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ABSTRACT. We prove that a general hypersurface in P5 of degree d > 3 does not support an
indecomposable rank 3 arithmetically Cohen-Macaulay (ACM) bundle. This settles the base
case of a generic version of a conjecture of Buchweitz, Greuel and Schreyer.

1. INTRODUCTION

We work over an algebraically closed field of characteristic zero.
Let Y be a smooth, projective variety and OY(1) denote an ample line bundle. The Lefschetz

theorems state that for any smooth hyperplane section X ⊂ Y, we have an isomorphism of
Picard groups Pic(Y) ∼= Pic(X) provided that dimX > 3. When dimX = 2, the above
isomorphism holds if, in addition, OY(1) is sufficiently ample and X is very general (i.e., X
belongs to the complement of a countable union of closed subvarieties of the parameter space
|OY(1)|).

One may view these theorems as providing conditions under which line bundles on X extend
to line bundles on Y. Our motivation behind the results of this article is to formulate a general-
isation of the Lefschetz theorems to higher rank bundles when Y = Pn+1. To do so, we restrict
ourselves to the class of arithmetically Cohen Macaulay (ACM) bundles on X. Recall that a
bundle E on X is said to be ACM if

Hi∗(X, E) :=
⊕
a∈Z

Hi(X, E(a)) = 0, 0 < i < dimX.

ACM bundles are ubiquitous – for any smooth hypersurface X ⊂ Pn+1, and a bundle E, let
F0 → E be a map from a sum of line bundles to E such that the map of global sections
H0∗(X, F0)→ H0∗(X, E) is surjective. Now consider a minimal resolution of the form

0→ En−1 → Fn−2 → Fn−3 → · · · → F0 → E→ 0, (1)

where Fi := ⊕jOX(aij) for 0 6 i < n − 1, and such that if Ei+1 := Image(Fi+1 → Fi) is the
(i + 1)-st syzygy bundle, then H0∗(X, Fi+1) → H0∗(X, Ei+1) is surjective. It follows then that
En−1 is ACM.

In the context of ACM bundles, the following conjecture due to Buchweitz, Greuel and
Schreyer [4] has been a guiding light:

Conjecture 1 (BGS conjecture). Let X ⊂ Pn+1 be a smooth hypersurface. Any ACM bundle E
on X of rank r < 2e for e :=

⌊
n−1
2

⌋
, is a sum of line bundles.

The first non-trivial instances of the BGS conjecture for higher degree hypersurfaces are
when n = 3 and n = 4; in these cases, the conjecture predicts that any ACM line bundle
is the restriction of a line bundle on Pn+1 and hence follows from the Grothendieck-Lefschetz
theorem. When n > 5, the conjecture states that any ACM bundle of rank r < 4 is a sum of line

Date: May 12, 2019.
2010 Mathematics Subject Classification. 14J70(primary), and 13D02(secondary).
Key words and phrases. Vector bundles, exterior powers, hypersurfaces, arithmetically Cohen-Macaulay.



2 G. V. RAVINDRA AND AMIT TRIPATHI

bundles. The case of rank 2 bundles was first proved by Kleppe [12] and independently as part
of a more general theorem in [13]. More recently, [23] (and independently, [16]) establishes
this result for rank 3 ACM bundles thereby settling another higher rank case of this conjecture.
The conjecture was established for quadric hypersurfaces in [11].

The BGS conjecture may be viewed as an extension theorem in the spirit of the Lefschetz
theorems for Picard groups. To see this, one notes that if an ACM bundle E extends to a
bundle Ẽ on Pn+1, then Ẽ is also ACM, and hence by Horrocks’ result [9], is a sum of line
bundles. Consequently, we regard this conjecture as providing us a higher rank analogue of
the Grothendieck-Lefschetz theorem. This point of view immediately suggests that one ought
to have an analogue of the Noether-Lefschetz theorem for ACM bundles on projective hyper-
surfaces of sufficiently high degree as well. Furthermore, the results in [13, 14, 15, 17, 3],
and especially the techniques used in [17] and the results proved in [15] draw a direct connec-
tion with traditional Noether-Lefschetz theory and its generalisations. The BGS conjecture and
various results referred to above also suggest that it seems likely that if there are no non-split
ACM bundles of rank r 6 2s for some s, then there are none of rank r < 2s+1. Putting all this
together, and as a first step, we propose the following

Conjecture 2 (Generic BGS conjecture). Let X ⊂ Pn+1 be a general1 hypersurface of suffi-
ciently high degree and E be an ACM bundle of rank r on X. If r < 2s, where s :=

⌊
n+1
2

⌋
, then

E is a sum of line bundles.

The above was posed as a question in [21] where the case of rank 3 ACM bundles on hyper-
surfaces in P5 was proved under the additional hypothesis that the bundles have fewer than 8
generators. In this article, we prove that result in complete generality. Consequently, the main
result here, and the corresponding result for rank 2 ACM bundles proved in [13], and by dif-
ferent methods in [17] (this uses the results in [5]), prove the base case of the above conjecture
for hypersurfaces in P5. A more optimistic conjecture can be found in [6].

Here is a precise statement of our main results:

Theorem 1.1. Let X ⊂ Pn+1 be a smooth hypersurface.
(i) If n > 5, then any ACM rank 3 bundle on X is a sum of line bundles.

(ii) If n = 4, and X is general of degree d > 3, then any ACM rank 3 bundle on X is a sum
of line bundles.

(iii) If n = 3, and X is general of degree d > 5, then any ACM rank 3 bundle E on X is
rigid, i.e., H1(X, EndE) = 0 = H2(X,EndE).

The above result extends, word for word, the results in [13] where these statements were
established for rank 2 ACM bundles. Indeed, the ideas introduced in op. cit. serve as the basis
for the proof here as well. However, the proof here is far more technical, and depends on
some key insights into the structure of vector bundles on hypersurfaces, their resolutions and
filtrations involving their exterior powers. In fact, the results in §3 and in §4 hold for any vector
bundle on a hypersurface. Part (i) of the theorem was earlier proved by the second author (see
[23]) and relied on a criterion due to Huneke and Wiegand (see [10]). The proof here is self-
contained and is a consequence of our method which proves results for rank 3 ACM bundles
on hypersurfaces in P5 and P4 as well.

1A Noether-Lefschetz type statement is usually stated for a very general hypersurface; i.e., a hypersurface
which is parametrised by a point outside a countable union of closed, proper subvarieties in the parameter space.
However, it follows from Lemma 3.3 in [13] that there are only finitely many closed subvarieties which parametrise
indecomposable ACM bundles of a fixed rank. Thus we may replace very general by general in the statement of
Conjecture 2.
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For related work and a brief history of prior results, we refer the reader to [13], [17], [23]
and the references therein.

Outline of the proof. Let X be a smooth hypersurface in Pn+1, n > 3, and E be a rank 3ACM
bundle on X. By Ex. II.5.16 of [8], we note that for a short exact sequence of vector bundles
0→ E ′ → F→ E ′′ → 0, there is a decreasing filtration on ∧rF,

∧rF = Er,r ⊇ Er,r−1 ⊇ · · · ⊇ Er,0 = ∧rE ′ ⊇ Er,−1 = 0

with associated graded pieces Qr,i,i−1 ∼= ∧iE ′ ⊗∧r−iE ′′.
If we let 0 → G → F0 → E → 0 be a minimal resolution of E (see §2 for details), then we

have the following commutative diagram for the third exterior powers:

0 0
↓ ↓
E3,1 = E3,1
↓ ↓

0 → E3,2 → ∧3F0 → ∧3E → 0
↓ ↓ ||

0 → ∧2E⊗G → Q3,3,1 → ∧3E → 0.
↓ ↓
0 0

(2)

Since rankE = 3, ∧3E ∼= OX(c), where c = c1(E) ∈ Pic(X) ∼= Z. Taking cohomology, we
get a commutative square from the middle and bottom rows above:

H0∗(X,∧
3E) � H1∗(X, E3,2)

|| ↓
H0∗(X,∧

3E) → H1∗(X,∧
2E⊗G).

Here the horizontal arrows are the coboundary maps for the two rows in the commutative
diagram above.

