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Abstract. We prove that for a generic hypersurface in P2n+1 of degree
at least 2 + 2/n, the n-th Picard number is one. The proof is algebraic
in nature and follows from certain coherent cohomology vanishing.

1. Introduction

Let X be a smooth projective variety and CHm(X) denote the Chow
group of codimension m cycles modulo rational equivalence. There is a
cycle class map CHm(X) → Hm,m(X, Z) := H2m(X, Z) ∩ Hm(X, Ωm

X). The
image of this map is called the m-th Picard group and the rank of this group
is called the m-th Picard number and is denoted by Pm(X).

The main result in this paper is the following.

Theorem 1 (Noether-Lefschetz theorem). Let X ⊂ P2n+1 be a generic
smooth hypersurface of degree d at least 2 + 2/n. Then the n-th Picard
number of X, Pn(X) = 1

This theorem appears as Theorem (13.22) in [5] with the hypothesis
Hn,n(X) 6= H2n(X, C) when X is a complete intersection. In case X is a
hypersurface, this is equivalent to the hypothesis in the above theorem(see
13.23 op. cit.). Our methods can easily be extended to complete intersec-
tions, but we restrict our attention to hypersurfaces to keep the presentation
as simple as possible.

It is easy to see that the theorem above follows from the Noether-Lefschetz
theorem for Hodge classes (see [2]) which states that under the hypothesis
of the theorem above Hn,n(X, Q) ∼= Q. Proofs of this stronger version of
the Noether-Lefschetz theorem found in op. cit. as well as elsewhere in
the literature, use the formalism of Lefschetz pencils and the action of the
monodromy group on certain Hodge/coniveau filtrations. Our proof of the
weaker Noether-Lefschetz theorem is purely algebraic and follows from the
vanishing of cohomologies of certain coherent sheaves/vector bundles and is
closer in spirit to Grothendieck’s proof of the Grothendieck-Lefschetz theo-
rem.

The outline of the proof is as follows: In the style of [1], we first prove
an infinitesimal Noether-Lefschetz theorem (section 3.1). This is established
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using purely coherent cohomology vanishing. We then show that this implies
that the geometric generic fibre of the universal family of hypersurfaces has
middle Picard number one and then use this to prove the global Noether-
Lefschetz theorem.

The above theorem is sharp; for n ≥ 1, any even dimensional quadric
hypersurface has two generators (given by the classes of the linear subspaces
of maximal dimension) in CHn(X) which are not homologically equivalent.
Moreover when n = 1, one can recover the “classical” Noether-Lefschetz
theorem for surfaces (Pic(X) ∼= Z when X is generic of degree at least
4). This has been done by N.Mohan Kumar and V.Srinivas in [6] and the
method of proof presented here is due to them.

1.1. Conventions. We work over the field of complex numbers though our
results are valid over any algebraically closed field of characteristic zero. By
a generic point of a variety, we mean a point outside a countable union of
proper closed subvarieties and by a general point of a variety, we shall mean
a point in a Zariski open set.

2. Cohomology computations

2.1. Preliminaries. The computations in this section first appeared in [7],
but we include them here for the sake of completeness.

Let k be a field of characteristic zero, P := Pm+1
k and W = H0(P,OP(d)).

Let S := P(W ∗) denote the parameter space of all degree d hypersurfaces in
P. One has a short exact sequence

0→ V → H0(P,OP(d))⊗OP → OP(d)→ 0

where V is the kernel of the evaluation map W ⊗ OP → OP(d). It is not
hard to see that X := P(V∗) → S is the universal family of all degree d
hypersurfaces. Let X ⊂ P be a smooth degree d hypersurface corresponding
to a closed point s ∈ S. Let V := T ∗

S,s, the dual of the Zariski tangent space
at the point s ∈ S. If A := OS,s/m2

s = k ⊕ V ∗, we will denote by Xε, the
universal hypersurface over Spec A. It is easy to see that Ω1

A ⊗ k ∼= V ∗.
Let PA := P × Spec A and p : PA → P, q : PA → Spec A denote the

two projections. Consider the cotangent sheaf sequence for the inclusion
ιε : Xε ↪→ PA,

OXε(−d)→ Ω1
PA
⊗OXε = p∗Ω1

P ⊗OXε ⊕ q∗Ω1
A ⊗OXε → Ω1

Xε
→ 0.

