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Abstract. We prove that on a generic hypersurface in Pm+1 of dimen-
sion at least 3, a vector bundle with r ≤ m generators must be split if
m is odd. If m is even, then the same is true if the degree of X is at
least 3.

1. Introduction

The aim of this note is to extend to hypersurfaces, the following splitting
criterion for vector bundles on projective space due to Faltings (Satz 1 in
[2]).

Theorem 1. A vector bundle on Pm is split if it can be generated by r ≤ m
sections.

Based on an idea in [7], we prove the following.

Theorem 2. Let E be any r-generated rank e vector bundle on a smooth
hypersurface X of dimension m ≥ 3. Then E is a sum of line bundles if

(1) r ≤ m− 1.
(2) r = m and e 6= m/2.
(3) X is generic of degree d ≥ 3, r = m and e = m/2.

The first two parts of the theorem have proofs similar to Faltings’ with
the additional use of the Weak Lefschetz theorem. The third part is the
main result of this paper and the outline of its proof is as follows. In the
first section, following [7], we introduce a certain thickening of X in its
universal family which we call Xε and show that images of the cohomology
of the projective space and Xε in the cohomology of X coincide (Corollary
1). We then show that if a generic hypersurface has a vector bundle as in the
statement of the theorem, then this implies that there is such a bundle on Xε

(section 3). Then using certain standard arguments involving Chern classes,
we conclude that such a bundle must be split. We remark that alternatively
one could use the standard Noether-Lefschetz theorem on Hodge classes to
prove the desired theorem. However the use of Xε makes the proof simple
and self-contained.
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The result is sharp for low values of m; for quadrics in P5 and P7, we can
find 4-generated rank 2 bundles and 6-generated rank 3 bundles respectively.
Since these examples can be pulled back via finite morphisms Pl → Pl (with
l = 5, 7), we get other examples on various smooth hypersurfaces. Hence
the requirement of genericity is needed. We do not know any examples on
quadrics or special smooth hypersurfaces in dimensions greater than six.

1.1. Conventions. We work over k = C, the field of complex numbers. By
a generic point of a variety, we mean a point outside a countable union of
proper closed subvarieties.

2. Cohomology computations

2.1. Preliminaries. Let P := Pm+1
k S := P(W ∗) where W = H0(P,OP(d))

denotes the parameter space of all degree d hypersurfaces in P. One has a
short exact sequence

0 → V → H0(P,OP(d))⊗OP → OP(d) → 0.

Let X := P(V∗) → S be the universal family of all degree d hypersurfaces.
Let X ⊂ P be a smooth degree d hypersurface corresponding to a closed
point s ∈ S. Let V := T ∗

S,s, the dual of the Zariski tangent space at the point
s ∈ S. A := OS,s/m2

s = k⊕V ∗ then over the subscheme Spec A ⊂ S, there is
a hypersurface which we will denote by Xε, the universal hypersurface over
Spec A. It is easy to see that Ω1

A ⊗ k ∼= V ∗.
Let p : PA → P, q : PA → Spec A denote the two projections. Consider

the cotangent sheaf sequence for the inclusion ιε : Xε ↪→ PA,

OXε(−d) → Ω1
PA
⊗OXε = p∗Ω1

P ⊗OXε ⊕ q∗Ω1
A ⊗OXε → Ω1

Xε
→ 0.