The right vertical arrow is a surjection provided that

H2∗(X, E3,1) = 0. (3)

Assuming this, we see that the bottom horizontal arrow is then a surjection. This implies that
H1∗(X,∧

2E⊗G) is generated as a graded module by the image of 1 ∈ H0∗(X,∧
3E) under this

map. We denote this as ζ ∈ H1(X,∧2E ⊗ G(−c)) where c = c1(E). It turns out that the
element ζ is the Yoneda class of the sequence 0→ G→ F0 → E→ 0 under the identification

H1(X,∧2E(−c)⊗G) ∼= H1(X, E∨ ⊗G) ∼= Ext1(E,G).

By Remark 1 in §2.2, H1∗(X,∧
2E ⊗ G) ∼= H2∗(X,EndE(c − d)) and so the latter is also an

1-generated module. Thus by Corollary 3.8 of [13] or Theorem 2 of [19], the fact that E is
supported on a general hypersurface of degree d > 3 means that H2(X,EndE(a)) = 0 for
a > 0. However, when dimX = 4, we have, H2(X,EndE(−d)) ∼= H2(X,EndE(2d − 6)) by
Serre duality. Thus, when 2d − 6 > 0, or equivalently, d > 3, we see that this group vanishes
and so ζ = 0.

Results for dimX = 3 and dimX > 5 require a complete analysis of cohomologies of
various graded pieces. This is done in Theorem 5.7 where using the vanishing in (3), we
examine the filtered piece E3,0 ∼= ∧3G and the diagram obtained from the inclusion E3,0 →
E3,2; see diagram (68). When dimX > 5, we show that the group H2(X,EndE(−d)) vanishes
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for any smooth X in Theorem 6.1. The vanishing of this cohomology group implies that the
sequence 0→ G→ F0 → E→ 0 splits, and hence E is a sum of line bundles.

The technical heart of this paper lies in sections 3, 4, and 5 which contain various results
which are used in proving Theorem 5.7.

2. PRELIMINARIES

We recall some standard results here. More details can be found in §3 of [19] and §2 of [13].

2.1. Generalities about vector bundles on hypersurfaces. Let X ⊂ Pn+1 be a smooth hy-
persurface of degree d with ideal sheaf I := OP(−d). We let Xr be the r-fold thickening of
X in Pn+1 with sheaf of ideals Ir. Let E be a bundle on X of rank u. Since dimX > 3, we
have Pic(X) ∼= Z by the Grothendieck-Lefschetz theorem. Using this isomorphism, we let
c := c1(E) ∈ Z, so that ∧uE ∼= OX(c). The bundle E has a minimal resolution over Pn+1 of
the form

0→ F̃1
Φ−→ F̃0 → E→ 0, (4)

where F̃0 is sum of line bundles and F̃1 is a bundle on Pn+1. When E is ACM, an application
of Horrocks’ splitting criterion shows that F̃1 is also a sum of line bundles.

Restricting the above resolution to X, we get a 4-term exact sequence

0→ E(−d)→ F1
Φ−→ F0 → E→ 0.

Let G := Image(Φ). Breaking this up into short exact sequences, we get

0→ G→ F0 → E→ 0 and, (5)

0→ E(−d)→ F1 → G→ 0. (6)
When E is an ACM bundle, G is also an ACM bundle. The surjection F1 � G lifts to a
surjective map F̃1 � G and gives rise to the following minimal resolution of G:

0→ F̃0(−d)
Ψ−→ F̃1 → G→ 0. (7)

Dualizing (4), we get

0→ F̃∨0
Φt−→ F̃∨1 → E∨(d)→ 0, (8)

and on restricting to X, we get the exact sequences

0→ G∨ → F
∨

1 → E∨(d)→ 0 and, (9)

0→ E∨ → F
∨

0 → G∨ → 0. (10)

2.2. The extension class ζ ∈ Ext1X(E,G)
∼= H1(X, E∨ ⊗G). The exact sequence

0→ G→ F0 → E→ 0

defines an element ζ ∈ Ext1X(E,G)
∼= H1(X, E∨ ⊗G). It is clear that ζ = 0 if and only if this

sequence splits. This, by the Krull-Schmidt theorem [1], (see also Remarks 1 and 2 below),
is equivalent to the splitting of E (and G). Tensoring the above sequence with E∨, and taking
cohomology, we obtain the following long exact sequence of cohomology:

0→ H0(X,G⊗ E∨)→ H0(X, F0 ⊗ E∨)→ H0(X, E⊗ E∨)→ H1(X,G⊗ E∨)→ · · · .
It is standard that, under the coboundary map,

H0(X, E⊗ E∨)→ H1(X,G⊗ E∨),
the identity 1 is mapped to the element ζ.
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Similarly, tensoring with E∨, the sequence

0→ E(−d)→ F1 → G→ 0,

and taking cohomology, we get a boundary map H1(X, E∨⊗G)→ H2(X,EndE(−d)). Under
this map, ζ is mapped to the element η, where η is the obstruction class of E (see Remark 2
below).

Remark 1. When dimX > 3, the boundary map H1∗(X, E
∨ ⊗ G) → H2∗(X,EndE(−d)) is an

isomorphism.

Remark 2. For an arbitrary bundle E on a smooth hypersurface X ⊂ Pn+1, the vanishing of the
class η ∈ H2(X,EndE(−d)) is necessary and sufficient for E to extend to a bundle E2 on X2,
the second order thickening of X (see, for instance, [19] for details). In the case when E is an
ACM bundle (of arbitrary rank), it is shown in [15], by elementary arguments, that E splits if
and only if E extends to a bundle E2 on X2. This fact was used to generalize Voisin’s counter
example (see [24]) to a generalised Noether-Lefschetz conjecture of Griffiths and Harris (see
[7]).

2.3. Two cokernel sheaves. Notice that, affine locally on Pn+1, the mapΦ in sequence (4) is
the diagonal matrix (f, · · · , f, 1, · · · , 1) where the first u entries are all f’s, and the remaining
m− u entries are 1’s, so that (4) is of the form

0→ Rm
diag(f,··· ,f,1,··· ,1)−−−−−−−−−−→ Rm → (R/(f))u → 0.

Here Spec(R) is an affine open set in Pn+1 andm = rank(F0) = rank(F1).
The r-th exterior power ofΦ has the following local description:

∧rΦ := diag(fr, fr−1, · · · , fr−1, fr−2, · · · , fr−2, fr−3, · · · , 1),
where the number of fr−i’s along the diagonal is

(
u
r−i

)(
m−u
i

)
. This is a consequence of the fact

that an r-fold product of the diagonal entries consists of choosing (r− i) f’s and the remaining
i 1’s from among u f’s and (m− u) 1’s.

We also have a similar description for the map Ψ in (7) and its exterior powers.
Letting Er and Gr denote the cokernels of ∧rΦ and ∧rΨ respectively, we get the exact

sequences

0→ ∧rF̃1 → ∧rF̃0 → Er → 0, and (11)

0→ ∧rF̃0(−rd)→ ∧rF̃1 → Gr → 0. (12)

Definition 1. We will say that a coherent sheaf F on Pn has no intermediate cohomology if

Hi∗(Pn,F) = 0, 0 < i < dim Supp(F).

Remark 3. When E is an ACM bundle on a smooth hypersurface X ⊂ Pn+1 then the sheaves
Er and Gr have no intermediate cohomology.

We also recall the following result:

Lemma 2.1. Let rank F0 = m. The sheaves Er and Gr are supported on Xr, the r-fold thick-
ening of X. Moreover, affine locally on Pn+1, Er is of the form

O
⊕(ur)
Xr

⊕ O
⊕( u

r−1)·(
m−u
1 )

Xr−1
⊕ . . .⊕ O

⊕( ur−i)·(
m−u
i )

Xr−i
. . .⊕ O

⊕(u1)·(
m−u
r−1 )

X .

Proof. The proof follows using the local description of the map ∧rΦ above. For details, see
Lemma 3.1 of [23]. �
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2.3.1. A convention. A tilde e.g. F̃ will be used to denote a vector bundle or a sheaf on projec-
tive space Pn+1. The restriction to the hypersurface will be denoted as F|X or F.