On restricting this sequence to X, we have

0→ OX(−d)
(α,β)−−−→ Ω1

P ⊗OX ⊕ V ∗ ⊗OX
(γ,δ)−−−→ Ω1

Xε
⊗OX → 0(1)

Let F denote the polynomial defining Xε ⊂ PA. On taking cohomology
of the sequence 0 → OP → OP(d) → OX(d) → 0, we get 0 → k → W →
V → 0. Choose a splitting θ : V → W , so that θ ∈ W ⊗ V ∗. Since
W ⊗ A = W ⊕W ⊗ V ∗, we have F = (f, θ) ∈ W ⊗ A = H0(PA,OPA

(d))
where f is the polynomial defining X. The map dF is then given by (α̃, β̃). It
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is easy to see that α̃|X = α = df . By local computations, we can verify that
β̃|X = β : OX(−d) → V ∗ ⊗ OX is dual to the evaluation map. Notice that
the injectivity of δ follows from the injectivity of α. We can also identify
δ with the natural map obtained as follows. We have an exact sequence
q∗Ω1

A → Ω1
Xε
→ Ω1

Xε/A
→ 0, which is the relative cotangent sheaf sequence

of the family q : Xε → Spec A. On restricting this sequence to X, we get

(2) 0→ Ω1
A ⊗OX

δ−→ Ω1
Xε
⊗OX → Ω1

Xε/A
⊗OX = Ω1

X → 0 .

The exactness of sequence (1) implies that γα = −δβ and as a conse-
quence, we have the following

Lemma 1 (Mohan Kumar-Srinivas, [6]). There is a commutative diagram:

0 → OX(−d) α−→ Ω1
P ⊗OX → Ω1

X → 0
↓ −β ↓ γ ||

0 → V ∗ ⊗OX
δ−→ Ω1

Xε
⊗OX → Ω1

X → 0

where the two rows come from the inclusions X ⊂ P and X ⊂ Xε and the
map β is the natural map.

Taking the `-th exterior power, we get a commutative diagram

(3)
0 → Ω`−1

X (−d) → Ω`
P ⊗OX → Ω`

X → 0
↓ ↓ ||

0 → Ω(`) → Ω`
Xε
⊗OX → Ω`

X → 0

where Ω(`) (see [4], 5.16 (d), page 126) comes equipped with a decreasing
filtration F∗ Ω(`) satisfying the properties F1(Ω(`)) = Ω(`), F`+1(Ω(`)) = 0
and grj

F Ω(`) := Fj(Ω(`))/ Fj+1(Ω(`)) = ΛjV ∗ ⊗ Ω`−j
X for j ≥ 1.

Lemma 2. For a smooth hypersurface X ⊂ P2n+1, Hn(X, Ω(n)) = 0.

Proof. The proof follows by analysing the sequences

(4) 0→ Fj+1(Ω(n))→ Fj(Ω(n))→ grj
F Ω = ΛjV ∗ ⊗ Ωn−j

X → 0

For j ≥ 1, Hn(X, Ωn−j
X ) = 0. Thus on taking cohomology, we have a

surjection

Hn(X, Fj+1(Ω(n))) � Hn(X, Fj(Ω(n))) ∀ j ≥ 1

Since Hn(X, Fn Ω(n)) = Hn(X, ΛnV ∗ ⊗OX) = 0, we are done. �

Lemma 3. Let X ⊂ P2n+1 be a smooth hypersurface. Then there are iso-
morphisms

Hn+1(X, Ωn−1
X (−d)) ∼= H2n(X,OX(−nd))

Hn+1(X, Ωn−1
X ) ∼= H2n(X,OX((−n + 1)d)
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Proof. We consider the exterior powers of the cotangent bundle sequence for
the inclusion X ⊂ P

