
WEAK LEFSCHETZ FOR CHOW GROUPS: INFINITESIMAL LIFTING

D. PATEL AND G. V. RAVINDRA

Abstract. Let X be a smooth projective variety over an algebraically closed field k of charac-
teristic zero and Y ⊂ X a smooth ample hyperplane section. The Weak Lefschetz conjecture for
Chow groups states that the natural restriction map CHp(X)Q → CHp(Y )Q is an isomorphism
for all p < dim(Y )/2. In this note, we revisit a strategy introduced by Grothendieck to attack
this problem by using the Bloch-Quillen formula to factor this morphism through a continuous
K-cohomology group on the formal completion of X along Y . This splits the conjecture into
two smaller conjectures: one consisting of an algebraization problem and the other dealing with
infinitesimal liftings of algebraic cycles. We give a complete proof of the infinitesimal part of
the conjecture.

1. Introduction

In this note, we continue our study (see [13]) of weak Lefschetz type theorems for Chow
groups modulo rational equivalence. We begin by recalling the weak Lefschetz conjecture for
Chow groups. In the following, let X be a smooth projective variety over an algebraically closed
field k of characteristic zero. Furthermore, let Y ⊂ X denote a smooth ample hyperplane section.

Conjecture 1.1. The natural restriction map

CHp(X)Q → CHp(Y )Q

is an isomorphism for all p < dim(Y )/2.

When p = 1, the Chow group of divisors of any smooth, projective variety can be identified
with the Picard group, and the above conjecture is the Grothendieck-Lefschetz theorem which,
in fact, holds integrally. Grothendieck’s proof (see [8]) for Picard groups proceeded by first
lifting line bundles from Y to the formal completion X of X along Y , and then to make use
of the Lefschetz conditions to extend line bundles from the formal scheme to the whole scheme
X. Unfortunately, this strategy does not directly apply to higher codimension cycles since the
Chow groups are invariant under infinitesimal thickenings. However, the Bloch-Quillen formula
allows one to interpret the Chow groups in terms of K-cohomology, where one can try to apply
deformation theoretic methods. We briefly recall the formalism.

Let Ki,X denote the i-th K-theory sheaf in the Zariski topology (cf. §2.3). Then the Bloch-
Quillen formula gives an isomorphism

Hp(X,Kp,X)
∼=→ CHp(X).
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One has a similar statement for Y . The restriction morphism from the conjecture is then the
restriction map

Hp(X,Kp,X)Q → Hp(Y,Kp,Y )Q,

and the conjecture is equivalent to showing that this map is an isomorphism for all p < dim(Y )/2.
Let Yn denote the n-th infinitesimal neighborhood of Y in X. Then we can consider (Ki,Yn) as
a pro-sheaf on Y (cf. §2.3), and, in particular, consider its continuous cohomology (see [10]).
Then one can factor the above morphism (see §3, [13]) as a composition:

Hp(X,Kp,X)Q → Hp
cont(X, (Kp,Yn))Q → Hp(Y,Kp,Y )Q.

Therefore the following two conjectures imply Conjecture 1.1:

Conjecture 1.2. The natural morphism

Hp(X,Kp,X)Q → Hp
cont(X, (Kp,Yn))Q

is an isomorphism for all p < dim(Y )/2.

Conjecture 1.3. The natural morphism

Hp
cont(X, (Kp,Yn))Q → Hp(Y,Kp,Y )Q

is an isomorphism for all p < dim(Y )/2.

In [13], the authors proved conjecture 1.3 for p = 2. In this note, we give a complete proof of
this conjecture. In particular, we prove the following theorem.

Theorem 1.4. Let X be a smooth projective variety over an algebraically closed field k of
characteristic zero and Y a smooth ample hyperplane section. Then the natural restriction map

Hp
cont(X, (Kq,Yn))→ Hp(Y,Kq,Y )

is an isomorphism for all p+ q < dim(Y ). In particular,

Hp
cont(X, (Kp,Yn))→ Hp(Y,Kp,Y )

is an isomorphism for all p < dim(Y )/2.

Note that the above theorem does not require one to tensor with Q. The basic strategy to
prove the above conjecture in the case of p = 2 was to use Bloch’s theorem (see [2]) describing
the kernel of the (surjective) morphism

K2,Yn → K2,Y

in terms of 1-forms. The proof of Theorem 1.4 proceeds in a similar manner. Instead of Bloch’s
theorem, we make use of Goodwillie’s theorem which relates the kernel of the morphism

Kp,Yn → Kp,Y

to cyclic homology (cf. §2.3). In particular, Goodwillie’s theorem gives an isomorphism of this
kernel with the kernel of the corresponding morphism at the level of cyclic homology sheaves
over Q

HC/Qp−1,Yn
→ HC/Qp−1,Y .