3. TWO FILTRATIONS

Let Y be a smooth projective variety and let X ⊂ Y be a smooth hypersurface cut out by a
section f ∈ OY(d) where OY(1) is an ample line bundle. Let E be a vector bundle on X. Then E
has a minimal resolution of the form 0→ F̃1 → F̃0 → E→ 0, where as before F̃0 ∼= ⊕OY(ai),
and F̃1 is an ACM vector bundle on (Y,OY(1)). Restricting this sequence to X gives us, as
before, exact sequences (5) and (6). Associated to these exact sequences are two filtrations on
the r-th exterior power of the bundles F0 and F1 which we recall now.

3.1. The first filtration. On ∧rF0, we have the following filtration via sequence (5):

∧rG = Er,0 ⊂ Er,1 ⊂ . . . ⊂ Er,r−1 ⊂ Er,r = ∧rF0,

such that for i > j, if we set

Qr,i,j := coker(Er,j → Er,i),

then in particular, we have (see Ex. II.5.16 of [8])

Qr,i,i−1 = coker(Er,i−1 → Er,i) = ∧iE⊗∧r−iG. (13)

Thus we have diagrams (for r > i > j > k):

0

��

0

��

Er,k

��

Er,k

��

0 // Er,j

��

// Er,i //

��

Qr,i,j // 0

0 // Qr,j,k

��

// Qr,i,k //

��

Qr,i,j // 0

0 0.

(14)

3.2. The second filtration. On ∧rF1, we have a similar filtration via sequence (6):

∧rE(−rd) = Gr,0 ⊂ Gr,1 ⊂ . . . ⊂ Gr,r−1 ⊂ Gr,r = ∧rF1,

where, for i > j, we set Pr,i,j := coker(Gr,j → Gr,i). Here again, we have

Pr,i,i−1 = ∧iG⊗∧r−iE(−(r− i)d).

Remark 4. For filtrations obtained from the dual sequences (9) and (10), we will denote by
P ′r,i,j and Q ′r,i,j, the respective associated graded pieces.

Lemma 3.1. Let rank F0 = m. Then
(1) rankEr,i =

(
u
i

)(
m−u
r−i

)
+
(
u
i−1

)(
m−u
r−i+1

)
+ · · ·+

(
u
1

)(
m−u
r−1

)
+
(
m−u
r

)
,

(2) rankGr,i =
(
m−u
i

)(
u
r−i

)
+
(
m−u
i−1

)(
u

r−i+1

)
+ · · ·+

(
m−u
1

)(
u
r−1

)
+
(
u
r

)
,

(3) rankQr,i,j =
(
u
i

)(
m−u
r−i

)
+
(
u
i−1

)(
m−u
r−i+1

)
+ · · ·+

(
u
j+1

)(
m−u
r−j−1

)
, and
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(4) rankPr,i,j =
(
m−u
i

)(
u
r−i

)
+
(
m−u
i−1

)(
u

r−i+1

)
+ · · ·+

(
m−u
j+1

)(
u

r−j−1

)
.

Proof. We will prove the first part. The rest follow in a similar fashion. The first and second
filtrations locally yield a direct sum decomposition of the exterior powers of the bundles F0 and
F1. More precisely, there is a covering of X by affine open subsets such that for each open set
U ⊂ X in this covering, one has F0 ⊗ OU ∼= EU ⊕ GU, where EU (respectively GU) is the
restriction of E (respectively G) to U. In this case, we have

Er,i ⊗ OU ∼=

i⊕
p=0

∧pEU ⊗∧r−pGU.

The rank computation now follows. �

3.3. Some multilinear algebra. Recall that, for any vector bundle V on X, we have a natural
map

ωk,k−1 : ∧
kV → ∧k−1V ⊗ V.

Since a similar map exists for the dual bundle V∨, it follows that the above map is a split
injection. Thus we also have a split surjection

ω ′k,k−1 : ∧
k−1V ⊗ V → ∧kV.

We have similar maps involving the dual V∨ as well.
The surjection F0 � E gives rise to the commutative square

∧rF0 � ∧rE
↓ ↓

∧r−1F0 ⊗ F0 � ∧r−1E⊗ E.

The bottom horizontal map factors via ∧r−1E⊗ F0, where the map ∧r−1E⊗ F0 → ∧r−1E⊗E
is induced by the surjection F0 � E. Hence we have a diagram

0 → Er,r−1 → Er,r → ∧rE → 0
↓ ↓ ↓

0 → ∧r−1E⊗G → ∧r−1E⊗ F0 → ∧r−1E⊗ E → 0.
(15)

The kernel of the left vertical map is Er,r−2 and so it yields the push-forward diagram

0 → Er,r−1 → Er,r → ∧rE → 0
↓ ↓ ||

0 → ∧r−1E⊗G → Qr,r,r−2 → ∧rE → 0.
(16)

By the universal property of push-forward diagrams, we see that the vertical maps in (15) factor
via the bottom row of (16). Thus we have a commutative diagram

0 → ∧r−1E⊗G → Qr,r,r−2 → ∧rE → 0
|| ↓ ↓

0 → ∧r−1E⊗G → ∧r−1E⊗ F0 → ∧r−1E⊗ E → 0.
(17)

In particular, if we let r = rank(E), and tensor the above diagram with (∧rE)−1, then the
coboundary maps in the cohomology diagram associated to (17) yields the following commu-
tative square:

H0(X,OX) → H1(X, E∨ ⊗G)
↓ ||

H0(X,End(E)) → H1(X, E∨ ⊗G).
(18)
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Thus, it follows that under the top horizontal map the identity element 1 is mapped to the
element ζ as well. In particular, this means that the top horizontal row in diagram (17) also
represents the class ζ.

A similar analysis starting with the bundle G yields a diagram analogous to (17):

0 → ∧r−1G⊗ E(−d) → Pr,r,r−2 → ∧rG → 0
|| ↓ ↓

0 → ∧r−1G⊗ E(−d) → ∧r−1G⊗ F1 → ∧r−1G⊗G → 0.
(19)

3.4. Maps between filtered pieces.

Lemma 3.2. Let notation be as above.
(1) For r > k > 1, there exist commutative diagrams:

0 → Er,k−1 → Er,k → ∧kE⊗∧r−kG → 0
↓αr,k−1 ↓αr,k ↓

0 → Er−1,k−2 ⊗ E → Er−1,k−1 ⊗ E → ∧k−1E⊗∧r−kG⊗ E → 0.
(20)

Here the right vertical map is the composition

∧kE⊗∧r−kG
ωk,k−1⊗id−−−−−−→ ∧k−1E⊗ E⊗∧r−kG ∼= ∧k−1E⊗∧r−kG⊗ E.

(2) For r > j > 1, there exists a diagram:

0 // Er−1,j−1 ⊗G
γr,j−1

��

// Er−1,j ⊗G
γr,j

��

// ∧jE⊗∧r−1−jG⊗G //

����

0

0 // Er,j−1 // Er,j // ∧jE⊗∧r−jG // 0.

(21)

Here the right vertical map is the composition

∧jE⊗∧r−j−1G⊗G
id⊗ω ′r−j,r−j−1−−−−−−−−→ ∧jE⊗∧r−jG.

Proof. We prove the assertion (1) by decreasing induction on k. For the base case k = r, we
first recall that Er,r ∼= ∧rF0, and Er−1,r−1 ∼= ∧r−1F0, and so the map

αr,r : Er,r → Er−1,r−1 ⊗ E

is the composite
∧rF0 → ∧r−1F0 ⊗ F0 → ∧r−1F0 ⊗ E.

Thus we have a diagram

0 → Er,r−1 → Er,r → ∧rE → 0
↓αr,r ↓

0 → Er−1,r−2 ⊗ E → Er−1,r−1 ⊗ E → ∧r−1E⊗ E → 0.
(22)

Since the square on the right obviously commutes, we have an induced map αr,r−1 on the
kernels.