0→ Ω`−1
X (−d)→ Ω`

P ⊗OX → Ω`
X → 0

together with the sequences

0→ Ω`
P(−d)→ Ω`

P → Ω`
P ⊗OX → 0

Using the fact that Hi(P,Ωj
P(∗)) = 0 for i 6= j, we get isomorphisms

Hn+`(X, Ωn−`
X (−t)) ∼= Hn+`+1(X, Ωn−`−1

X (−t + d)) ∀ 1 ≤ ` < n

This finishes the proof. �

Lemma 4. Let X ⊂ P2n+1 be a smooth hypersurface. Then the map φ :
Hn+1(X, Ωn−1

X (−d))→ V ∗ ⊗Hn+1(X, Ωn−1
X ) is injective for d ≥ 2 + 2

n .

Proof. The map φ is induced by the composite map of sheaves Ωn−1
X ⊗

OX(−d) = Ωn−1
X (−d) → Ω(n) → Ωn−1

X ⊗ V ∗ in diagram (3) with ` = n.
This map is clearly 1⊗−β. Using the identifications in the previous lemma,
we can identify the map φ with the dual of the cup product map

H2n(X,OX(−nd))→ V ∗ ⊗H2n(X,OX(−(n− 1)d)

The lemma now follows by noting that the cup product map

V ⊗H0(OX(nd− 2n− 2))→ H0(OX(nd + d− 2n− 2))

is surjective as soon as H0(OX(nd − 2n − 2)) 6= 0 which happens for all
d ≥ 2 + 2

n . �

Proposition 1. Let X ⊂ P2n+1 be a smooth hypersurface. If d ≥ 2 + 2
n ,

Hn(X, Ωn
P ⊗OX) ∼= Hn(X, Ωn

Xε
⊗OX)

Proof. Consider the cohomology diagram associated to (3) when ` = n.

(5)
Hn(X, Ωn−1

X (−d)) → Hn(X, Ωn
P|X) → Hn(X, Ωn

X) → Hn+1(X, Ωn−1
X (−d))

↓ ↓ || ↓
Hn(X, Ω(n)) → Hn(X, Ωn

Xε
|X) → Hn(X, Ωn

X) → Hn+1(X, Ω(n))

By Lemma 2, we have Hn(X, Ω(n)) = 0. Furthermore, by Kodaira-
Akizuki-Nakano theorem (see [3], page 154) Hn(X, Ωn−1

X (−d)) = 0. This
implies that Hn(X, Ωn

P ⊗ OX) → Hn(X, Ωn
Xε
⊗ OX) is injective. To prove

surjectivity, it is enough to prove that the right most vertical arrow i.e. the
map Hn+1(X, Ωn−1

X (−d)) → Hn+1(X, Ω(n)) is injective. By Lemma 4, the
composite map φ

Hn+1(X, Ωn−1
X (−d))→ Hn+1(X, Ω(n))→ V ∗ ⊗Hn+1(X, Ωn−1

X )

is injective. Thus we are done. �
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3. The Noether-Lefschetz theorem

3.1. The infinitesimal Noether-Lefschetz theorem. Let X ⊂ P2n+1 be
a smooth general hypersurface of degree at least 2 + 2/n.

Lemma 5. There exists an exact sequence

0→ Hn(X, Ωn
Xε
|X)→ Hn(X, Ωn

X) κ−→ V ∗ ⊗Hn+1(X, Ωn−1
X ).

Proof. The bottom horizontal sequence in diagram (5) together with the
fact that Hn(X, Ω(n)) = 0, yields an exact sequence

0→ Hn(X, Ωn
Xε
|X)→ Hn(X, Ωn

X)→ Hn+1(X, Ω(n)).

From sequence (4), one can easily see that the map Hn+1(X, Ω(n))→ V ∗⊗
Hn+1(X, Ωn−1

X ) is injective. The map κ in the statement of the lemma is just
the composite map Hn(X, Ωn

X) → Hn+1(X, Ω(n)) → V ∗ ⊗ Hn+1(X, Ωn−1
X ).

�

Remark 1. It is standard that the map κ is the Kodaira-Spencer map. Thus
Hn(X, Ωn

Xε |X) can be identified with the subspace of cohomology classes of
type (n, n) in X which deform infinitesimally i.e. they remain of type (n, n)
under infinitesimal deformations.

