
ON THE PICARD BUNDLE

INDRANIL BISWAS AND G. V. RAVINDRA

Abstract. Fix a holomorphic line bundle ξ over a compact connected Riemann surface
X of genus g, with g ≥ 2, and also fix an integer r such that degree(ξ) > r(2g−1). Let
Mξ(r) denote the moduli space of stable vector bundles over X of rank r and determinant
ξ. The Fourier–Mukai transform, with respect to a Poincaré line bundle on X × J(X),
of any F ∈Mξ(r) is a stable vector bundle on J(X). This gives an embedding of Mξ(r)
in a moduli space associated to J(X). If g = 2, then Mξ(r) becomes a Lagrangian
subvariety.
Résumé

Sur le fibré de Picard. Soient ξ un fibré en droites holomorphe sur une surface de
Riemann compacte connexe X de genre g ≥ 2, et r un entier tel que degré(ξ) > r(2g−1).
Notons Mξ(r) l’espace de modules des fibrés vectoriels stables sur X, de rang r et de
déterminant ξ. Ayant choisi un fibré de Poincaré sur X × J(X), la transformée de
Fourier–Mukai associée fait correspondre à un fibré F ∈ Mξ(r) un fibré vectoriel stable
sur J(X). Ceci fournit un plongement de Mξ(r) dans un espace de modules associé
à J(X). Lorsque g = 2, Mξ(r) s’identifie ainsi à une sous-variété lagrangienne de cet
espace de modules.

1. Introduction

Let (X , x0) be a one–pointed compact connected Riemann surface of genus g, with
g ≥ 2. Let L be the Poincaré line bundle on X×J(X) constructed using x0, where J(X)
is the Jacobian of X. Fix an integer r ≥ 2 and a holomorphic line bundle ξ over X with
degree(ξ) > r(2g− 1). Let Mξ(r) denote the moduli space of stable vector bundles over
X of rank r and determinant ξ.

In Lemma 2.1 we show that for any F ∈ Mξ(r),

VF := φJ∗(L ⊗ φ∗XF )

is a stable vector bundle with respect to the canonical polarization on J(X), where φJ

(respectively, φX) is the projection of X × J(X) to J(X) (respectively, X).

Rational characteristic classes of VF , as well as the line bundle
∧top VF , are independent

of F . Let M(J(X)) be the moduli space of stable vector bundles W over J(X) with
rank(W ) = rank(VF ), ci(W ) = ci(VF ) and

∧top W =
∧top VF . The map Mξ(r) −→

M(J(X)) defined by F 7−→ VF is an embedding (see Corollary 2.3).

We next assume that g = 2, and if degree(ξ) is even, then also assume that r ≥ 3. Let
M0(J(X)) ⊂ M(J(X)) be the locus of all W for which the image of C1(W )2−2·C2(W ) ∈
CH2(J(X)) in the Deligne–Beilinson cohomology vanishes.
Notation: The i–th Chern class with values in the Chow group will be denoted by Ci.

We show that the image of Mξ(r) lies in M0(J(X)), and Mξ(r) is a Lagrangian
subvariety of the symplectic variety M0(J(X)).
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2. Fourier–Mukai transform of a stable vector bundle

Let X be a compact connected Riemann surface of genus g, with g ≥ 2. Fix once and
for all a point x0 ∈ X.

Let J(X) := Pic0(X) be the Jacobian of X. There is a canonical principal polarization
on J(X) given by the cup product of H1(X, Z). All stable vector bundles over J(X)
considered here will be with respect to this polarization.

Let L be a holomorphic line bundle over X × J(X) such that

• for each point ξ ∈ J(X), the restriction of L to X × {ξ} is in the isomorphism
class of holomorphic line bundles represented by ξ, and

• the restriction of L to {x0} × J(X) is a holomorphically trivial line bundle over
J(X).

Such a line bundle L exists [1, p. 166–167]. Moreover, from the see–saw theorem (see [7,
p. 54, Corollary 6]) it follows that L is unique up to a holomorphic isomorphism. We will
call L the Poincaré line bundle for the pointed curve (X , x0).

Fix an integer r ≥ 2. Fix a holomorphic line bundle ξ over X with

(1) degree(ξ) > r(2g − 1) .

