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Abstract. This paper shows that the general hypersurface of
degree ≥ 6 in projective four space cannot support an indecom-
posable rank two vector bundle which is Arithmetically Cohen-
Macaulay and four generated. Equivalently, the equation of the
hypersurface is not the Pfaffian of a four by four minimal skew-
symmetric matrix.

1. Introduction

In this note, we study indecomposable rank two bundles E on a
smooth hypersurface X in P4 which are Arithmetically Cohen-Macaulay.
The existence of such a bundle on X is equivalent to X being the Pfaf-
fian of a minimal skew-symmetric matrix of size 2k × 2k, with k ≥ 2.
The general hypersurface of degree ≤ 5 in P4 is known to be Pfaffian
([1], [2] [5]) and the general sextic in P4 is known to be not Pfaffian ([4]).
One should expect the result of [4] to extend to all general hypersur-
faces of degree ≥ 6. (Indeed the analogous statement for hypersurfaces
in P5 was established in [7].) However, in this note we offer a partial
result towards that conclusion. We show that the general hypersurface
in P4 of degree ≥ 6 is not the Pfaffian of a 4× 4 skew-symmetric ma-
trix. For a hypersurface of degree r to be the Pfaffian of a 2k × 2k
skew-symmetric matrix, we must have 2 ≤ k ≤ r. It is quite easy
to show by a dimension count that the general hypersurface of degree
r ≥ 6 in P4 is not the Pfaffian of a 2r × 2r skew-symmetric matrix of
linear forms. Thus, this note addresses the lower extreme of the range
for k.

2. Reductions

Let X be a smooth hypersurface on P4 of degree r ≥ 2. A rank two
vector bundle E on X will be called Arithmetically Cohen-Macaulay
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(or ACM) if ⊕k∈ZH i(X, E(k)) equals 0 for i = 1, 2. Since Pic(X) equals
Z, with generator OX(1), the first Chern class c1(E) can be treated as
an integer t. The bundle E has a minimal resolution over P4 of the
form

0 → L1
φ→ L0 → E → 0,

where L0, L1 are sums of line bundles. By using the isomorphism of
E and E∨(t), we obtain (see [2]) that L1

∼= L∨
0 (t − r) and the matrix

φ (of homogeneous polynomials) can be chosen as skew-symmetric. In
particular, F0 has even rank and the defining polynomial of X is the
Pfaffian of this matrix. The case where φ is two by two is just the case
where E is decomposable. The next case is where φ is a four by four
minimal matrix. These correspond to ACM bundles E with four global
sections (in possibly different degrees) which generate it.

Our goal is to show that the generic hypersurface of degree r ≥ 6 in
P4 does not support an indecomposable rank two ACM bundle which is
four generated, or equivalently, that such a hypersurface does not have
the Pfaffian of a four by four minimal matrix as its defining polynomial.

So fix a degree r ≥ 6. Let us assume that E is a rank two ACM
bundle which is four generated and which has been normalized so that
its first Chern class t equals 0 or −1. If L0 = ⊕4

i=1OP(ai) with a1 ≥
a2 ≥ a3 ≥ a4, the resolution for E is given by

⊕4
i=1OP(t− ai − r)

φ→ ⊕4
i=1OP(ai).

Write the matrix of φ as

φ =


0 A B C
−A 0 D E
−B −D 0 F
−C −E −F 0

 .

Since X is smooth with equation AF−BE+CD = 0, the homogeneous
entries A, B, C,D,E, F are all non-zero and have no common zero on
P4.

Lemma 2.1. For fixed r and t (normalized), there are only finitely
many possibilities for (a1, a2, a3, a4).

Proof. Let a, b, c, d, e, f denote the degrees of the poynomials A, B, C,D,
E, F . Since the Pfaffian of the matrix is AF − BE + CD, the de-
gree of each matrix entry is bounded between 1 and r − 1. a =
a1+a2+(r−t), b = a1+a3+(r−t) etc. Thus if i 6= j, 0 < ai+aj+r−t < r
while

∑
ai = −r +2t. From the inequality, regardless of the sign of a1,

the other three values a2, a3, a4 are < 0. But again using the inequality,
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their pairwise sums are > −r + t, hence there are only finitely many
choices for them. Lastly, a1 depends on the remaining quantities. �

It suffices therefore to fix r ≥ 6 , t = 0 or −1 and a four-tuple
(a1, a2, a3, a4) and show that there is no ACM bundle on the general
hypersurface of degree r which has a resolution given by a matrix φ of
the type (a1, a2, a3, a4), t.