Using the isomorphisms

H2n(P, C) ∼= Hn(P,Ωn
P) ∼= Hn(X, Ωn

P|X) ∼= Hn(X, Ωn
Xε
|X)

one sees that such a class actually lifts to a cohomology class in the ambient
projective space.

Lemma 6. Let Z be a homologically non-trivial cycle in X. If Z deforms
as an algebraic cycle infinitesimally, then Z is homologically equivalent to a
multiple of a codimension n linear section Hn

X where HX := H ∩X, H ⊂ P
is a hyperplane section.

Proof. Let η denote the cohomology class of Z in Hn(X, Ωn
X). Since Z

deforms infinitesimally, η ∈ Hn(X, Ωn
Xε
|X). From the discussion preceding

the statement of the lemma, it is clear that η lifts to a class in Hn(P,Ωn
P).

Furthermore, since η is the class of an algebraic cycle, this implies that η
lifts to a class in Hn(P,Ωn

P) ∩ H2n(P, Q). The latter is a one dimensional
Q-vector space generated by the class Hn. This finishes the proof. �

3.2. Global Noether-Lefschetz theorem. In this section, we shall con-
sider the universal family X → S defined over k = Q.

Proposition 2. For a smooth hypersurface X in P2n+1 of degree at least 3,
let Xη denote the geometric generic fibre. Then Pn(Xη) = 1.

Proof. Let h be the class of the hyperplane section of X and hn denote
the class of a codimension n linear section. Since X and h are algebraic,
they are defined by a bunch of polynomials. Let K be the field obtained by
adjoining the coefficients of all these polynomials to Q. Since the number of
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equations are finite, K is finitely generated over Q. Thus X, hn are defined
over a finitely generated field K/Q. Let K denote the algebraic closure of
K and K(η) denote the rational function field in h0(OP(d)) − 1 variables
over K (i.e., K(η) is the function field of S ×Q K over the field K)). Since
Q(η) ⊂ K(η), we have a map η := Spec K(η) → Spec Q(η). Composing
this map with the natural inclusion Spec Q(η) ↪→ S, defines a point η → S
which we will call the K-generic point of S. The corresponding K-geometric
generic point of S is η := Spec K(η).

Let Z ∈ CHn(Xη) be any cycle. Since K(η) is algebraically closed, the
inclusion Z ↪→ Xη is defined over a finite field extension of the function field
K(η). Let R be the ring obtained by “clearing denominators”. Then we see
that there exists an étale morphism U = Spec R→ S such that Z “spreads”
out to a codimension n cycle Z on XU . By shrinking U further, we may
assume that (i) the image of U in S is an open set which does not meet the
discriminant locus of the linear system H0(OP(d)) in S and (ii) Z is flat over
U . Now we restrict Z to the fibres of XU → U . Since the map U → S is
étale, we note that OU/mi

u
∼= OS/mi

s, where s is the image of u under the
map U → S. Thus by the infinitesimal Noether-Lefschetz theorem, we see
that the restriction of Z to the fibres over u ∈ U (which by definition lifts to
the first infinitesimal thickenings) is homologically equivalent to a constant
multiple, say m, of the class of a linear section in CHn(Xu). By shrinking U
further, we may assume that for π : XU → U , H2n(XU , Z) ∼= H0(U,R2n π∗Z)
(for instance if U is affine, then the higher cohomologies Hi(U,R2n−i π∗Z) =
0 for i > 0 and so the only contribution from the Leray spectral sequence is
from the zeroeth cohomology H0(U,R2n π∗Z)).