On restricting this sequence to X, we have

0 → OX(−d)
(α,β)−−−→ Ω1

P ⊗OX ⊕ V ∗ ⊗OX
(γ,δ)−−−→ Ω1

Xε
⊗OX → 0.(2.1)

Let F denote the polynomial defining Xε ⊂ PA. On taking cohomology
of the sequence 0 → OP → OP(d) → OX(d) → 0, we get 0 → k → W →
V → 0. Choose a splitting θ : V → W , so that θ ∈ W ⊗ V ∗. Since
W ⊗ A = W ⊕ W ⊗ V ∗, we have F = (f, θ) ∈ W ⊗ A = H0(PA,OPA

(d))
where f is the polynomial defining X. The map dF is then given by (α̃, β̃). It
is easy to see that α̃|X = α = df . By local computations, we can verify that
β̃|X = β : OX(−d) → V ∗ ⊗ OX is dual to the evaluation map. Notice that
the injectivity of δ follows from the injectivity of α. We can also identify
δ with the natural map obtained as follows. We have an exact sequence
q∗Ω1

A → Ω1
Xε
→ Ω1

Xε/A
→ 0, which is the relative cotangent sheaf sequence

of the family q : Xε → Spec A. On restricting this sequence to X, we get
0 → q∗Ω1

A ⊗OX
δ−→ Ω1

Xε
⊗OX → Ω1

Xε/A
⊗OX = Ω1

X → 0.

The exactness of sequence (2.1) implies that γα = −δβ and as a conse-
quence, we have the following
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Lemma 1 (Mohan Kumar-Srinivas, [7]). There is a commutative diagram:

0 → OX(−d) α−→ Ω1
P ⊗OX → Ω1

X → 0
↓ −β ↓ γ ||

0 → V ∗ ⊗OX
δ−→ Ω1

Xε
⊗OX → Ω1

X → 0

where the two rows come from the inclusions X ⊂ P and X ⊂ Xε and the
map β is the natural map.

Taking the `-th exterior power, we get a commutative diagram

(2.2)
0 → Ω`−1

X (−d) → Ω`
P ⊗OX → Ω`

X → 0
↓ ↓ ||

0 → Ω(`) → Ω`
Xε
⊗OX → Ω`

X → 0

where Ω(`) (see [3], 5.16 (d), page 126) comes equipped with a decreasing
filtration F∗ Ω(`) satisfying the properties F1(Ω(`)) = Ω(`), F`+1(Ω(`)) = 0
and grj

F Ω(`) := Fj(Ω(`))/ Fj+1(Ω(`)) = ΛjV ∗ ⊗ Ω`−j
X for j ≥ 1.

2.2. Odd dimensional hypersurfaces.

Lemma 2. Let X ⊂ Pm+1 be a smooth hypersurface and let m = 2n + 1.
Then

Hp(P,Ωp
P) ∼= Hp(X, Ωp

X) for 0 ≤ p ≤ dim X

Proof. We first prove the statement for 0 ≤ p ≤ n. By the Weak Lefschetz
theorem, we have

Hi(P, C) ∼= Hi(X, C) ∀ i ≤ 2n

For i = 2p, this implies that

Hp(P,Ωp
P) ∼= Hp(X, Ωp

X) 0 ≤ p ≤ n

For n + 1 ≤ p ≤ dim X, we proceed as follows: Using Serre duality, we
have

Hm−p(X, Ωm−p
X ) ∼= Hp(X, Ωp

X)∨ ∼= k ∀ p

Thus hp(X, Ωp
X) = 1 for n + 1 ≤ p ≤ dim X. Since the restriction map

Hp(P,Ωp
P) → Hp(X, Ωp

X) is non-zero, this implies that this map is an iso-
morphism for n + 1 ≤ p ≤ 2n + 1. Thus we are done. �

2.3. Even dimensional hypersurfaces.

Lemma 3. Let X ⊂ Pm+1 be a smooth hypersurface with m = 2n. Then,
Hn(X, Ω(n)) = 0 where we recall that Ω(n) is the kernel of the map Ωn

Xε
⊗

OX → Ωn
X .

