ON THE PICARD BUNDLE

INDRANIL BISWAS AND G. V. RAVINDRA

ABSTRACT. Fix a holomorphic line bundle ξ over a compact connected Riemann surface X of genus g, with $g \geq 2$, and also fix an integer r such that $\deg(\xi) > r(2g-1)$. Let $\mathcal{M}_{\xi}(r)$ denote the moduli space of stable vector bundles over X of rank r and determinant ξ . The Fourier–Mukai transform, with respect to a Poincaré line bundle on $X \times J(X)$, of any $F \in \mathcal{M}_{\xi}(r)$ is a stable vector bundle on J(X). This gives an embedding of $\mathcal{M}_{\xi}(r)$ in a moduli space associated to J(X). If g = 2, then $\mathcal{M}_{\xi}(r)$ becomes a Lagrangian subvariety.

Résumé

Sur le fibré de Picard. Soient ξ un fibré en droites holomorphe sur une surface de Riemann compacte connexe X de genre $g \geq 2$, et r un entier tel que degré $(\xi) > r(2g-1)$. Notons $\mathcal{M}_{\xi}(r)$ l'espace de modules des fibrés vectoriels stables sur X, de rang r et de déterminant ξ . Ayant choisi un fibré de Poincaré sur $X \times J(X)$, la transformée de Fourier–Mukai associée fait correspondre à un fibré $F \in \mathcal{M}_{\xi}(r)$ un fibré vectoriel stable sur J(X). Ceci fournit un plongement de $\mathcal{M}_{\xi}(r)$ dans un espace de modules associé à J(X). Lorsque g = 2, $\mathcal{M}_{\xi}(r)$ s'identifie ainsi à une sous-variété lagrangienne de cet espace de modules.

1. Introduction

Let (X, x_0) be a one-pointed compact connected Riemann surface of genus g, with $g \geq 2$. Let \mathcal{L} be the Poincaré line bundle on $X \times J(X)$ constructed using x_0 , where J(X) is the Jacobian of X. Fix an integer $r \geq 2$ and a holomorphic line bundle ξ over X with degree(ξ) > r(2g-1). Let $\mathcal{M}_{\xi}(r)$ denote the moduli space of stable vector bundles over X of rank r and determinant ξ .

In Lemma 2.1 we show that for any $F \in \mathcal{M}_{\xi}(r)$,

$$\mathcal{V}_F := \phi_{J*}(\mathcal{L} \otimes \phi_Y^* F)$$

is a stable vector bundle with respect to the canonical polarization on J(X), where ϕ_J (respectively, ϕ_X) is the projection of $X \times J(X)$ to J(X) (respectively, X).

Rational characteristic classes of \mathcal{V}_F , as well as the line bundle $\bigwedge^{\text{top}} \mathcal{V}_F$, are independent of F. Let $\mathcal{M}(J(X))$ be the moduli space of stable vector bundles W over J(X) with $\text{rank}(W) = \text{rank}(\mathcal{V}_F)$, $c_i(W) = c_i(\mathcal{V}_F)$ and $\bigwedge^{\text{top}} W = \bigwedge^{\text{top}} \mathcal{V}_F$. The map $\mathcal{M}_{\xi}(r) \longrightarrow \mathcal{M}(J(X))$ defined by $F \longmapsto \mathcal{V}_F$ is an embedding (see Corollary 2.3).

We next assume that g=2, and if degree(ξ) is even, then also assume that $r\geq 3$. Let $\mathcal{M}^0(J(X))\subset \mathcal{M}(J(X))$ be the locus of all W for which the image of $C_1(W)^2-2\cdot C_2(W)\in \mathrm{CH}^2(J(X))$ in the Deligne–Beilinson cohomology vanishes.

Notation: The *i*-th Chern class with values in the Chow group will be denoted by C_i .

We show that the image of $\mathcal{M}_{\xi}(r)$ lies in $\mathcal{M}^{0}(J(X))$, and $\mathcal{M}_{\xi}(r)$ is a Lagrangian subvariety of the symplectic variety $\mathcal{M}^{0}(J(X))$.

2. Fourier-Mukai transform of a stable vector bundle

Let X be a compact connected Riemann surface of genus g, with $g \geq 2$. Fix once and for all a point $x_0 \in X$.

Let $J(X) := \operatorname{Pic}^{0}(X)$ be the Jacobian of X. There is a canonical principal polarization on J(X) given by the cup product of $H^{1}(X, \mathbb{Z})$. All stable vector bundles over J(X) considered here will be with respect to this polarization.