Let C := Z − mH where H is a hyperplane section of XU . Since the
restriction of C to each fibre is homologically trivial, this implies that the
global section defined by C is zero at every stalk. This implies that the class
of C is itself zero in H2n(XU , Z). From this we conclude that the cycle Z on
XU must be homologically equivalent to a multiple of the class of a linear
section and in particular this holds for the cycle Z in Xη as well. �

Lemma 7. Let X be a smooth k-variety, where k is an algebraically closed
field of characteristic zero. Assume that the image CHn(X)→ Hn(X, Ωn

X/k)
is generated by hn where h is the class of the hyperplane section. Let L be
any finitely generated field extension of k and let ZL ∈ CHn(XL). Then
cl(ZL) ∈ L[hn] ⊂ Hn(X, Ωn

XL/L)

Proof. Let V := Hn(X, Ωn
X/k) and let hn, ρ1, · · · , ρr be a basis for V as well

as VL := V ⊗kL. Since L is finitely generated over k we may assume that L =
k(x1, · · · , xp)(y) where the xi’s are algebraically independent over k and y is
algebraic over k(x1, · · · , xp). By clearing denominators of equations defining
ZL, we may assume that ZL is defined over the ring R := k[x1, · · · , xp](y).
So ZL is a cycle in X := X × Spec R. By localising at an element of
f ∈ k[x1, · · · , xp], we may assume that R := k[x1, · · · , xp]f (y) and that
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ZL ↪→ X is a relative n-cycle over S = Spec R and that X → S is a smooth
S-scheme. We have a commutative diagram

CHn(XL) ← CHn
rel(X/S) ← CHn(X)

↓ ↓ ↓
Hn(XL,Ωn

XL
) ← Hn(X ,Ωn

X/S) ← Hn(X, Ωn
X)

|| || ||
V ⊗k L ← V ⊗k R ← V

where the top vertical arrows are the cycle class maps, the leftmost left
arrows are the restriction maps and the rightmost left arrows are induced
by the projection X → X.

By construction, ZL is in CHn(XL) and CHn
rel(X/S). Hence cl(ZL) =

Image(clS(ZL)) = a1h
m +a2ρ2 + · · ·+arρr ∈ V ⊗k R, where a1, · · · , ar ∈ R.

Now for a general point p = Spec K ∈ S, given by a surjection R � k, let
Zp be the fibre over the point p. Then by functoriality of the cycle class
map, cl(Zp) = ā1h

m + ā2ρ2 + · · · + ārρr ∈ V where ā1, · · · , ār ∈ k. Here,
we use the fact that the composite X × p ↪→ X → X is the identity. By
assumption, cl(Zp) = thn for some t ∈ k. This implies, that for a general
point, āi = 0 for i ≥ 2 which in turn implies that ai = 0 for i ≥ 2. �

Finally we are in a position to prove theorem 1.

Proof of theorem 1. Let V be the subset of SC obtained by removing all the
divisors of SC, which are defined over K. Thus we have removed a countable
set of closed subvarieties. If p ∈ V is a closed point, the map Spec(C(p))→ S
factors through the inclusion of the geometric generic point η ↪→ S. Thus,
we have an inclusion of algebraically closed fields K(η) ↪→ C(p) ∼= C. If X
is the fibre over p ∈ SC, then X ∼= Xη ×K(η)

C. In this case, it follows from
the above Lemma (see also [8]) that Pn(X) = Pn(Xη) = 1. �
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de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II). Lecture Notes in Math-
ematics, Vol. 340. Springer-Verlag, Berlin-New York, 1973.



8 G. V. RAVINDRA

[3] Griffiths, Phillip; Harris, Joseph., Principles of algebraic geometry, Wiley Classics
Library. John Wiley and Sons, Inc., New York, 1994.

[4] Hartshorne, Robin, Algebraic geometry, Graduate Texts in Mathematics, No. 52.
Springer-Verlag, 1977.

[5] Lewis, James D., A survey of the Hodge conjecture, Second edition, CRM Monograph
Series, 10. American Mathematical Society, Providence, RI, 1999. xvi+368

[6] N. Mohan Kumar and V. Srinivas, The Noether-Lefschetz theorem, Preprint.
[7] N. Mohan Kumar, A. P. Rao and G. V. Ravindra, Generators for vector bundles on
generic hypersurfaces

[8] Terasoma, T., Complete intersections with middle Picard number 1 defined over Q,
Math. Z. 189 (1985), no. 2, 289–296.

Department of Mathematics, Washington University in St. Louis, St. Louis,
Missouri, 63130

E-mail address: ravindra@math.wustl.edu