Proof. The proof follows by analysing the sequences

0 → Fj+1(Ω(n)) → Fj(Ω(n)) → grj
F Ω = ΛjV ∗ ⊗ Ωn−j

X → 0

For j ≥ 1, we first claim that Hn(X, Ωn−j
X ) = 0. By the Weak Lefschetz

theorem, Hi(P, C) ∼= Hi(X, C) for i < dim X. Since 2n−j < 2n, H2n−j(X, C)
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is either 0 (j odd) or one dimensional and isomorphic to Hn−`(X, Ωn−`
X )

where j = 2`. Thus on taking cohomology, we have a surjection

Hn(X, Fj+1(Ω(n))) → Hn(X, Fj(Ω(n))) � 0 ∀ j ≥ 1

Since Hn(X, Fn Ω(n)) = Hn(X, ΛnV ∗ ⊗OX) = 0, we are done.
�

Lemma 4. Let X ⊂ Pm+1 be a smooth hypersurface with m = 2n. Then
there are isomorphisms

Hn+1(X, Ωn−1
X (−d)) ∼= H2n(X,OX(−nd))

Hn+1(X, Ωn−1
X ) ∼= H2n(X,OX((−n + 1)d)

Proof. We consider the exterior powers of the cotangent bundle sequence for
the inclusion X ⊂ P

0 → Ω`−1
X (−d) → Ω`

P ⊗OX → Ω`
X → 0

together with the sequences

0 → Ω`
P(−d) → Ω`

P → Ω`
P ⊗OX → 0

Using the fact that Hi(P,Ωj
P(∗)) = 0 for i 6= j, we get isomorphisms

Hn+`(X, Ωn−`
X (−t)) ∼= Hn+`+1(X, Ωn−`−1

X (−t + d)) ∀ 1 ≤ ` < n

This finishes the proof. �

Lemma 5. Let X ⊂ Pm+1 be a smooth hypersurface with m = 2n. Then
the map φ : Hn+1(X, Ωn−1

X (−d)) → V ∗ ⊗ Hn+1(X, Ωn−1
X ) is injective for

d ≥ 2 + 2
n .

Proof. The map φ is induced by the composite map of sheaves Ωn−1
X ⊗

OX(−d) = Ωn−1
X (−d) → Ω(n) → Ωn−1

X ⊗ V ∗ obtained from diagram (2.2)
and the filtration with ` = n . This map is clearly 1 ⊗ −β. Using the
identifications in the previous lemma, we can identify the map φ with the
dual of the cup product map

H2n(X,OX(−nd)) → V ∗ ⊗H2n(X,OX(−(n− 1)d)

The lemma now follows by noting that the cup product map

V ⊗H0(OX(nd− 2n− 2)) → H0(OX(nd + d− 2n− 2))

is surjective as soon as H0(OX(nd − 2n − 2)) 6= 0 which happens for all
d ≥ 2 + 2

n . �

Proposition 1. Let X ⊂ Pm+1 with m = 2n. Then
1) Hp(P,Ωp

P) ∼= Hp(X, Ωp
X) 0 ≤ p ≤ dim X, p 6= n

2) If d ≥ 3, we also have

Hn(X, Ωn
P ⊗OX) ∼= Hn(X, Ωn

Xε
⊗OX)
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Proof. The proof of the first part follows from the Weak Lefschetz theorem
as in Lemma 2. For the second part, we consider the cohomology diagram
associated to (2.2) when ` = n.

Hn(X, Ωn−1
X (−d)) → Hn(X, Ωn

P|X) → Hn(X, Ωn
X) → Hn+1(X, Ωn−1

X (−d))
↓ ↓ || ↓

Hn(X, Ω(n)) → Hn(X, Ωn
Xε
|X) → Hn(X, Ωn

X) → Hn+1(X, Ω(n))

By Lemma 3, we have Hn(X, Ω(n)) = 0. Furthermore, by Kodaira-
Akizuki-Nakano theorem (see [1], page 154) Hn(X, Ωn−1

X (−d)) = 0. This
implies that Hn(X, Ωn

P ⊗ OX) → Hn(X, Ωn
Xε
⊗ OX) is injective. To prove

surjectivity, it is enough to prove that the right most vertical arrow i.e. the
map Hn+1(X, Ωn−1

X (−d)) → Hn+1(X, Ω(n)) is injective. By Lemma 5, the
composite Hn+1(X, Ωn−1

X (−d)) → Hn+1(X, Ω(n)) → V ∗ ⊗Hn+1(X, Ωn−1
X ) is

injective. Thus we are done. �

Corollary 1. With notation as above,

Image
(
Hi(P,Ωi

P) → Hi(X, Ωi
X)

)
= Image

(
Hi(X, Ωi

Xε
) → Hi(X, Ωi

X)
)
.