Now assume, we have defined αr,k for some k < r. Then we have a diagram

0 → Er,k−1 → Er,k → ∧kE⊗∧r−kG → 0
↓αr,k ↓

0 → Er−1,k−2 ⊗ E → Er−1,k−1 ⊗ E → ∧k−1E⊗∧r−kG⊗ E → 0.
(23)
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The square on the right commutes, as can be readily verified locally, and so induces a map
between the kernels. This proves the inductive step. The proof of (2) is similar. For the base
case of j = r− 1, recalling that Er−1,r−1 ∼= ∧r−1F0, we have the following diagram

0 → ∧r−1F0 ⊗G → ∧r−1F0 ⊗ F0 → ∧r−1F0 ⊗ E → 0
↓γr,r ↓

0 → Er,r−1 → Er,r = ∧rF0 → ∧rE → 0.

(24)

Here the top row is obtained by tensoring (5) with ∧r−1F0, and the vertical arrow on the right is
the composite ∧r−1F0 ⊗ E→ ∧r−1E⊗ E→ ∧rE. Commutativity of the right square induces
a map between the kernels, namely

γr,r−1 : Er−1,r−1 ⊗G→ Er,r−1.

Suppose now that we have the desired diagram involving the maps γr,j and γr,j+1. Then
γr,j−1 is defined by the commutative diagram

0 → Er−1,j−1 ⊗G → Er−1,j ⊗G → ∧jE⊗∧r−1−jG⊗G → 0
↓γr,j−1 ↓γr,j ↓

0 → Er,j−1 → Er,j → ∧jE⊗∧r−jG → 0.
(25)

�

4. SOME HOMOLOGICAL ALGEBRA

Let Y be a smooth projective variety and let X ⊂ Y be a smooth hypersurface as before.
Starting with the mapsΦ andΨwhich define the bundles E andG, we have seen in the previous
sections that we obtain, on one hand, sheaves Er and Gr (which are supported on the r-th
thickening Xr) and their restrictions to various thickenings Xj, 0 < j < r, and on the other
hand, the filtered pieces Er,i and Gr,i. In this section, we will establish results which will
relate these two sets of objects.

4.1. The cokernel sheaves Er, Gr and their restrictions. The main result of this section is
Proposition 4.5 which generalizes Proposition 3.5 of [23].

For any r > j > 1, we have short exact sequences

0→ OXr−j(−jd)→ OXr → OXj → 0, (26)

0→ OY(−jd)→ OY → OXj → 0. (27)
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These sequences fit in the diagram:

0

��

0

��

OY(−rd)

��

OY(−rd)

��

0 // OY(−jd) //

����

OY

����

// OXj
// 0

0 // OXr−j(−jd)
//

��

OXr
//

��

OXj
// 0

0 0.

(28)

In what follows, we will often write ToriY(F,G) when we mean ToriOY(F,G) where F and G

are OY-modules. The following fact is used throughout our computations.

Lemma 4.1. Let F be any coherent OXj-module. Then

Tor1Y(F,OXj)
∼= F(−jd) and ToriY(F,OXj) = 0 for i > 1.

Proof. Tensoring the short exact sequence of sheaves of OY-modules (27) with F gives

· · · → Tor1Y(F,OY)→ Tor1Y(F,OXj)→ F(−jd)→ F → F → 0.

The last surjection is an isomorphism and Tor1Y(F,OY) = 0; this proves the first claim. For the
second claim, we observe from (27) that OXj has homological dimension 1 as an OY-module
and so the higher Tor terms vanish. �

Lemma 4.2. Let F be an OXr-module and let 1 6 j < r. Then

Ker(Tor1Y(F,OXj)→ Tor1Xr(F,OXj))
∼= Ker(F(−jd)→ F|Xr−j(−jd)).

Proof. Upon tensoring sequence (26) with F over Y, we get the long exact sequence

0→ Tor1Y(F,OXr−j)(−jd)→ Tor1Y(F,OXr)→ Tor1Y(F,OXj)→ ker[F(−jd)|Xr−j → F|Xr]→ 0.

Next, we tensor (26) with F over Xr to get the identification,

Tor1Xr(F,OXj)
∼= ker[F(−jd)|Xr−j → F|Xr].

Thus we have the 4-term sequence

0→ Tor1Y(F,OXr−j)(−jd)→ Tor1Y(F,OXr)→ Tor1Y(F,OXj)→ Tor1Xr(F,OXj)→ 0. (29)

Tensoring the leftmost column in diagram (28) with F over Y gives

0→ Tor1Y(F,OXr−j(−jd))→ F(−rd)→ F(−jd)→ F|Xr−j(−jd)→ 0. (30)

Since Tor1Y(F,OXr) ∼= F(−rd), the lemma follows from (29) and (30). �

Lemma 4.3. Let 0 → F ′ → F → F ′′ → 0 be a sequence of OXr-modules. For 1 6 j < r,
assume that Tor1Xr(F,OXj) = 0. Then there exists an exact sequence

0→ Tor1Y(F
′,OXj)→ Tor1Y(F,OXj)→ Tor1Y(F

′′,OXj)→ Tor1Xr(F
′′,OXj)→ 0.
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Proof. Tensoring 0 → F ′ → F → F ′′ → 0 respectively by OXj over Y and Xr gives the two
sequences below:

0→ Tor1Y(F
′,OXj)→ Tor1Y(F,OXj)→ Tor1Y(F

′′,OXj)→ F ′|Xj → F|Xj → F ′′|Xj → 0,

0→ Tor1Xr(F
′′,OXj)→ F ′|Xj → F|Xj → F ′′|Xj → 0. (31)

The desired sequence now follows. �

For j < r, we also define

Gr,j := Ker(∧rF0|Xj � Er|Xj) and Er,j := Ker(∧rF1|Xj � Gr|Xj). (32)

Restricting sequence (11) to Xr and by a repeated use of Lemma 4.1, we get

· · · → ∧rF1(−rd)→ ∧rF0(−rd)→ ∧rF1 → ∧rF0 → Er → 0, (33)

which breaks up into two short exact sequences

0→ Gr → ∧rF0 → Er → 0, and

0→ Er(−rd)→ ∧rF1 → Gr → 0.
(34)

Since Im(∧rF1 → ∧rF0) = ∧rG, upon restricting the first sequence to X, we get the sequence

0→ ∧rG→ ∧rF0 → Er := Er ⊗ OX → 0. (35)

In particular, we have

Lemma 4.4. With notation as above,
(i) Qr,r,0 := Coker(Er,0 → Er,r) = Coker(∧rG→ ∧rF0) ∼= Er, and

(ii) Gr,1 := Ker(∧rF0 � Er) ∼= ∧rG = Er,0 = Pr,r,r−1.

Proposition 4.5. Let 1 6 j < r. There exist short exact sequences
(1) 0→ Er,j → Er(−jd)→ Er|Xr−j(−jd)→ 0.
(2) 0→ Gr,j(−(r− j)d)→ Gr → Gr|Xr−j → 0.

Proof. On restricting the OXr-sequence

0→ Gr → ∧rF0 → Er → 0

to Xj, we get the long exact sequence

0→ Tor1Xr(Er,OXj)→ Gr|Xj → ∧rF0|Xj → Er|Xj → 0.

Breaking this up into short exact sequences yields

0→ Gr,j → ∧rF0|Xj → Er|Xj → 0, and

0→ Tor1Xr(Er,OXj)→ Gr|Xj → Gr,j → 0.

We also have a 4-term sequence

0→ Tor1Y(Er,OXj)→ ∧rF1|Xj → ∧rF0|Xj → Er|Xj → 0

obtained by restricting (11) to Xj. The injection above yields the exact sequence

0→ Tor1Y(Er,OXj)→ ∧rF1|Xj → Gr,j → 0.

These last two short exact sequences, and snake lemma yield a diagram:
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0 0
↓ ↓

Er,j = Er,j
↓ ↓

0 → Tor1Y(Er,OXj) → ∧rF1|Xj → Gr,j → 0
↓ ↓ ||

0 → Tor1Xr(Er,OXj) → Gr|Xj → Gr,j → 0.
↓ ↓
0 0

(36)

Thus we get an exact sequence

0→ Er,j → Tor1Y(Er,OXj)→ Tor1Xr(Er,OXj)→ 0. (37)

Letting F = Er in Lemma 4.2 completes the proof of part (1). The proof of part (2) is similar.
�

4.2. Cokernel sheaves and filtrations. In this section, we relate the cokernel sheaves Er, Gr
and their restrictions to the thickenings Xj, 1 6 j 6 r, with the filtered pieces Er,i and Gr,i.
The former are more amenable to cohomology computations, while the latter are what we need
to understand to carry out the proof of the main theorem.

