism

(6) H2(Y,End F(ν− d)) ∼= H2(Y,End F(ν)) ∀ ν < 0.

Let Pn−1 ⊂ Pn be a general hyperplane section so that Pn−1 ∩ S = ∅. Let ` = 0 be its
defining equation for some linear polynomial `. The restriction F ′ := F|Pn−1 is a bundle on
Pn−1. By Corollary 2, we have isomorphisms

` : H2(X,End F(ν− 1))
∼=−→ H2(X,End F(ν)) ∀ ν < 0.

Once again, taking cohomology of the exact sequence

(7) 0→ End F(−1)→ End F→ End F ′ → 0,

it follows from (4) and (6) that

H1(Pn−1,End F ′(ν)) = 0 ∀ ν < 0.

By (Mohan Kumar’s refinement of) Kempf’s criterion (see [9]), F ′ splits into a sum of line
bundles. We claim that this implies that F splits into a sum of line bundles (in particular, F is a
bundle). Consequently, E splits into a sum of line bundles.

The fact that the splitting of F ′ implies the splitting of F is a standard argument (see [6]). We
give a quick proof for the sake of completeness.

Let ϕ : F ′ → ⊕iOPn−1(ai) denote the isomorphism. We consider the following diagram:

0 → F(−1) → F → F ′ → 0
↓ ϕ

0 → ⊕iOPn(ai − 1) → ⊕iOPn(ai) → ⊕iOPn−1(ai) → 0.

We want to claim that the isomorphism ϕ lifts to an isomorphism

Φ : F→ ⊕iOPn(ai)
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so that the diagram above commutes. Notice that the isomorphism ϕ is an element of

Hom(F ′,⊕iOPn−1(ai)) ∼= H0(Pn−1,⊕iF
′∨(ai)).

In order to guarantee thatϕ lifts to a morphismΦ, it is enough to show that, in the cohomol-
ogy sequence

H0(Pn,⊕iF
∨(ai))→ H0(Pn−1,⊕iF

′∨(ai))→ H1(Pn,⊕iF
∨(ai − 1))

the last term vanishes. In fact, much more is true. Since F ′ splits, this implies that F ′ has no
intermediate cohomology (i.e., Hi(Pn−1, F ′(ν)) = 0 for all ν ∈ Z, and 0 < i < n− 1), and so
a similar argument as before using the exact sequence

0→ F∨(−1)→ F∨ → F ′∨ → 0

yields that F∨ and similarly F have no intermediate cohomology. Thus we see that the iso-
morphism ϕ lifts to a morphism Φ. All that remains is to show that Φ is an isomorphism, or
equivalently that detΦ has no zeroes.

Since det(Φ)|Pn−1 = detϕ 6= 0, this is saying that detΦ 6= 0 along the (ample) hyperplane
Pn−1, and so must be non-zero in an open set V ⊂ Pn containing this Pn−1. Hence Φ is
nowhere vanishing.

�

Proof of Theorem 5. The proof is by induction on the codimension r of X. We will use as our
base case the case when X ⊂ Pn is a smooth hypersurface and so we are done by Theorem
4. Let Y be a smooth complete intersection of multi-degree (d1, · · · , dr−1) containing X as a
hypersurface of degree d := dr. The vanishing of H2 for ν < 0, implies that E extends as a
reflexive sheaf F on Y which, by the H1 vanishing in the hypothesis and Corollary 1, satisfies

H1(Y,End F(ν)) = 0, for ν < 0.(8)

The hypotheses applied to the cohomology sequence of

0→ End F(ν− d)→ End F(ν)→ EndE(ν)→ 0

also yields

H2(Y,End F(ν− d)) ∼= H2(Y,End F(ν)) ∀ ν < 0,(9)

H2(Y,End F(ν− d))� H2(Y,End F(ν)) ∀ ν > 0,(10)

H3(Y,End F(ν− d)) ↪→ H3(Y,End F(ν)) ∀ ν ∈ Z.(11)

The injections in the last statement together with Serre vanishing imply that

(12) H3(Y,End F(ν)) = 0 ∀ ν ∈ Z.
Now let Pn−1 be a general hyperplane with defining polynomial `, and X ′ := X ∩ Pn−1.

Then F ′ := F|X ′ is a bundle on X ′. The idea now is to argue as before using the exact sequence

0→ End F(ν− 1)
`×−→ End F(ν)→ End F ′(ν)→ 0,

and to prove that the hypothesis of the Theorem holds for the bundle F ′ on X ′.
By Corollary 2 and Serre duality, we have that the map

(13) `× : H2(Y,End F(ν− 1))→ H2(Y,End F(ν))

is an isomorphism for ν < 0 and a surjection for ν > 0.
The desired vanishings for the bundle F ′ follow from (8), (13) and (12). By induction, F ′

splits, and as before, this implies that F and hence E also split into a sum of line bundles. �
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4. PROOFS OF THEOREMS 7 AND 8

In this section we prove the Noether-Lefschetz type theorems for vector bundles on surfaces
in P3 and surfaces which are complete intersections.

Proof of Theorem 7. Condition (b) implies, by Theorem 6, that E extends as a reflexive sheaf
to P3. As in the previous proof, hypothesis (a) yields surjections

H1(P3,End F(ν− d))� H1(P3,End F(ν)) for ν < 0,

which by Corollary 1 yields

(14) H1(P3,End F(ν)) = 0 for ν < 0.

Furthermore, from hypothesis (a) and Serre duality we have vanishings H1(X,EndE(ν)) = 0
for ν < 0 or ν > d− 4. Hence we have injections

• H2(P3,End F(ν− d)) ↪→ H2(P3,End F(ν)), ν < 0 and
• H2(P3,End F(ν)) ↪→ H2(P3,End F(ν+ d)), ν > −4.