From the inequalities on ai, we obtain the inequalities

0 < a ≤ b ≤ c, d ≤ e ≤ f < r.

We do no harm by rewriting the matrix φ with the letters C and D
interchanged to assume without loss of generality that c ≤ d.

Proposition 2.2. Let X be a smooth hypersurface of degree ≥ 3 in
P4 supporting an ACM bundle E of type (a1 ≥ a2 ≥ a3 ≥ a4), t. The
degrees of the entries of φ can be arranged (without loss of generality)
as:

a ≤ b ≤ c ≤ d ≤ e ≤ f

Then X will contain a curve Y which is the complete intersection of hy-
persurfaces of the three lowest degrees in the arrangement and a curve
Z which is the complete intersection of hypersurfaces of the three high-
est degrees in the arrangement.

Proof. Consider the ideals (A, B, C) and D, E, F ). Since the equation
of X is AF − BE + CD, these ideals give subschemes of X. Take for
example (A, B, C). If the variety Y it defines has a surface component,
this gives a divisor on X. As Pic(X)= Z, there is a hypersurface S = 0
in P4 inducing this divisor. Now at a point in P4 where S = D = E =
F = 0, all six polynomials A, . . . , F vanish, making a multiple point for
X. Hence, X being smooth, Y must be a curve on X. Thus (A, B, C)
defines a complete intersection curve on X. �

To make our notations non-vacuous, we will assume that at least
one smooth hypersurface exists of a fixed degree r ≥ 6 with an ACM
bundle of type (a1 ≥ a2 ≥ a3 ≥ a4), t. Let F(a,b,c);r denote the Hilbert
flag scheme that parametrizes all inclusions Y ⊂ X ⊂ P4 where X is a
hypersurface of degree r and Y is a complete intersection curve lying
on X which is cut out by three hypersurfaces of degrees a, b, c. Our
discussion above produces points in F(a,b,c);r and F(d,e,f);r.

LetHr denote the Hilbert scheme of all hypersurfaces in P4 of degree
r and let Ha,b,c denote the Hilbert scheme of all curves in P4 with the
same Hilbert polynomial as the complete intersection of three hyper-
surfaces of degrees a, b and c. Following J. Kleppe ([6]), the Zariski
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tangent spaces of these three schemes are related as follows: Corre-
sponding to the projections

F(a,b,c);r
p2→ Ha,b,c

↓ p1

Hr

if T is the tangent space at the point Y
i
⊂ X ⊂ P4 of F(a,b,c);r, there is

a Cartesian diagram

T
p2→ H0(Y,NY/P)

↓ p1 ↓ α

H0(X,NX/P)
β→ H0(Y, i∗NX/P)

of vector spaces.
Hence p1 : T → H0(X,NX/P) is onto if and only if α : H0(Y,NY/P) →

H0(Y, i∗NX/P) is onto. The map α is easy to describe. It is the map
given as

H0(Y,OY (a)⊕OY (b)⊕OY (c))
[F,−E,D]−→ H0(Y,OY (r)).

Hence

Proposition 2.3. Choose general forms A, B, C,D, E, F of degrees
a, b, c, d, e, f and let Y be the curve defined by A = B = C = 0. If the
map

H0(Y,OY (a)⊕OY (b)⊕OY (c))
[F,−E,D]−→ H0(Y,OY (r))

is not onto, then the general hypersurface of degree r does not support
a rank two ACM bundle of type (a1, a2, a3, a4), t.

Proof. Consider a general Pfaffian hypersurface X of equation AF −
BE + CD = 0 where A, B, C,D,E, F are chosen generally. Such an
X contains such a Y and X is in the image of p1. By our hypothesis,
p1 : T → H0(X,NY/P) is not onto and (in characteristic zero) it follows
that p1 : F(a,b,c);r → Hr is not dominant. Since all hypersurfaces X
supporting such a rank two ACM bundle are in the image of p1, we are
done. �

Remark 2.4. Note that the last proposition can also be applied to the
situation where Y is replaced by the curve Z given by D = E = F = 0,
with the map given by [A,−B, C], with a similar statement.
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3. Calculations

We are given general forms A, B, C,D, E, F of degrees a, b, c, d, e, f
where a + f = b + e = c + d = r and where without loss of generality,
by interchanging C and D we may assume that 1 ≤ a ≤ b ≤ c ≤ d ≤
e ≤ f < r. Assume that r ≥ 6. We will show that if Y is the curve
A = B = C = 0 or if Z is the curve D = E = F = 0,depending on

the conditions on a, b, c, d, e, f , either h0(NY/P)
[F,−E,D]−→ h0(OY (r)) or

h0(NZ/P)
[A,−B,C]−→ h0(OZ(r)) is not onto. This will prove the desired

result.