The main results of this section are Lemma 4.7 and Proposition 4.13.

Lemma 4.6. We have the following isomorphisms:

(1) Tor1Y(Er,OX) ∼= Gr,r−1 and Tor1Y(Gr,OX) ∼= Er,r−1(−rd).
(2) Tor1Xr(Er,OX)

∼= Pr,r−1,0 and Tor1Xr(Gr,OX)
∼= Qr,r−1,0(−rd).

(3) Tor1Xr(Er,OXr−1)
∼= Qr,r−1,0(−(r− 1)d)

(4) Tor1Xr(Gr,OXr−1)
∼= Pr,r−1,0(−(r− 1)d)

Proof. (1) Restricting the sequence (11)

0→ ∧rF̃1 → ∧rF̃0 → Er → 0

to X gives

0→ Tor1Y(Er,OX)→ ∧rF1 → ∧rF0 → Er → 0.

The image of the map ∧rF1 → ∧rF0 is ∧rG, and hence by definition Tor1Y(Er,OX) ∼= Gr,r−1.
The proof of the other isomorphism is similar.

(2) We have just seen that we have a sequence

0→ Tor1Y(Er,OX)→ ∧rF1 → ∧rG→ 0. (38)

The sequence 0→ Gr → ∧rF0 → Er → 0 on restricting to X gives a short exact sequence

0→ Tor1Xr(Er,OX)→ Gr → ∧rG→ 0. (39)
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Together these short exact sequences yield the diagram

0 0
↓ ↓

∧rE(−rd) = ∧rE(−rd)
↓ ↓

0 → Tor1Y(Er,OX) → ∧rF1 → ∧rG → 0
↓ ↓ ||

0 → Tor1Xr(Er,OX) → Gr → ∧rG → 0.
↓ ↓
0 0

(40)

In the left column, we have by definition,Gr,0 := ∧rE(−rd), and from (1) above Tor1Y(Er,OX) ∼=
Gr,r−1. Thus the injection in the left column is the map Gr,0 ↪→ Gr,r−1 and so we have
Tor1Xr(Er,OX)

∼= Pr,r−1,0.
The isomorphism Tor1Xr(Gr,OX)

∼= Qr,r−1,0(−rd) follows in a similar fashion.
(3) Applying Er⊗OXr

to the sequence

0→ OX(−(r− 1)d)→ OXr → OXr−1 → 0,

we get
0→ Tor1Xr(Er,OXr−1)→ Er(−(r− 1)d)→ Er → Er|Xr−1 → 0.

Using Proposition 4.5 (1), we get

0→ Tor1Xr(Er,OXr−1)→ Er(−(r− 1)d)→ Er,1(d)→ 0.

Recall that
(i) Qr,r,0 := Coker(Er,0 → Er,r) = Coker(∧rG→ ∧rF0) = Er, and that

(ii) Qr,r,r−1 := Coker(Er,r−1 → Er,r) = ∧rE.

Thus we have

Er,1 = Ker(∧rF1 → Gr) = ∧rE(−rd) = Qr,r,r−1(−rd). (41)

The proof now follows by observing that

Ker
(
Er(−(r− 1)d)→ Er,1(d)

)
= Ker (Qr,r,0(−(r− 1)d)→ Qr,r,r−1(−(r− 1)d))

=: Qr,r−1,0(−(r− 1)d).

Finally, (4) follows by a similar argument. �

Lemma 4.7. Let 1 < j < r. There exist short exact sequences
(1) 0→ Er,r−1(−(r− 1)d)→ Gr → Gr,r−1 → 0.
(2) 0→ Er,j−1(−(j− 1)d)→ Gr,j → Gr,j−1 → 0.
(3) 0→ Qr,r−1,0(−(r− 1)d)→ Gr|Xr−1 → Gr,r−1 → 0.

Proof. We note that part (1) is a special case of (2) (for j = r). However, since the proof is
direct, we present it here. We have a commutative diagram

0 → Gr → ∧rF0 → Er → 0
↓ ↓ ↓

0 → Gr,r−1 → ∧rF0|Xr−1 → Er|Xr−1 → 0
↓ ↓ ↓
0 0 0.

(42)
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Here the middle and right vertical maps are restriction maps, and the left vertical map is the
induced map. By the snake lemma, we have an exact sequence of the kernels of the vertical
maps:

0→ ker(Gr � Gr,r−1)→ ∧rF0(−(r− 1)d)→ ker(Er � Er|Xr−1)→ 0.

The last term is Er,1(d), which is isomorphic to ∧rE(−(r − 1)d) by (41) in Proposition 4.5.
Thus we have

ker(Gr � Gr,r−1) ∼= Er,r−1(−(r− 1)d).

This proves (1).
The proof of part (2) follows from the diagram below:

0

��

0

��

0

��

0 // Er,j−1(−(j− 1)d)

��

// ∧rF0(−(j− 1)d) //

��

Qr,r,j−1(−(j− 1)d) //

��

0

0 // Gr,j

βj

��

// ∧rF0|Xj
//

��

Er|Xj
//

��

0

0 // Gr,j−1

��

// ∧rF0|Xj−1

��

// Er|Xj−1

��

// 0

0 0 0.

(43)

The vertical surjections are induced by the restriction from Xj to Xj−1.
All that needs to be proved is the exactness of the first and third columns. By the local

description of Er (see Lemma 2.1), it follows that locally Gr,j is of the form

O
(m−u

r )
Xj

⊕ O
(m−u
r−1 )(

u
1)

Xj−1
⊕ O

(m−u
r−2 )(

u
2)

Xj−2
⊕ · · · ⊕ O

(m−u
r−j+2)(

u
j−2)

X2
⊕ O

(m−u
r−j+1)(

u
j−1)

X . (44)

Exactness can now be checked locally by using the local description of the maps between
sheaves Gr,j � Gr,j−1 and Er|Xj � Er|Xj−1 .

For part (3), we restrict the sequence

0→ Gr → ∧rF0 → Er → 0

to Xr−1 to get

0→ Tor1Xr(Er,OXr−1)→ Gr|Xr−1 → ∧rF0|Xr−1 → Er|Xr−1 → 0. (45)

The injection above, using Lemma 4.6 (3), yields the exact sequence

0→ Qr,r−1,0(−(r− 1)d)→ Gr|Xr−1 → Gr,r−1 → 0.

This is the desired statement. �

Proposition 4.8. Gr,j|X ∼= Pr,r,r−j and Er,j|X ∼= Qr,r,r−j(−rd)

Proof. We will only prove the first isomorphism (which is what we really need). The proof
of the second assertion follows by arguing in a similar fashion. On restricting the left vertical
sequence in the diagram (43), we get a sequence

Er,j−1(−(j− 1)d)→ Gr,j|X
βj−→ Gr,j−1|X → 0.
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Once again, using the local description of the sequence above, we see that the left arrow factors
via the quotient Er,j−1(−(j − 1)d) � Qr,j,j−1(−(j − 1)d). Since Qr,j,j−1(−(j − 1)d) ∼=
Pr,r−j+1,r−j, we get an exact sequence

0→ Pr,r−j+1,r−j → Gr,j|X
βj−→ Gr,j−1|X → 0.

The proof now follows by decreasing induction on j; for the base case j = r, we have Gr,r = Gr
and Gr|X = Pr,r,0. �

Remark 5. The filtration Gr,0 ⊂ Gr,1 ⊂ · · · ⊂ Gr,r can be recovered from the maps Gr,r �
Pr,r,j. Proposition 4.8 is crucial as it shows that these maps of bundles on X have a natural lift
to Xr−j in the form of maps of sheaves ∧rF1|Xr−j � Gr,r−j.

Lemma 4.9. Tor1Xj(Er|Xj,OX)
∼= Pr,r−1,r−j and Tor1Xj(Gr|Xj,OX)

∼= Qr,r−1,r−j(−rd).