Let Mξ(r) denote the moduli space of stable vector bundles E over X with rank(E) = r
and

∧r E = ξ.

Let φJ (respectively, φX) denote the projection of X×J(X) to J(X) (respectively, X).

Lemma 2.1. For each vector bundle F ∈ Mξ(r),

R1φJ∗(L ⊗ φ∗XF ) = 0 ,

where L is the Poincaré line bundle. The direct image

VF := φJ∗(L ⊗ φ∗XF )

is a stable vector bundle over J(X) of rank δ := degree(ξ)− r(g − 1).

Proof. For a stable vector bundle W over X of rank r and degree d > 2r(g− 1), we have
H0(X, W ∗ ⊗KX) = 0 because a stable vector bundle of negative degree does not admit
any nonzero sections. Hence by Serre duality we have H1(X, W ) = 0. Therefore, using
(1) it follows that R1φJ∗(L ⊗ φ∗XF ) = 0.

Since R1φJ∗(L⊗φ∗XF ) = 0, we know that the direct image VF in the statement of the
lemma is a vector bundle of rank degree(ξ)− r(g − 1).

The stability of VF is derived from [2, p. 5, Theorem 1.2] as follows. Consider the
embedding

f : X −→ J(X)

defined by x 7−→ OX(x0 − x). Therefore,

(2) (IdX × f)∗L = OX×X(({x0} ×X)−∆) ,

where ∆ ⊂ X ×X is the diagonal divisor.

Set E in [2, Theorem 1.2] to be F ⊗ OX(x0). Using (2) it follows that the vector
bundle ME in [2, Theorem 1.2] is identified with f ∗VF . From [2, Theorem 1.2] we know
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that f ∗VF is stable. Now using the openness of the stability condition (see [4, p. 635,
Theorem 2.8(B)]) it follows that there is a Zariski open dense subset

(3) U ⊂ J(X)

such that for each z ∈ U , the pullback f ∗τ ∗zVF is a stable vector bundle, where τz ∈
Aut(J(X)) is the translation defined by y 7−→ y + z.

If W ⊂ VF violates the stability condition of VF for the canonical polarization, then
take a point z0 ∈ U (see (3)) such that τz0 ◦ f intersects the Zariski open dense subset of
J(X) over which W is locally free. Now it is straight–forward to check that

f ∗τ ∗z0
W ⊂ f ∗τ ∗z0

VF

contradicts the stability condition of f ∗τ ∗z0
VF . Therefore, we conclude that VF is stable.

This completes the proof of the lemma. �

Fix a holomorphic line bundle L over J(X) such that c1(L) coincides with the canonical
polarization on J(X). As in [7, p. 123], set

(4) M := m∗L⊗ p∗1L
∗ ⊗ p∗2L

∗

on J(X)× J(X), where

(5) pi : J(X)× J(X) −→ J(X)

is the projection to the i–th factor, and m is the addition map on J(X); the dual abelian
variety J(X)∨ is identified with J(X) using the Poincaré line bundle L. Let

(6) ϕ : X −→ J(X)

be the morphism defined by x 7−→ OX(x− x0). Then

(ϕ× IdJ(X))
∗M = L .

Proposition 2.2. Consider the vector bundle VF is Lemma 2.1. For all i 6= g,

Rip1∗(M
∗ ⊗ p∗2VF ) = 0 ,

and
Rgp1∗(M

∗ ⊗ p∗2VF ) = ϕ∗F ,

where M and ϕ are is defined in (4) and (6) respectively, and p1 and p2 are the projections
in (5).

Proof. The proof of the proposition is identical to the proof of Theorem 2.2 in [5, p. 156].
We note that the key input is the result in [7, p. 127] which says that Rip1∗M = 0 for
i 6= g, and Rgp1∗M = C is supported at the point e0 = OX with stalk Hg(J(X) ×
J(X), M) ∼= C. (see also [7, p. 129, Corollary 1]). �

Let c := c1(VF ) ∈ H2(J(X), Z). Note that since Mξ(r) is connected, for all i ≥ 0,
the Chern class ci(VF ) ∈ H2i(J(X), Z) is independent of the choice of F ∈ Mξ(r). We
have a morphism

α : Mξ(r) −→ Picc(J(X))

defined by E 7−→
∧δ VE (see Lemma 2.1). Since Mξ(r) is a Zariski open subset of a

unirational variety (the moduli space of semistable vector bundles over X of rank r and
determinant ξ is unirational), the morphism α constructed above must be a constant one.
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Let M(J(X)) denote the moduli space of stable vector bundles W over J(X) with
rank(W) = δ := degree(ξ)− r(g − 1),

∧topW = image(α), and ci(W) = ci(VF ) for all
i ≥ 2.