Proof. When X is odd-dimensional, this follows from Lemma 2. When
dim X = 2n and i 6= n, it follows from the first part of Proposition 1.
When i = n, this follows from the second part of the same proposition by
noting that there is a factorisation Hn(X, Ωn

Xε
) → Hn(X, Ωn

Xε
⊗ OX) →

Hn(X, Ωn
X). �

3. Vector bundles on hypersurfaces

We start this section with a Lemma due to Faltings whose proof we omit.

Lemma 6 (Faltings, [2]). Let (V,OV (1)) be any quasi-projective scheme.
For an exact sequence of vector bundles

0 → G → ⊕r
i=1OV (ai) → E → 0

and for some a = ai, let G
t1−→ OV (a) and OV (a) t2−→ E denote the induced

maps. Let T1 and T2 denote the zero schemes of t1 and t2 respectively. Then
T1 ∩ T2 = ∅.

We now prove the first two parts of Theorem 2.

Proof of Theorem 2 (1). The proof is by induction on r. The base case
r = 1 is trivial. Suppose that E is an r-generated bundle. Then in the
notation of Lemma 6, if E has rank e and G has rank g, then the dimensions
of T1 and T2 are at least m− g and m− e respectively. Since their sum is at
least 2m−r ≥ m+1, T1 and T2 must intersect in projective space. Thus we
arrive at a contradiction unless one of T1 or T2 is empty. If T2 is empty, we
may replace E by a quotient E′ which is r − 1-generated. By induction, E′

is a sum of line bundles and hence so is E. If we assume T1 is empty, then by
looking at the dual sequence, G∨ is split likewise and hence G is split with
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OX(a) as one of the summands. This implies that the map OX(a) → E is
the zero map and hence E is r − 1-generated and hence split. �

Proof of Theorem 2 (2). Suppose E is m-generated. Using Lemma 6,
we get T1 and T2. If T2 is empty, we would get a quotient which is m − 1-
generated. By part (1), this quotient and hence E is split. If T1 is empty,
then a similar argument as above shows that E is split. We claim that T1

and T2 have dimensions exactly equal to m−g and m−e respectively. For, if
not, then T1 and T2 would have non-empty intersection in projective space,
a contradiction.

Let [T1] ∈ Hg(X, Ωg
X) and [T2] ∈ He(X, Ωe

X) denote the Hodge classes of
T1 and T2 respectively. Since neither e nor g is m/2, using Lemma 2 and
Proposition 1.1, we may assume that [T1] = αhg and [T2] = βhe where h
is the class of the hyperplane section and α, β are non-zero scalars. Since
g + e = m, this implies that [T1].[T2] = α.βhm ∈ Hm(X, Ωm

X) and hence
non-zero. This contradicts the fact that T1 ∩ T2 = ∅. �

Lemma 7. Let Y be a smooth projective variety and E be a vector bundle
of rank e on Y . Let s : OY → E be a morphism of sheaves such that the zero
scheme Z = Z(s) has codimension e in Y . Then ce(E) = 0 in He(Y,Ωe

Y ) if
and only Z is empty.