Let \mathcal{L} be a holomorphic line bundle over $X \times J(X)$ such that

- for each point $\xi \in J(X)$, the restriction of \mathcal{L} to $X \times \{\xi\}$ is in the isomorphism class of holomorphic line bundles represented by ξ , and
- the restriction of \mathcal{L} to $\{x_0\} \times J(X)$ is a holomorphically trivial line bundle over J(X).

Such a line bundle \mathcal{L} exists [1, p. 166–167]. Moreover, from the see–saw theorem (see [7, p. 54, Corollary 6]) it follows that \mathcal{L} is unique up to a holomorphic isomorphism. We will call \mathcal{L} the *Poincaré line bundle* for the pointed curve (X, x_0) .

Fix an integer $r \geq 2$. Fix a holomorphic line bundle ξ over X with

(1)
$$\operatorname{degree}(\xi) > r(2g-1).$$

Let $\mathcal{M}_{\xi}(r)$ denote the moduli space of stable vector bundles E over X with rank(E) = r and $\bigwedge^r E = \xi$.

Let ϕ_J (respectively, ϕ_X) denote the projection of $X \times J(X)$ to J(X) (respectively, X).

Lemma 2.1. For each vector bundle $F \in \mathcal{M}_{\xi}(r)$,

$$R^1 \phi_{J*}(\mathcal{L} \otimes \phi_X^* F) = 0,$$

where \mathcal{L} is the Poincaré line bundle. The direct image

$$\mathcal{V}_F := \phi_{J*}(\mathcal{L} \otimes \phi_X^* F)$$

is a stable vector bundle over J(X) of rank $\delta := \operatorname{degree}(\xi) - r(g-1)$.

Proof. For a stable vector bundle W over X of rank r and degree d > 2r(g-1), we have $H^0(X, W^* \otimes K_X) = 0$ because a stable vector bundle of negative degree does not admit any nonzero sections. Hence by Serre duality we have $H^1(X, W) = 0$. Therefore, using (1) it follows that $R^1\phi_{J*}(\mathcal{L} \otimes \phi_X^*F) = 0$.

Since $R^1\phi_{J*}(\mathcal{L}\otimes\phi_X^*F)=0$, we know that the direct image \mathcal{V}_F in the statement of the lemma is a vector bundle of rank degree(ξ) – r(g-1).

The stability of \mathcal{V}_F is derived from [2, p. 5, Theorem 1.2] as follows. Consider the embedding

$$f: X \longrightarrow J(X)$$

defined by $x \longmapsto \mathcal{O}_X(x_0 - x)$. Therefore,

(2)
$$(\mathrm{Id}_X \times f)^* \mathcal{L} = \mathcal{O}_{X \times X}((\{x_0\} \times X) - \Delta),$$

where $\Delta \subset X \times X$ is the diagonal divisor.

Set E in [2, Theorem 1.2] to be $F \otimes \mathcal{O}_X(x_0)$. Using (2) it follows that the vector bundle M_E in [2, Theorem 1.2] is identified with $f^*\mathcal{V}_F$. From [2, Theorem 1.2] we know

that $f^*\mathcal{V}_F$ is stable. Now using the openness of the stability condition (see [4, p. 635, Theorem 2.8(B)]) it follows that there is a Zariski open dense subset

$$(3) U \subset J(X)$$

such that for each $z \in U$, the pullback $f^*\tau_z^*\mathcal{V}_F$ is a stable vector bundle, where $\tau_z \in \operatorname{Aut}(J(X))$ is the translation defined by $y \longmapsto y + z$.

If $W \subset \mathcal{V}_F$ violates the stability condition of \mathcal{V}_F for the canonical polarization, then take a point $z_0 \in U$ (see (3)) such that $\tau_{z_0} \circ f$ intersects the Zariski open dense subset of J(X) over which W is locally free. Now it is straight-forward to check that

$$f^*\tau_{z_0}^*\mathcal{W} \subset f^*\tau_{z_0}^*\mathcal{V}_F$$

contradicts the stability condition of $f^*\tau_{z_0}^*\mathcal{V}_F$. Therefore, we conclude that \mathcal{V}_F is stable. This completes the proof of the lemma.

Fix a holomorphic line bundle L over J(X) such that $c_1(L)$ coincides with the canonical polarization on J(X). As in [7, p. 123], set

$$M := m^*L \otimes p_1^*L^* \otimes p_2^*L^*$$

on $J(X) \times J(X)$, where

$$(5) p_i: J(X) \times J(X) \longrightarrow J(X)$$

is the projection to the *i*-th factor, and m is the addition map on J(X); the dual abelian variety $J(X)^{\vee}$ is identified with J(X) using the Poincaré line bundle \mathcal{L} . Let

$$\varphi: X \longrightarrow J(X)$$

be the morphism defined by $x \longmapsto \mathcal{O}_X(x-x_0)$. Then

$$(\varphi \times \mathrm{Id}_{J(X)})^* M = \mathcal{L}.$$

Proposition 2.2. Consider the vector bundle \mathcal{V}_F is Lemma 2.1. For all $i \neq q$,

$$R^i p_{1*}(M^* \otimes p_2^* \mathcal{V}_F) = 0,$$

and

$$R^g p_{1*}(M^* \otimes p_2^* \mathcal{V}_F) = \varphi_* F,$$

where M and φ are is defined in (4) and (6) respectively, and p_1 and p_2 are the projections in (5).