Corollary 2.3. We have a morphism

(7) β : Mξ(r) −→ M(J(X))

defined by F 7−→ VF . This morphism β is an embedding.

Proof. The map β is well defined by Lemma 2.1. That β is an embedding follows imme-
diately from Proposition 2.2, because we have a morphism

γ : β(Mξ(r)) −→ Mξ(r)

defined by W 7−→ ϕ∗Rgp1∗(M
∗⊗ p∗2W ) such that γ ◦β is the identity map of Mξ(r). �

3. The case of g = 2

Henceforth, we will assume that g = 2. If degree(ξ) is even, then we will also assume
that r > 2.

Lemma 3.1. Take any F ∈ Mξ(r). Then the image of C1(VF )2 − 2 · C2(VF ) ∈
CH2(J(X)) in the Deligne–Beilinson cohomology H4

D(J(X), Z(2)) (see [3, p. 85, Corollary
7.7]) is independent of F . More precisely, it vanishes.

Proof. Since H4
D(J(X), Z(2)) is an extension of a discrete group by a complex torus [3,

p. 86, (7.9)], and Mξ(r) is connected and unirational, there is no nonconstant morphism
from Mξ(r) to H4

D(J(X), Z(2)). In particular, the image of C1(VF )2 − 2 · C2(VF ) in
H4
D(J(X), Z(2)) is independent of the choice of F ∈ Mξ(r).

From [8, § 4] (reproduced in [5, p. 164, Theorem 4.3(2)]) we know that C1(VF ) =
r · λ∗x0

Θ, where Θ ∈ Pic1(X) is the theta divisor, and λx0 : Pic0(X) −→ Pic0(X) is
defined by ζ 7−→ ζ⊗OX(x0). Similarly, C2(VF ) = r2 · e0, where e0 = OX is the identity
element. On the other hand, the image of Θ2 − 2e0 in H4

D(J(X), Z(2)) vanishes (see the
proof of Theorem 1.3 in [1, p. 212]). �

Consider the moduli space M(J(X)) in (7). Let

(8) M0(J(X)) ⊂ M(J(X))

be the subvariety defined by the locus of all E such that image of

C1(E)2 − 2 · C2(E) ∈ CH2(J(X))

in H4
D(J(X), Z(2)) vanishes. From Lemma 3.1 we know that the image of the map β in

Corollary 2.3 lies in M0(J(X)).

Since J(X) is an abelian surface, the moduli space M0(J(X)) in (8) is smooth, and it
has a canonical symplectic structure [6, p. 102, Corollary 0.2].

Theorem 3.2. The image of the embedding β in Corollary 2.3 is a Lagrangian subvariety
of the symplectic variety M0(J(X)).
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Proof. We note that Mξ(r) is the smooth locus of the moduli space of semistable vector
bundles over X of rank r and determinant ξ. In particular, Mξ(r) is the smooth locus
of a normal unirational variety. Therefore, Mξ(r) does not admit any nonzero algebraic
two–forms. Consequently, the pull back to Mξ(r) of the symplectic form on M0(J(X))
vanishes identically. Therefore, to prove the theorem it suffices to show that

(9) dimM0(J(X)) = 2 · dimMξ(r) = 2(r2 − 1) .

Let θ ∈ H2(J(X), Z) denote the canonical polarization. In the proof of Lemma
3.1 we noted that c1(VF ) = r · θ, and ch2(VF ) = c1(VF )2/2 − c2(VF ) = 0. Hence
ch2(End(VF ))([J(X)]) = −r2. Therefore, using Hirzebruch–Riemann–Roch,

dim H1(J(X), End(VF )) = r2 + 2 .

Since dimM0(J(X)) = dimM(J(X)) − 2 = dim H1(J(X), End(VF )) − 4, we now
conclude that (9) holds. This completes the proof of the theorem. �
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