Therefore, the bulk of the proof goes into computing the cohomology of these sheaves. Since Y
is smooth, its cyclic homology sheaves are well understood by the classical Hochschild-Kostant-
Rosenberg isomorphism. On the other hand, the cyclic homology sheaves for Yn are not easy
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to understand. However, if one assembles all of these together into a pro-sheaf, then one has a
pro-analog of the classical Hochschild-Kostant-Rosenberg isomorphism ([4]). This reduces the
proof of the theorem to some standard computations with (pro) de Rham complexes.

In this note, we say nothing about conjecture 1.2, which is clearly the more difficult conjecture.
The morphism

Hp(X,Kp,X)→ Hp
cont(X, (Kp,Yn))

factors as (see §3, [13])

Hp(X,Kp,X)→ Hp(X,Kp,X)→ Hp
cont(X, (Kp,Yn)).

The second arrow above can again be understood via cyclic homology (when p = 1, this is an
isomorphism, see [13], Proposition 3.1), and we hope to pursue this elsewhere. On the other
hand, it is not clear how to analyze the first arrow. Note that one has a global analog of the
above picture. Namely, there is a sequence of morphisms of K-theory spectra:

K(X)→ K(X)→ Ktop(X)→ K(Y ).

Here Ktop(X) is by definition the homotopy inverse limit of the spectra K(Yn). This gives a
diagram of global K-theory groups:

Kp(X)→ Kp(X)→ Ktop
p (X)→ Kp(Y ).

Furthermore, in the case of K(X) and K(Y ), the Brown-Gersten-Quillen spectral sequence al-
lows one to relate the K-cohomology groups with the global K-theory groups. While there is an
analog of the this BGQ-spectral sequence for Ktop(X), with Ep,q

2 terms given by the continuous
cohomology groups above, there seems to be no such spectral sequence for Kp(X). The obstruc-
tion to the existence of such a spectral sequence seems to be due to the lack of Zariski descent
in this case. The interested reader may refer to [3] and [7] for related work in a different setting.

We conclude this introduction with a brief description of the contents of each section. In
§2, we recall some preliminaries on pro- systems, K-theory, and Hochschild homology (and its
various other cousins). In §2.1, we recall some statements from the theory of pro-sheaves. In §2.2,
we recall Hochschild homology and its cousins, and, in particular, the pro-HKR isomorphism
adapted to our setting of pro-sheaves. In §2.3, after some preliminaries on K-theory, we recall
Goodwillie’s theorem relating relative K-theory along infinitesimal extensions to negative cyclic
homology. In §2.4, we recall the Kassel-Sletsjøe spectral sequence (adapted to our setting of pro-
sheaves), which relates Hochschild homology over a base field k with the Hochschild homology
over a subfield F of k. In §3, we compare continuous cohomology of cyclic homology pro-sheaves
on X with that of the cohomology of cyclic cohomology sheaves on Y . The results of §2.2 reduce
this to a computation of various sheaves of differentials and de Rham cohomology sheaves. In
§3.1, we recall a result of Ogus, which compares the pro-system of de Rham cohomology sheaves
on X and Y . In §3.2, we use Ogus’s result and some basic results from algebraic geometry
(Kodaira-Nakano vanishing) to prove isomorphisms between the continuous cohomology of pro-
sheaves of differentials on X with the cohomology of sheaves of differentials on Y . In §3.3, the
results of §3.2 are extended, using the Kassel-Sletsjøe spectral sequence, to an arbitrary subfield
F ⊂ k. Finally, in §4 we give a proof of the main result.
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2. Preliminaries

2.1. Preliminaries on pro-systems. For any abelian category A, let Pro(A) denote the cat-
egory of pro-objects in A. Let AN denote the full subcategory of the category of pro-objects
consisting of pro-objects indexed by N. We shall use the notation (An) to denote an object in
this category. Note that any object A ∈ A gives rise to a constant pro-system denoted (A). We
shall sometimes denote this simply by A. Recall that morphisms between two objects (An) and
(Bn) in this category are given by

HomAN((An), (Bn)) = lim←−lim−→HomA(Ai, Bj).

In particular, a system of morphisms fn : An → Bn compatible with the transition maps
An → An−1 and Bn → Bn−1 gives rise to a morphism of pro-systems. We shall refer to such
morphisms as strict morphisms. In the following, we shall also be interested in Ch(AN), the
corresponding category of (co) chain complexes of pro-systems. Note that both AN and Ch(AN)
are abelian categories. In the following, by pro-objects in A we will always mean objects in AN.
We refer the reader to ([1], Appendix) for details regarding pro-objects.