Proof. We have a sequence

0→ Tor1Xj(Er|Xj,OX)
β−→ Gr,j

α−→ ∧rF0 → Er → 0,

obtained by restricting to X the exact sequence

0→ Gr,j → ∧rF0|Xj → Er|Xj → 0.

Recall that Gr,j = Image(∧rΦ|Xj), and hence the image of the map Gr,j
α−→ ∧rF0 is equal

to Image(∧rΦ|X) = ∧rG. By Proposition 4.8,we have Gr,j ∼= Pr,r,r−j. Since taking exterior
powers commutes with restriction maps, we see that the map Gr,j → ∧rG is the same as the
natural map Pr,r,r−j → Pr,r,r−1 whose kernel is Pr,r−1,r−j.

The proof of the other statement is similar, and so we omit it. �

Lemma 4.10. We have the following identifications:
(i) Tor1Y(Er,r−1,OX) ∼= Gr,r−2(−(r− 1)d).

(ii) Tor1Y(Gr,r−1,OX) ∼= Er,r−2(−(r− 1)d).

Proof. We prove part (i), and omit the proof for part (ii) as it is identical. From Proposition
4.5, by setting j = r− 1, we have an exact sequence

0→ Er,r−1 → Er(−(r− 1)d)→ Er|X(−(r− 1)d)→ 0.

Restricting this sequence to X, we get

0→ Tor1Y(Er,r−1,OX)→ Tor1Y(Er,OX)(−(r−1)d)
α−→ Tor1Y(Er,OX)(−(r−1)d)→ Er,r−1 → 0.

We note that the map α factors as below:

Tor1Y(Er,OX)
α

//

��

Tor1Y(Er,OX)

Tor1Xr(Er,OX)
// Tor1X2(Er|X2 ,OX)

// Tor1X2(Er,OX)

(46)

By Lemma 4.9, Tor1X2(Er|X2 ,OX)
∼= Pr,r−1,r−2 ∼= Qr,1,0(−d), and so the rightmost map

on the bottom sequence Tor1X2(Er|X2 ,OX)→ Tor1X2(Er,OX) is the composite injective map

Pr,r−1,r−2 ∼= Qr,1,0(−d) ↪→ Qr,r,0(−d).
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This, together with the isomorphism Tor1Y(Er,OX)
∼= Gr,r−1 from Lemma 4.6, shows that the

map Tor1Y(Er,OX)
α−→ Tor1Y(Er|X,OX) is the same as the composite map

Gr,r−1 � Pr,r−1,r−2 ∼= Qr,1,0(−d) ↪→ Qr,r,0(−d).

Hence we have

Tor1Y(Er,r−1,OX)
∼= ker(Tor1Y(Er,OX)(−(r− 1)d)→ Tor1Y(Er|X2 ,OX)(−(r− 1)d))
∼= ker(Gr,r−1(−(r− 1)d)→ Pr,r−1,r−2(−(r− 1)d))

= Gr,r−2(−(r− 1)d),

where the last equality follows from the definition of Pr,r−1,r−2.
�

We state the following standard result from homological algebra whose proof we omit.

Lemma 4.11. Let 0 → M ′ → M → M ′′ → 0 and 0 → N ′ → N → N ′′ → 0 be two exact
sequences of R-modules. Then we have a commutative diagram

Tori+1(M ′′, N ′′)

��

// Tori(M ′′, N ′)

��

Tori(M ′, N ′′) // Tori−1(M ′, N ′)

(47)

where all the maps are boundary maps. The vertical maps come from tensoring the first exact
sequence with N ′′ and N ′ respectively, while the horizontal maps come from tensoring the
second exact sequence withM ′′ andM ′ respectively.

Proposition 4.12. We have a short exact sequence

0→ ∧rG(−(j− 1)d)→ Gr,j → Gr,j|Xj−1 → 0.

Proof. Applying Lemma 4.11 to following sequences on Xj

0→ OX(−(j− 1)d)→ OXj → OXj−1 → 0, (48)

and
0→ Gr,j → ∧rF0|Xj → Er|Xj → 0 (49)

gives the following diagram (with i = 1)

Tor2Xj(Er|Xj ,OXj−1)
∼=−→ Tor1Xj(Er|Xj,OX(−(j− 1)d))

↓∼= ↓β

Tor1Xj(Gr,j,OXj−1)
γ−→ Gr,j(−(j− 1)d).

(50)

The right vertical map β is obtained by restricting (49) to X, and hence is the same as the map
in Lemma 4.9. The bottom horizontal map can be seen to be an injection. Since Coker(β) ∼=
∧rG(−(j− 1)d), we get Coker(γ) ∼= ∧rG(−(j− 1)d). �

Proposition 4.13. We have a short exact sequence

0→ E3,1(−d)→ G3,2 → ∧3G→ 0. (51)



RANK 3 ACM BUNDLES ON GENERAL HYPERSURFACES IN P5 17

Proof. Tensoring the sequence

0→ OY(−(j− 1)d)→ OY → OXj−1 → 0

with Gr,j over Y, we get

0→ Tor1Y(Gr,j,OXj−1)→ Gr,j(−(j− 1)d)→ Gr,j → Gr,j|Xj−1 → 0.

For r = 3, j = 2, Lemma 4.10 yields the isomorphism Tor1Y(G3,2,OX)
∼= E3,1(−2d),

while from Proposition 4.12, we see that the kernel of the surjection in the sequence above
is ∧3G(−d). Breaking up the 4-term sequence above into short exact sequences yields the
desired sequence. �

5. COHOMOLOGY COMPUTATIONS FOR ACM BUNDLES

Henceforth, E will be an ACM bundle on a smooth, degree d hypersurface X ⊂ Pn+1,
n > 3.

The main result of this section is Theorem 5.7. As mentioned in the introduction, the key
idea in this paper is to work our way up from the bottom most term E3,0 ∼= ∧3G of the filtration
{E3,i} on ∧3F0. It turns out that to understand this filtration, we will need to use the filtration
{E2,j} on ∧2F0, and the maps between the filtered pieces in the two filtrations (see §3.4) in an
essential way (Lemma 5.5).

The inclusion E3,0 ↪→ E3,2 gives us diagram (68), and using Lemma 5.5, we first prove
that ∧3G is ACM which implies that the associated graded piece Q3,2,0 is 1-generated. Using
Lemma 5.5 once again, we prove that the surjection Q3,2,0 → Q3,2,1 := ∧2E ⊗ G induces a
surjection H1∗(X,Q3,2,0)→ H1∗(X,∧

2E⊗G), and thus the latter is also 1-generated.

5.1. The bundle Er,0 ∼= ∧rG. In this section, we will prove the necessary results required to
prove Lemma 5.5 by analyzing the bottom most filtered piece Er,0 ⊂ ∧rF0.

Lemma 5.1. Assume that E is a rank r ACM vector bundle on a smooth hypersurface X ⊂
Pn+1, n > 3. Then the sheaf Gr,r−1 has no intermediate cohomology (see definition 1).

Proof. From Lemma 4.7, we have an exact sequence

0→ Er,r−1(−(r− 1)d)→ Gr → Gr,r−1 → 0.

We first note that Gr is ACM by looking at its defining sequence

0→ ∧rF̃0(−rd)→ ∧rF̃1 → Gr → 0.

Next, by definition, we have

0→ Er,r−1 → ∧rF0 → ∧rE→ 0.

Since rankE = r, ∧rE ∼= OX(a) for some a ∈ Z, and hence ACM. Thus

Hi∗(X, Er,r−1) = 0 for 2 6 i 6 n− 1.

As a consequence, we get

Hi∗(X,Gr,r−1) = 0, 1 6 i 6 n− 2.

All that remains to be shown is that Hn−1∗ (X,Gr,r−1) = 0. For this, we first note that from the
sequence (cf. Propositions 4.5 (i))

0→ Er,1(d)→ Er → Er|Xr−1 → 0,
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we have Hn−2∗ (X,Er|Xr−1) = 0, using the fact that (i) Er,1(d) ∼= ∧rE(−(r − 1)d) (cf. (41)),
and (ii) Er has no intermediate cohomology by Remark 3. The desired vanishing then follows
from the sequence

0→ Gr,r−1 → ∧rF0|Xr−1 � Er|Xr−1 → 0.