Proof. If Z is empty, then we have an exact sequence of bundles 0 → OY
s−→

E → E′ → 0 and the result follows by the Whitney sum formula. For the
converse, by taking general hyperplane sections, we may reduce to the case
where Z is a bunch of points in Y . It is a standard result that ce(E) = deg Z
(see [1], page 413). Since deg Z is the number of points in Z counted with
multiplicities, we are done. �

Proof of Theorem 2 (3). Let X ⊂ Pm+1, m = 2n, be a smooth hyper-
surface of degree d and let E be a vector bundle of rank n with m-generators
so that it has a presentation

⊕s
i=1OX(bi) → ⊕m

j=1OX(aj) → E → 0.

Let Sa,b ⊂ S be the subset parametrising hypersurfaces which support vector
bundles E with a presentation as above. The goal of this section is to show
that its closure Sa,b is a proper subset of S. Since there are only countably
many choices for a, b, this will prove theorem 2.3.

By the arguments of theorem (3.4) in [6], there exists a scheme P ′(a, b)
along with a morphism P ′(a, b) → S whose image is Sa,b, and a rank n
vector bundle on X ×S P(a, b) with a presentation as above. In particular,
this implies that Sa,b is constructible and therefore its closure is S if and
only if Sa,b contains a Zariski open set.

If Sa,b contains a Zariski open set, then by the arguments in the proof of
Corollary (3.5) [op. cit.], we may replace P ′(a, b) by an integral subscheme
which we denote by P ′ to get a dominant étale map from P ′ → S.
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Let p ∈ P ′ be a point lying over s ∈ S. Let X := Xp be the hypersurface
parametrised by p (and hence by s). Let Xε be the universal hypersurface
over Spec A where A = OP,p/m2

p = OS,s/m2
s. There is a rank n bundle E on

Xε whose restriction to X is a bundle E (both are m-generated). We shall
now show that any such bundle should necessarily be split.

Since E is m-generated, we have a short exact sequence:

0 → G → ⊕m
i=1OXε(ai) → E → 0

where G is a vector bundle whose restriction to X shall be denoted by G.
Twisting the above sequence by a line bundle if necessary, we may assume
that one of the aj ’s is zero giving the diagram

(3.1)
0 → G → ⊕m

j=1OXε(aj) → E → 0
↘ t1 ↓↑ ↗ t2

OXε

Let Z1 and Z2 denote the subschemes defined by the morphisms t1 and
t2 respectively and Z1, Z2 be the zero schemes of the restrictions of the
sections t1 and t2 respectively to X. On restricting the exact sequence to
X, we have Z1 ∩ Z2 = ∅ by Lemma 6. As in the proof of Theorem 2.2, we
may assume that Z1 and Z2 are non-empty with codim Z1 = n = codim Z2.

We shall now use the theory of Chern classes for bundles on schemes
with values in Hodge cohomology as described in [4] (see also [5] for a
simpler exposition). Since one of the ai’s is zero, the Whitney sum for-
mula for the exact sequence in (3.1), yields cn(G). cn(E) = 0 . By func-
toriality, we have ι∗ ci(G) = ci(G) and ι∗ ci(E) = ci(E) for all i. Thus
by Corollary 1, ci(G) and ci(E) are in the one dimensional vector space
Image

(
Hi(P,Ωi

P) → Hi(X, Ωi
X)

)
∀ i. Putting these together, we have

cn(G) cn(E) = i∗ cn(G)i∗ cn(E) = i∗ (cn(G). cn(E)) = 0

and as a result, either cn(G) = 0 or cn(E) = 0. Since Z1 and Z2 have the
correct codimension, cn(G) = 0 (resp. cn(E) = 0) if and only Z1 = ∅ (resp.
Z2 = ∅) by Lemma 7. This gives a contradiction.

In particular, this contradicts the assumption that the map P ′ → S is
dominant and thus we see that the union of the images of all the P(a, b)’s is
not dense. This proves that for a hypersurface which corresponds to a generic
point (i.e. outside the countable union of the proper closed subvarieties
S̄a,b) there are no m-generated, rank n bundles which are not sums of line
bundles. �
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