3.1. Case 1. b ≥ 3, c ≥ a + 1, 2a + b < r − 2.
In P5 (or in 6 variables) consider the homogeneous complete intersec-
tion ideal

I = (Xa
0 , Xb

1, X
c
2, X

r−c
3 , Xr−b

4 , Xr−a
5 −Xc−a−1

2 Xr−c−a−1
3 Xa+2

4 )

in the the polynomial ring S5 on X0, . . . , X5. Viewed as a module over
S4 (the polynomial ring on X0, . . . , X4), M = S5/I decomposes as a
direct sum

M = N(0)⊕N(1)X5 ⊕N(2)X2
5 ⊕ · · · ⊕N(r − a− 1)Xr−a−1

5 ,

where the N(i) are graded S4 modules. Consider the multiplication
map X5 : Mr−1 → Mr from the (r − 1)-st to the r-th graded pieces of
M . We claim it is injective and not surjective.

Indeed, any element m in the kernel is of the form nXr−a−1
5 where n

is a homogeneous element in N(r− a− 1) of degree a. Since X5 ·m =
n·Xr−a

5 ≡ n·Xc−a−1
2 Xr−c−a−1

3 Xa+2
4 ≡ 0 mod (Xa

0 , Xb
1, X

c
2, X

r−c
3 , Xr−b

4 )
we may assume that n itself is represented by a monomial in X0, . . . , X4

of degree a. Our inequalities have been chosen so that even in the case
where n is represented by Xa

4 , the exponents of X4 in the product is
a + a + 2 which is less than r − b. Thus n and hence the kernel must
be 0.

On the other hand, the element Xa−1
0 X2

1X
c−a−1
2 Xr−c−a−1

3 Xa+1
4 in Mr

lies in its first summand N(0)r. In order to be in the image of multipli-
cation by X5, this element must be a multiple of Xc−a−1

2 Xr−c−a−1
3 Xa+2

4 .
By inspecting the factor in X4, this is clearly not the case. So the mul-
tiplication map is not surjective.

Hence dim Mr−1 < dim Mr. Now the Hilbert function of a complete
intersection ideal like I depends only on the degrees of the generators.
Hence, for any complete intersection ideal I ′ in S5 with generators of
the same degrees, for the corresponding module M ′ = S5/I

′, dim M ′
r−1

< dim M ′
r.
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Now coming back to our general six forms A, B, C,D,E, F in S4,
of the same degrees as the generators of the ideal I above. Since they
include a regular sequence on P4, we can lift these polynomials to forms
A′, B′, C ′, D′, E ′, F ′ in S5 which give a complete intersection ideal I ′ in
S5.

The module M̄ = S4/(A, B, C,D, E, F ) is the cokernel of the map

X5 : M ′(−1) → M ′.

By our argument above, we conclude that M̄r 6= 0.

Lastly, the map H0(OY (a)⊕OY (b)⊕OY (c))
[F,−E,D]→ H0(OY (r)) has

cokernel precisely M̄r which is not zero, and hence the map is not onto.

3.2. Case 2. b ≤ 2
Since the forms are general, the curve Y given by A = B = C = 0 is
a smooth complete intersection curve, with ωY

∼= OY (a + b + c − 5).
Since a + b ≤ 4, OY (c) is nonspecial

(1) SupposeOY (a) is nonspecial. Then all three ofOY (a),OY (b),OY (c)
are nonspecial. Hence h0(NY/P) = (a + b + c)δ + 3(1 − g)
where δ = abc is the degree of Y and g is the genus. Also
h0(OY (r)) = rδ +1− g +h1(OY (r)) ≥ rδ +1− g. To show that
h0(NY/P) < h0(OY (r)), it is enough to show that

(a + b + c)δ + 3(1− g) < rδ + 1− g.

Snce 2g− 2 = (a + b + c− 5)δ, this inequality becomes 5δ < rδ
which is true as r ≥ 6.