�

The following result was proved in [23]. As the proof is very short, we include it here to help
keep this article essentially self-contained.

Proposition 5.2. Let E be an ACM bundle on a smooth hypersurface X ⊂ Pn+1 with n > 3.
Then ∧2E is ACM if and only if ∧2G is ACM. In particular, when rank(E) = 3, we have ∧2G
is ACM.

Proof. By Proposition 4.5 (for r = 2, j = 1) and equation (35), we have short exact sequences

0→ ∧2E(d)→ E2 → E2 → 0,

0→ ∧2G→ ∧2F0 → E2 → 0.

Since E2 is ACM and ∧2F0 is a direct sum of line bundles, it follows that

Hi∗(X,∧
2E(d)) ∼= Hi∗(X,∧

2G), 2 6 i 6 n− 1.

For i = 1, we apply this result again to E∨ instead of E and use Serre duality. In this case
G will be replaced by G∨(−d). Finally, when rankE = 3, we have ∧2E ∼= E∨(c), and so is
ACM. �

Lemma 5.3. Suppose that E and ∧r−1G are ACM. We have short exact sequences

0→ Hi∗(X,∧
rG)→ Hi+1∗ (X,∧r−1G⊗ E(−d))→ Hi+1∗ (X,Pr,r,r−2)→ 0, 1 6 i 6 n− 2.

We also have a surjection

H1∗(X,∧
r−1G⊗ E(−d))� H1∗(X,Pr,r,r−2).

Proof. Recall, from §3.3, that associated to the bundle Pr,r,r−2, we have a commutative dia-
gram

0 → ∧r−1G⊗ E(−d) → Pr,r,r−2 → ∧rG → 0
|| ↓ ↓

0 → ∧r−1G⊗ E(−d) → ∧r−1G⊗ F1 → ∧r−1G⊗G → 0.
(52)

Taking cohomology, we get a commutative square

Hi(X,Pr,r,r−2) → Hi(X,∧rG)
↓ ↓

Hi(X,∧r−1G⊗ F1) → Hi(X,∧r−1G⊗G).
(53)

Since ∧r−1G is ACM and F1 is a direct sum of line bundles, the term on the left in the bottom
row is zero. The fact that ∧rG→ ∧r−1G⊗G is a split inclusion implies now that the map

Hi(X,Pr,r,r−2)→ Hi∗(X,∧
rG)

is zero for 1 6 i 6 n− 1. The desired statements now follow. �

Corollary 5.4. Suppose that E and ∧r−1G are ACM. We have short exact sequences

0→ Hi∗(X, Er,1)→ Hi∗(X,∧
r−1G⊗ E)→ Hi+1∗ (X,∧rG)→ 0, 1 6 i 6 n− 2.

We also have an injection

Hn−1∗ (X, Er,1)→ Hn−1∗ (X,∧r−1G⊗ E).
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Proof. Applying Lemma 5.3 to the dual exact sequence 0→ E∨ → F
∨

0 → G∨ → 0 gives

0→ Hi∗(X,∧
rG∨)→ Hi+1∗ (X,∧r−1G∨ ⊗ E∨)→ Hi+1∗ (X,P ′r,r,r−2)→ 0, 1 6 i 6 n− 2,

and a surjection
H1∗(X,∧

r−1G∨ ⊗ E∨)� H1∗(X,P
′
r,r,r−2). (54)

By definition (see Remark 4), the bundle P ′r,r,r−2 sits in an exact sequence

0→ P ′r,r−1,r−2 → P ′r,r,r−2 → P ′r,r,r−1 → 0.

Since the extreme terms are the associated graded pieces in the filtration, this may be rewritten
as

0→ ∧r−1G∨ ⊗ E∨ → P ′r,r,r−2 → ∧rG∨ → 0. (55)

On the other hand the filtration {Er,i} on ∧rF0 yields the exact sequence

0→ Er,0 → Er,1 → Qr,1,0 → 0.

This again may be rewritten as

0→ ∧rG→ Er,1 → ∧r−1G⊗ E→ 0. (56)

It follows then that (55) and (56) are dual to each other, and hence we get P ′∨r,r,r−2 ∼= Er,1.
Dualizing the sequence (54) and using the above isomorphism gives the desired result. �

5.2. Rank 3 case. Henceforth, we assume that E is a rank 3 ACM bundle on a smooth hyper-
surface X ⊂ Pn+1, n > 3. From Lemma 3.2 (2), we have the following diagram for r = 3,
j = 1.

0 // ∧2G⊗G
γ
����

// E2,1 ⊗G
α
//

δ

��

G⊗ E⊗G //

π
����

0

0 // ∧3G // E3,1
β
// ∧2G⊗ E // 0.

(57)

Lemma 5.5. In the diagram above, the composition2

Hi(X, E2,1 ⊗G)
α−→ Hi(X,G⊗G⊗ E) π−→ Hi(X,∧2G⊗ E)

is the zero map for 1 6 i 6 n− 1.

Proof. We first recall the two ways of defining the bundle E2,1. In the first definition, as a
filtered piece of ∧2F0 (see §3), it occurs as part of the exact sequences

0→ E2,1 → ∧2F0 → ∧2E→ 0, (58)

0→ ∧2G→ E2,1 → G⊗ E→ 0. (59)

In the second definition, the 4-term sequence

0→ S2G→ G⊗ F0 → ∧2F0 → ∧2E→ 0,

breaks up into short exact sequences

0→ S2G→ G⊗ F0 → E2,1 → 0, (60)

0→ E2,1 → ∧2F0 → ∧2E→ 0. (61)

2We will abuse notation, and use the same symbols for a map between vector bundles as well as the induced
map between their cohomologies.
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Together with the split exact sequence

0→ S2G
i−→ G⊗G p−→ ∧2G→ 0, (62)

we get a commutative diagram as follows:

0 // S2G⊗G� _

��

// G⊗ F0 ⊗G // E2,1 ⊗G
α
����

// 0

0 // G⊗G⊗G

����

// G⊗ F0 ⊗G

����

// G⊗ E⊗G
π
��

// 0

0 // ∧2G⊗G // ∧2G⊗ F0 // ∧2G⊗ E // 0.

(63)

Here the top row is (60) tensored with G, the middle row is (5) tensored with G ⊗ G and
the last row is (5) tensored with ∧2G. The top vertical arrows are induced by the injection
S2G ↪→ G⊗G for the left map, associativity of tensor products for the equality in the middle,
and the surjection E2,1 � G⊗ E for the right map. The bottom vertical arrows are all induced
by the surjection G⊗G� ∧2G and uses the associativity of tensor products.

The cohomology sequence associated to the above diagram yields the following diagram
where the horizontal arrows are the boundary maps:

Hi(X, E2,1 ⊗G)

α
��

d1
// Hi+1(X, S2G⊗G)

ι̃
��

Hi(X,G⊗ E⊗G)

π
��

d2
// Hi+1(X,G⊗G⊗G)

p̃
��

Hi(X,∧2G⊗ E) d
// Hi+1(X,∧2G⊗G).

(64)

To prove the Lemma, we first note that the boundary map d is an injection for 1 6 i 6 n−1,
since ∧2G⊗ F0 is ACM. Hence, to prove π ◦ α = 0, it is enough to prove that d ◦ π ◦ α = 0.
By the commutativity of the above diagram, it is enough to prove that p̃ ◦ ι̃ ◦ d1 = 0 in that
range. This is obvious since p̃ ◦ ι̃ = 0 as the right column is exact. �

Proposition 5.6. With notation as above, we have

(i) Hi∗(X, E3,2) = 0, 2 6 i 6 n− 1.
(ii) Hi∗(X, E3,1) = 0, 2 6 i 6 n− 1.

Proof. The bundle E3,2 is defined by the short exact sequence

0→ E3,2 → ∧2F0 → ∧2E→ 0.

Taking cohomology yields the proof for (i).
For (ii), we first note that (57) yields a commutative square

Hi∗(X, E2,1 ⊗G)
α
//

δ
��

Hi(X,G⊗ E⊗G)

π
��

Hi∗(X, E3,1)
β
// Hi∗(X,∧

2G⊗ E).