Suppose that A is the category of sheaves of abelian groups on some topological space X. In
this situation, the corresponding category of pro-sheaves has enough injectives. In particular,
following Jannsen ([10]), we denote by Hp

cont(X, (Fn)) the continuous cohomology groups of the
given pro- system. In this setting, one has the following standard exact sequence:

0→ R1lim←−Hp−1(X,Fn)→ Hp
cont(X, (Fn))→ lim←−Hp(X,Fn)→ 0.

If
0→ (F ′n)→ (Fn)→ (F ′′n)→ 0

is a complex of strict morphisms, then it is exact if

0→ F ′n → Fn → F ′′n → 0

is exact for all n. This follows from the fact that the kernel of a strict morphism (fn) : (Fn)→
(Gn) is given by the pro-system (ker(fn)), and similarly for the cokernel.

2.2. Preliminaries on cyclic homology. In this section, we recall some background material
on various non-commutative homology theories. We refer to ([16], Chapter 9) for details. In the
following, k will denote a fixed field of characteristic zero.

A mixed complex over k is a triple (C ·, b, B) where (C ·, b) is a chain complex of k-vector
spaces, and B : C · → C ·[1] is a morphism of degree 1 such that B2 = 0.

Example 2.1. Given a commutative ringA over k, we can consider the mixed complex (Ω·A/k, 0, d).

In particular, we put Ωp
A/k in degree p, b = 0 and B = d.

Given a mixed complex (C ·, b, B) , one can associate to it the cyclic homology chain complex
HC(C ·) whose homology groups HCi(C

·) are called the cyclic homology groups. One can also
associate to it the negative cyclic (resp. periodic cyclic) homology HN(C ·) (resp. HP(C ·) )
chain complex, whose homology groups are the negative cyclic (resp. periodic cyclic) homology
groups. Furthermore, the homology groups of the underlying complex (C ·, b) will be referred
to as the Hochschild homology groups. These chain complexes are related by the following two
standard exact sequences of chain complexes:

1: 0→ C· → HC(C ·)→ HC(C ·)[2]→ 0
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2: 0→ HN(C ·)→ HP(C ·)→ HC(C ·)[2]→ 0

A morphism of mixed complexes f : (C ·, b, B)→ (C ′·, b′, B′) is said to be a quasi-isomorphism
if it induces a quasi-isomorphism of underlying complexes C · → C ′·. A quasi-isomorphism of
mixed complexes induces an isomorphism on the corresponding Hochschild and cyclic homology
groups ([16], pg. 348).

Given a commutative ring A over k, there is a standard mixed complex (C ·(A), b, B) associated
to A. The corresponding Hochshild (respectively cyclic, negative cyclic, and periodic cyclic)

homology groups will be denoted by HH
/k
q (A) (respectively HC

/k
q (A), HN

/k
q (A), and HP

/k
q (A)).

Let X be a scheme over k. Then one can sheafify the constructions of the previous paragraph.
In particular, one can associate to X a mixed complex of sheaves (C·(X), b, B). One has the
corresponding Hochschild (respectively periodic cyclic, negative cyclic, and cyclic) homology

sheaves HH/k
q,X (resp. HP/k

q,X , HN /k
q,X , HC/kq,X) over X.

If A is a commutative algebra over a field k of characteristic zero, then one has a natural
morphism (antisymmetrization map) of graded A-modules:

Ωq
A/k → HH/k

q (A).

Furthermore, if A is a (noetherian) regular algebra over k, then the above morphism is an
isomorphism. On the other hand, one has a natural morphism of mixed complexes

µ : (C ·(A), b, B)→ (Ω·A/k, 0, d),

which, at the level of homology, is multiplication by q + 1 in degree q when pre-composed with

Ωq
A/k → HH/k

q (A).

It follows that if A is regular, then µ is a quasi-isomorphism of mixed complexes. In this setting,
one has the following description for the cyclic homology of A over k:

HC/k
q (A) = Ωq

A/k/dΩq−1
A/k ⊕Hq−2

dR (A)⊕Hq−4
dR (A)⊕ · · · .

Here Hq
dR(A) is the cohomology of the de Rham complex (Ω·A/k, d) of A over k. If X is a smooth

scheme over k, then we can sheafify these results. In particular, one has an induced isomorphism
of sheaves

Ωq
X/k → HH

/k
q,X .

Furthermore, the natural morphism of mixed complexes

µ : (C·(X), b, B)→ (Ω·X/k, 0, d)

is a quasi-isomorphism. It follows that one has an isomorphism:

HC/kq,X → Ωq
X/k/dΩq−1

X/k ⊕H
q−2
dR (X/k)⊕Hq−4

dR (X/k)⊕ · · · .