(2) Suppose OY (a) is special (so b + c ≥ 5), but OY (b) is nonspe-
cial. By Cliffords theorem, h0(OY (a)) ≤ 1

2
aδ + 1. In this case

h0(NY/P) < h0(OY (r)) will be true provided that
1
2
aδ + 1 + (b + c)δ + 2(1− g) < rδ + (1− g)

or r > b+c
2

+ 1
δ

+ 5
2
.

Since c ≤ r
2

and b ≤ 2, this is achieved if

r > 2+r/2
2

+ 1
δ

+ 5
2

which is the same as r > 14
3

+ 4
3δ

.
But c ≥ 3, so δ ≥ 3, hence the last inequality is true as r ≥ 6.

(3) Suppose both OY (a) and OY (b) are special. Hence a + c ≥ 5.
Using Cliffords theorem, in this case h0(NY/P) < h0(OY (r)) will
be true provided that

1
2
(a + b)δ + 2 + cδ + (1− g) < rδ + (1− g).

This becomes r > 1
2
(a + b) + 2

δ
+ c. Using c ≤ r

2
, a + b ≤ 4, and

δ ≥ 3, this is again true when r ≥ 6.
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3.3. Case 3. c < a + 1.
In this case a = b = c and r ≥ 2a. Using the sequence

0 → IY (a) → OP(a) → OY (a) → 0,

we get h0(NY/P) = 3h0(OY (a)) = 3[
(

a+4
4

)
− 3]

while h0(OY (r)) ≥ h0(OY (2a)) =
(
2a+4

4

)
− 3

(
a+4
4

)
+ 3. Hence the in-

equality h0(NY/P) < h0(OY (r)) will be true provided(
2a+4

4

)
> 6

(
a+4
4

)
− 12.

The reader may verify that is reduces to
10a4 + 20a3 − 70a2 − 200a + 7(4!) > 0

and the last inequality is true when a ≥ 3. Thus we have settled this
case when r ≥ 6 and a ≥ 3. If r ≥ 6 and a (and hence b) ≤ 2, we are
back in the previous case.

3.4. Case 4. 2a + b ≥ r − 2 and r ≥ 82.
For this case, we will study the curve Z given by D = E = F = 0
(of degrees r − c, r − b, r − a) and consider the inequality h0(NZ/P) <
h0(OZ(r))
Since a, b, c ≤ r

2
, 2a + 2 ≥ r − b ≥ r

2
, hence a ≥ r

4
− 1. Also b ≥ a and

2a + b ≥ r − 2, hence b ≥ r
3
− 2

3
. Likewise, c ≥ r

3
− 2

3
.

Now h0(OZ(r − a)) = h0(OP(r − a))− h0(IZ(r − a)) ≤
(

r−a+4
4

)
− 1

etc., hence

h0(NZ/P) ≤
(

r−a+4
4

)
+

(
r−b+4

4

)
+

(
r−c+4

4

)
− 3 ≤

( 3r
4

+5
4

)
+ 2

( 2r
3

+ 14
3

4

)
− 3

or h0(NZ/P) ≤ G(r), where G(r) is the last expression.
Looking at the Koszul resolution for OZ(r), since a + b + c ≤ 3r

2
<

2r, the last term in the resolution has no global sections. Hence
h0(OZ(r)) ≥ h0(OP(r)) − [h0(OP(a)) + h0(OP(b)) + h0(OP(c))] ≥(

r+4
4

)
−

(
a+4
4

)
−

(
b+4
4

)
−

(
c+4
4

)
≥

(
r+4
4

)
− 3

( r
2
+4
4

)
, or h0(OZ(r)) ≥ F (r),

where F (r) is the last expression.
The reader may verify that G(r) < F (r) for r ≥ 82.

3.5. Case 5. 6 ≤ r ≤ 81, 2a + b ≥ r − 2, b ≥ 3, c ≥ a + 1.
We still have r

4
− 1 ≤ a ≤ r

2
, r

3
− 2

3
≤ b, c ≤ r

2
. For the curve Y given by

A = B = C = 0, we can explicitly compute h0(OY (k)) for any k using
the Koszul resolution for OY (k). Hence both terms in the inequality
h0(NY/P) < h0(OY (r)) can be computed for all allowable values of
a, b, c, r using a computer program like Maple and the inequality can
be verified. We will leave it to the reader to verify this claim.
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