(65)
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By Lemma 5.5 and the commutativity of the above square, we have β◦δ = π◦α = 0. Further,
since rankE = 3, we have ∧2G is ACM by Proposition 5.2, and so by Corollary 5.4 the map
β is injective for 1 6 i 6 n− 1. Thus we see that the map

δ : Hi∗(X, E2,1 ⊗G)→ Hi∗(X, E3,1) (66)

is the zero map for 1 6 i 6 n− 1.
Next, by Lemma 3.2 (2) for r = 3, j = 2 we have the following diagram

0 // E2,1 ⊗G //

δ

��

∧2F0 ⊗G

��

// ∧2E⊗G // 0

0 // E3,1 // E3,2 // ∧2E⊗G // 0.

(67)

Thus we see that the boundary map

∂ : Hi∗(X,∧
2E⊗G)→ Hi+1∗ (X, E3,1)

factors via the map δ : Hi+1∗ (X, E2,1 ⊗ G) → Hi+1∗ (X, E3,1), and hence is zero for 0 6 i 6
n− 2. In particular, the map

Hi∗(X, E3,1)→ Hi∗(X, E3,2)

is injective for 1 6 i 6 n− 1. The result now follows from (i). �

Theorem 5.7. Let X ⊂ Pn+1 be a smooth hypersurface with n > 3. Let E be a rank 3 ACM
bundle. Then

(a) ∧3G is ACM.
(b) The graded modules H1∗(X,Q3,2,0), H

1
∗(X,∧

2E ⊗ G) and H2∗(X,∧
2E ⊗ E(−d)) are

generated by a single element.

Proof. The sequence

0→ E3,1(−d)→ G3,2 → ∧3G→ 0,

in Proposition 4.13 yields, on taking cohomology, the long exact sequence

· · · → Hi∗(X,G3,2)→ Hi∗(X,∧
3G)→ Hi+1∗ (X, E3,1(−d))→ · · · .

The vanishings from Lemma 5.1 and Proposition 5.6 imply that

Hi∗(X,∧
3G) = 0 for 1 6 i 6 n− 2.

Arguing similarly with the duals E∨ and G∨ instead, we get

Hi∗(X,∧
3G∨) = 0 for 1 6 i 6 n− 2.

By Serre duality, it follows that ∧3G is an ACM bundle whenever n − 2 > 1 or equivalently,
n > 3 which proves (a).
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For (b), we first observe that the exterior powers of the maps in the exact sequence 0 →
G→ F0 → E→ 0 yield a diagram

0

��

0

��

0 // E3,0 // E3,2 //

��

Q3,2,0 //

��

0

0 // ∧3G // ∧3F0 //

��

E3

��

// 0

∧3E

��

∧3E

��

0 0.

(68)

From the middle row of the above diagram, we have Hi∗(X,E3) = 0 when 1 6 i 6 n−2. Thus
the right column yields the surjection

H0∗(X,∧
3E)� H1∗(X,Q3,2,0).

In particular, H1∗(X,Q3,2,0) is 1-generated.
Next, we recall the following special case of diagram (14) (with r = 3, i = 2, j = 1, k = 0)

0 // E3,1 //

��

E3,2

��

// ∧2E⊗G // 0

0 // ∧2G⊗ E // Q3,2,0 // ∧2E⊗G // 0.

(69)

In the bottom horizontal sequence, we have used the fact that Qr,i,i−1 ∼= ∧iE ⊗ ∧r−iG, for
r = 3 and i = 1, 2 (see equation (13)).

We claim that the map

H1∗(X,Q3,2,0)→ H1∗(X,∧
2E⊗G)

obtained by taking cohomology in the above diagram is a surjection. To see this, we note that
from diagrams (67) and (69), the boundary map

Hi∗(X,∧
2E⊗G)→ Hi+1∗ (X,∧2G⊗ E) (70)

factors as

Hi∗(X,∧
2E⊗G)→ Hi+1∗ (X, E2,1 ⊗G)

δ−→ Hi+1∗ (X, E3,1)→ Hi+1∗ (X,∧2G⊗ E).
Since δ = 0 when 0 6 i 6 n − 2 (see (66)), the boundary map in (70) vanishes for 0 6 i 6
n− 2. This proves our claim.

To prove that H2∗(X,∧
2E⊗E(−d)) is 1-generated, we will show that there is an isomorphism

H1∗(X,∧
2E⊗G) ∼= H2∗(X,∧

2E⊗ E(−d)).
To do so, we first note that since E is a rank 3 ACM bundle, ∧2E is also ACM. We have
the exact sequence (6): 0 → E(−d) → F1 → G → 0; tensoring this with ∧2E and taking
cohomology, we get a long exact sequence

· · ·H1∗(X,∧2E⊗ F1)→ H1∗(X,∧
2E⊗G)→ H2∗(X,∧

2E⊗ E(−d))→ H2∗(X,∧
2E⊗ F1) · · · .
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The extreme terms vanish, and so we have our desired isomorphism. This completes the proof
of (b).

�

6. PROOF OF THE MAIN RESULTS

Theorem 6.1 (= Theorem 1.1 (i)). Let X ⊂ P6 be a smooth hypersurface. Then any rank 3
ACM bundle on X is split.

Proof. From Proposition 5.6, Theorem 5.7 and the sequence (top row of (68))

0→ ∧3G→ E3,2 → Q3,2,0 → 0,

it follows that Hi∗(X,Q3,2,0) = 0 when i = 2, 3. Similarly the sequence

0→ ∧3G→ E3,1 → ∧2G⊗ E→ 0

gives Hi∗(X,∧
2G⊗ E) = 0 when i = 2, 3. The last two vanishings together with the sequence

0→ ∧2G⊗ E→ Q3,2,0 → ∧2E⊗G→ 0

imply H2∗(X,∧
2E ⊗ G) = 0. Using Serre duality, and a similar analysis with E∨ and G∨ we

also get that H3∗(X,∧
2E⊗G) = 0. Using this in the sequence

0→ ∧2E⊗G→ ∧2E⊗ F0 → ∧2E⊗ E→ 0,

we then get that H2∗(X,∧
2E⊗ E) = 0. In particular, H2(X,End(E)(−d)) = 0.

Recall that under the boundary isomorphism H1(X, E∨ ⊗ G) → H2(X,EndE(−d)), the
extension class ζ maps to the class η (§2.2). Consequently both η and ζ vanish. This means
that E must be a split bundle (Remark 2). �

Theorem 6.2 (= Theorem 1.1 (ii)). Let X ⊂ P5 be a general hypersurface of degree d > 3.
Then any rank 3 ACM bundle E splits.

Proof. The proof is exactly as in [13]. Since E is supported on a general hypersurface X, this
means that the multiplication map

g : H2(X,EndE(−d))→ H2(X,EndE)

is zero for any g ∈ H0(X,OX(d)) (see Theorem 3.7 in op. cit.). However, from Theorem 5.7
and its proof, we have

H0∗(X,∧
3E)� H1∗(X,∧

2E⊗G) ∼= H2∗(X,∧
2E⊗ E(−d)) ∼= H2∗(X,EndE(c− d)).

Hence the last group is 1-generated, with its generator in degree −d. Together, this means that
H2(X,EndE(a)) = 0 for a > 0. On the other hand, by Serre duality we have

H2(X,EndE(−d)) ∼= H2(X,EndE(2d− 6)) = 0 whenever d > 3.

This means that when d > 3, H2(X,EndE(−d)) = 0, and so in particular, η = 0. The
vanishing of η is equivalent to the splitting of E as noted before. This finishes the proof. �

Remark 6. We note that the main result of [21] shows that the above theorem follows from
Theorem 5.7 (a). However, part (b) of the same theorem yields the far simpler proof above.

Theorem 6.3 (= Theorem 1.1 (iii)). Let X ⊂ P4 be a general hypersurface of degree d > 5.
Then any rank 3 ACM bundle is rigid.

Proof. We need to show that H1(X,EndE) = 0 = H2(X,EndE) = 0. Arguing as above, we
see that H2(X,EndE(a)) = 0 for a > 0. Furthermore, by Serre duality, H1(X,EndE) ∼=
H2(X,EndE(d− 5)), and hence H1(X,EndE) = 0 for d > 5. �
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