Applying Serre vanishing to the second statement yields H2(P3,End F(ν)) = 0 for ν > −4.
Using this vanishing in the first statement, we conclude that

(15) H2(P3,End F(ν)) = 0 for ν ∈ Z.
Using the vanishings in (14) and (15) and arguing as in the proof above yields that the

restriction of F to a general hyperplane P2 satisfies Kempf’s criterion and hence splits into a
sum of line bundles. Thus we are done. �

Proof of Theorem 8. To prove the statement, we proceed as in the proof of the previous theo-
rem. The first goal is to show that E extends to a reflexive sheaf F on Y, a smooth complete
intersection 3-fold containing X. Condition (ii) above ensures that such an extension exists.
Next, condition (i) ensures that H1(Y,End F(ν)) = 0 = H2(Y,End F(ν)) for all ν ∈ Z. Hence
the restriction of F to a general hypersurface X ′ ⊂ Y defined by a linear polynomial ` – denoted
by F ′ – satisfies the condition that H1(X ′,End F ′(ν)) = 0 for all ν ∈ Z. To apply induction,
it is now enough to show that condition (ii) holds for F ′. To see this, we first prove that the
multiplication map

(16) H0(Y,End F(a))⊗ H0(Y,OY(b))→ H0(Y,End F(a+ b))

is surjective for a, b such that H0(Y,End F(a)) 6= 0 and b > 0. To do this, we note that since
H1(Y,End F(ν)) = 0 for all ν ∈ Z, we have an exact sequence

0→ H0(Y,End F(ν− d))→ H0(Y,End F(ν))→ H0(X,EndE(ν))→ 0 ∀ ν ∈ Z.

Furthermore, if ν0 is such that H0(X,EndE(ν)) = 0 for ν < ν0, then H0(Y,End F(ν)) = 0 for
ν < ν0 as well. If not, we will have an isomorphism H0(Y,End F(ν− a)) ∼= H0(Y,End F(ν))
for ν < ν0 and for all a > 0. Since End F is torsion free, this group vanishes for ν � 0, and
so we arrive at a contradiction.

Suppose that s ∈ H0(Y,End F(a + b)); then we can write s = fks ′ for some k > 0 and
s ′ ∈ H0(Y,End F(a+b−kd)) such that f - s ′, so that s ′ 7→ s̄ ′ 6= 0 in H0(X,EndE(a+b−kd)).
In the commutative diagram
(17)

H0(Y,End F(ν0)⊗ H0(Y,OY(a+ b− kd− ν0)) → H0(Y,End F(a+ b− kd))
↓ ↓

H0(X,EndE(ν0))⊗ H0(X,OX(a+ b− kd− ν0)) → H0(X,EndE(a+ b− kd))
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the bottom horizontal map is a surjection (by our hypothesis) and so the element s̄ ′ above lifts to
an element

∑
j s̄j⊗gj ∈ H0(X,EndE(ν0))⊗H0(X,OX(a+b−kd−ν0)). This element in turn

is the image of an element
∑

j sj⊗gj ∈ H0(Y,End F(ν0))⊗H0(Y,OY(a+b−kd−ν0)) as the
map on global sections is surjective. We claim that

∑
j gj.sj = s

′ ∈ H0(Y,End F(a+b−kd)).
If not, on one hand, the difference

∑
j gj.sj − s

′ is divisible by f but, on the other hand, f - sj
for any j and hence it does not divide

∑
j gj.sj, and this is a contradiction. Hence∑

j

sj ⊗ fkgj ∈ H0(Y,End F(ν0))⊗ H0(Y,OY(a+ b− ν0)).

Finally, associativity of tensor products gives us a commutative diagram

H0(Y,End F(ν0))⊗
(
H0(Y,OY(a− ν0))⊗ H0(Y,OY(b))

)
→ H0(Y,End F(a))⊗ H0(Y,OY(b))

↓ 1⊗ µ ↓
H0(Y,End F(ν0))⊗ H0(Y,OY(a+ b− ν0)) → H0(Y,End F(a+ b)).

Since H0(Y,EndE(a)) 6= 0, this means that a > ν0, which means that a − ν0 > 0. Hence
H0(Y,OY(a − ν0)) 6= 0, and so all the cohomology groups are clearly non-zero in the above
diagram.

The image of the element
∑

j sj ⊗ fkgj under the bottom horizontal arrow coincides with
the element obtained by first lifting it via the left vertical surjection (the multiplication map µ
is a surjection) and then taking its image under the top horizontal arrow followed by the right
vertical arrow. This proves the desired surjectivity in (16).

It can now be checked that if F ′ is the restriction of F to a general hyperplane X ′ := Y ∩
Pn+r−1, then F ′ is a bundle on X ′ which satisfies the hypothesis of the theorem – condition (i)
implies that Hi(Y,End F(ν)) = 0 for i = 1, 2, and hence H1(X ′,End F ′(ν)) = 0 for ν ∈ Z,
whereas condition (ii) for F ′ can be verified using the commutative square:

(18)
H0(Y,End F(a))⊗ H0(Y,OY(b)) � H0(Y,End F(a+ b))

↓ ↓
H0(X,End F ′(a))⊗ H0(X,OX(b)) → H0(X,End F ′(a+ b)).

The surjectivity of the top horizontal and right vertical imply the surjectivity of the bottom
horizontal arrow. By induction on the multi-degree (or equivalently on the codimension of the
complete intersection) , we have that F ′ splits into a sum of line bundles. As a consequence F
and so E split. Thus we are done. �
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