Proof. The proof of the proposition is identical to the proof of Theorem 2.2 in [5, p. 156]. We note that the key input is the result in [7, p. 127] which says that $R^i p_{1*} M = 0$ for $i \neq g$, and $R^g p_{1*} M = \mathbb{C}$ is supported at the point $e_0 = \mathcal{O}_X$ with stalk $H^g(J(X) \times J(X), M) \cong \mathbb{C}$. (see also [7, p. 129, Corollary 1]).

Let $\underline{c} := c_1(\mathcal{V}_F) \in H^2(J(X), \mathbb{Z})$. Note that since $\mathcal{M}_{\xi}(r)$ is connected, for all $i \geq 0$, the Chern class $c_i(\mathcal{V}_F) \in H^{2i}(J(X), \mathbb{Z})$ is independent of the choice of $F \in \mathcal{M}_{\xi}(r)$. We have a morphism

$$\alpha: \mathcal{M}_{\xi}(r) \longrightarrow \operatorname{Pic}^{\underline{c}}(J(X))$$

defined by $E \mapsto \bigwedge^{\delta} \mathcal{V}_E$ (see Lemma 2.1). Since $\mathcal{M}_{\xi}(r)$ is a Zariski open subset of a unirational variety (the moduli space of semistable vector bundles over X of rank r and determinant ξ is unirational), the morphism α constructed above must be a constant one.

Let $\mathcal{M}(J(X))$ denote the moduli space of stable vector bundles \mathcal{W} over J(X) with $\operatorname{rank}(\mathcal{W}) = \delta := \operatorname{degree}(\xi) - r(g-1)$, $\bigwedge^{\operatorname{top}} \mathcal{W} = \operatorname{image}(\alpha)$, and $c_i(\mathcal{W}) = c_i(\mathcal{V}_F)$ for all $i \geq 2$.

Corollary 2.3. We have a morphism

(7)
$$\beta: \mathcal{M}_{\varepsilon}(r) \longrightarrow \mathcal{M}(J(X))$$

defined by $F \longmapsto \mathcal{V}_F$. This morphism β is an embedding.

Proof. The map β is well defined by Lemma 2.1. That β is an embedding follows immediately from Proposition 2.2, because we have a morphism

$$\gamma: \beta(\mathcal{M}_{\xi}(r)) \longrightarrow \mathcal{M}_{\xi}(r)$$

defined by $W \longmapsto \varphi^* R^g p_{1*}(M^* \otimes p_2^* W)$ such that $\gamma \circ \beta$ is the identity map of $\mathcal{M}_{\xi}(r)$. \square

3. The case of
$$g=2$$

Henceforth, we will assume that g=2. If degree(ξ) is even, then we will also assume that r>2.

Lemma 3.1. Take any $F \in \mathcal{M}_{\xi}(r)$. Then the image of $C_1(\mathcal{V}_F)^2 - 2 \cdot C_2(\mathcal{V}_F) \in \mathrm{CH}^2(J(X))$ in the Deligne–Beilinson cohomology $\mathrm{H}^4_{\mathcal{D}}(J(X), \mathbb{Z}(2))$ (see [3, p. 85, Corollary 7.7]) is independent of F. More precisely, it vanishes.

Proof. Since $H^4_{\mathcal{D}}(J(X), \mathbb{Z}(2))$ is an extension of a discrete group by a complex torus [3, p. 86, (7.9)], and $\mathcal{M}_{\xi}(r)$ is connected and unirational, there is no nonconstant morphism from $\mathcal{M}_{\xi}(r)$ to $H^4_{\mathcal{D}}(J(X), \mathbb{Z}(2))$. In particular, the image of $C_1(\mathcal{V}_F)^2 - 2 \cdot C_2(\mathcal{V}_F)$ in $H^4_{\mathcal{D}}(J(X), \mathbb{Z}(2))$ is independent of the choice of $F \in \mathcal{M}_{\xi}(r)$.

From [8, § 4] (reproduced in [5, p. 164, Theorem 4.3(2)]) we know that $C_1(\mathcal{V}_F) = r \cdot \lambda_{x_0}^* \Theta$, where $\Theta \in \operatorname{Pic}^1(X)$ is the theta divisor, and $\lambda_{x_0} : \operatorname{Pic}^0(X) \longrightarrow \operatorname{Pic}^0(X)$ is defined by $\zeta \longmapsto \zeta \otimes \mathcal{O}_X(x_0)$. Similarly, $C_2(\mathcal{V}_F) = r^2 \cdot e_0$, where $e_0 = \mathcal{O}_X$ is the identity element. On the other hand, the image of $\Theta^2 - 2e_0$ in $H^4_{\mathcal{D}}(J(X), \mathbb{Z}(2))$ vanishes (see the proof of Theorem 1.3 in [1, p. 212]).

Consider the moduli space $\mathcal{M}(J(X))$ in (7). Let

(8)
$$\mathcal{M}^0(J(X)) \subset \mathcal{M}(J(X))$$

be the subvariety defined by the locus of all E such that image of

$$C_1(E)^2 - 2 \cdot C_2(E) \in \mathrm{CH}^2(J(X))$$

in $H^4_{\mathcal{D}}(J(X), \mathbb{Z}(2))$ vanishes. From Lemma 3.1 we know that the image of the map β in Corollary 2.3 lies in $\mathcal{M}^0(J(X))$.

Since J(X) is an abelian surface, the moduli space $\mathcal{M}^0(J(X))$ in (8) is smooth, and it has a canonical symplectic structure [6, p. 102, Corollary 0.2].

Theorem 3.2. The image of the embedding β in Corollary 2.3 is a Lagrangian subvariety of the symplectic variety $\mathcal{M}^0(J(X))$.

Proof. We note that $\mathcal{M}_{\xi}(r)$ is the smooth locus of the moduli space of semistable vector bundles over X of rank r and determinant ξ . In particular, $\mathcal{M}_{\xi}(r)$ is the smooth locus of a normal unirational variety. Therefore, $\mathcal{M}_{\xi}(r)$ does not admit any nonzero algebraic two–forms. Consequently, the pull back to $\mathcal{M}_{\xi}(r)$ of the symplectic form on $\mathcal{M}^{0}(J(X))$ vanishes identically. Therefore, to prove the theorem it suffices to show that

(9)
$$\dim \mathcal{M}^0(J(X)) = 2 \cdot \dim \mathcal{M}_{\varepsilon}(r) = 2(r^2 - 1).$$

Let $\theta \in H^2(J(X), \mathbb{Z})$ denote the canonical polarization. In the proof of Lemma 3.1 we noted that $c_1(\mathcal{V}_F) = r \cdot \theta$, and $ch_2(\mathcal{V}_F) = c_1(\mathcal{V}_F)^2/2 - c_2(\mathcal{V}_F) = 0$. Hence $ch_2(\mathcal{E}nd(\mathcal{V}_F))([J(X)]) = -r^2$. Therefore, using Hirzebruch–Riemann–Roch,

$$\dim H^1(J(X), \operatorname{End}(\mathcal{V}_F)) = r^2 + 2.$$

Since dim $\mathcal{M}^0(J(X)) = \dim \mathcal{M}(J(X)) - 2 = \dim H^1(J(X), \mathcal{E}nd(\mathcal{V}_F)) - 4$, we now conclude that (9) holds. This completes the proof of the theorem.

References

- [1] E. Arbarello, M. Cornalba, P.A. Griffiths, J. Harris, Geometry of algebraic curves, Volume I, Grundlehren der Mathematischen Wissenschaften, 267, Springer-Verlag, New York, 1985.
- [2] D.C. Butler, Normal generation of vector bundles over a curve, Jour. Diff. Geom. 39 (1994) 1–34.
- [3] H. Esnault, E. Viehwag, Deligne–Beilinson cohomology, in: Beilinson's conjectures on special values of *L*-functions, 43–91, Perspectives in Math., 4, Academic Press, Boston, MA, 1988.
- [4] M. Maruyama, Openness of a family of torsion free sheaves, Jour. Math. Kyoto Univ. 16 (1976) 627–637.
- [5] S. Mukai, Duality between D(X) and $D(\widehat{X})$ with its application to Picard sheaves, Nagoya Math. Jour. 81 (1981) 153–175.
- [6] S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math. 77 (1984) 101–116.
- [7] D. Mumford, Abelian Varieties, Oxford University Press, London, 1970.
- [8] R.L.E. Schwarzenberger, Jacobians and symmetric products, Ill. Jour. Math. 7 (1963) 257–268.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: indranil@math.tifr.res.in

Mathematics Department, Indian Institute of Science, Bangalore 560 012, India

E-mail address: ravindra@math.iisc.ernet.in