One can generalize the result of the previous paragraph to the pro-setting. We shall assume
for the remainder of this section that A is an algebra essentially of finite type and smooth over
a field k of characteristic zero and that F is a subfield of k. Let I ⊂ A be an ideal. Then one
has the following theorem due to Cortiñas-Haesemeyer-Weibel.
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Theorem 2.2. ([4], Theorem 3.2, Proposition 3.5 ) The induced morphism of graded pro-A-
modules:

(Ωq
(A/Im)/F )→ (HH/F

q (A/Im))

is a pro-isomorphism.

Proof. This is precisely Theorem 3.2 of loc. cit. when F = k and Proposition 3.5 for general
F . �

On the other hand, one has a morphism of pro-mixed complexes:

µ : (C·(A/Im), b, B)→ (Ω·(A/Im)/F , 0, d).

Again, for each m, the composition

Ωq
(A/Im)/F → HH/F

q (A/Im)→ Ωq
(A/Im)/F

is multiplication by q + 1.

Lemma 2.3. In the above setting, µ is a quasi-isomorphism of pro complexes.

Proof. We must show that the induced morphism

(HH/F
q (A/Im))→ (Ωp

(A/Im)/F )

is an isomorphism of graded pro-modules. By the previous remarks we have that the composition

(Ωq
(A/Im)/F )→ (HH/F

q (A/Im))→ (Ωq
(A/Im)/F )

is multiplication by q+1, and the first arrow is an isomorphism of pro-modules. Since F ⊃ Q, it
follows that the right morphism divided by q+ 1 is an inverse of the first morphism. Therefore,
the right arrow is an isomorphism. �

Corollary 2.4. One has an isomorphism of pro-modules:

(HC/F
q (A/Im))→ (Ωq

(A/Im)/F /dΩq−1
(A/Im)/F )⊕ (Hq−2

dR ((A/Im)/F ))⊕ · · · .

Suppose now that X is a smooth scheme essentially of finite type over a field k of characteristic
zero. Let Y ⊂ X denote a closed smooth subvariety of X and Yn denote the n-th infinitesimal
thickening of Y in X. In this situation, we can sheafify the previous constructions to get a
morphism of mixed complexes of pro-sheaves

µ : ((C·(Yn), b, B))→ ((Ω·Yn/k
, 0, d)).

Lemma 2.5. Let X be as above. Then the natural antisymmetrization map

(Ωq
Yn/k

)→ (HH/k
q,Yn

).

is a pro-isomorphism.

Proof. It is enough to check this locally on X. On the other hand, in the affine case this is
precisely the theorem of Cortiñas-Haesaemeyer-Weibel recalled above. �

Corollary 2.6. Let X be a smooth variety over a field k, and F ⊂ k a subfield. Suppose Y ⊂ X
is a smooth closed subvariety and Yn is the n-th infinitesimal thickening of Y in X. Then one
has an isomorphism of (graded) pro-sheaves on Y :

(HC/Fq,Yn
)→ (Ωq

Yn/F
/dΩq−1

Yn/F
)⊕ (Hq−2

dR (Yn/F ))⊕ (Hq−4
dR (Yn/F )) · · · .
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Proof. It is enough to show that

µ : (C·(Yn))→ (Ω·Yn/F
).

is a quasi-isomorphism of mixed complexes of pro-sheaves. Again, this can be checked locally
on X. In this case, it is precisely Lemma 2.3 above. �

2.3. Preliminaries on K-theory. For any scheme X, we let Kperf (X) denote the (non-

connective) K-theory spectrum of perfect complexes on X and Kperf
q (X), the corresponding

homotopy groups. It follows from ([15]), that if X is a smooth scheme then the natural map
K(X)→ Kperf (X) is a weak equivalence, where K(X) is the usual K-theory spectrum of vector

bundles on X. In general, if X has an ample family of line bundles then Ki(X) = Kperf
i (X) for

all i ≥ 0.
We denote by KX the presheaf of spectra on X which associates to an open U ⊂ X the

spectrum K(U) and similarly for Kperf . Then the corresponding homotopy sheaves are given by

Ki,X and Kperf
i,X . By definition, Ki,X is the sheaf associated to the presheaf whose sections over

U ⊂ X are given by Ki(U), and similarly for Kperf
i,X .

Remark 2.7. Strictly speaking, Kperf
X is the pre-sheaf which takes the DG-category of perfect

complexes on U to the spectrum Kperf (U). To avoid dealing with pseudo-functors, one should
take some rectification of the corresponding (pseudo) pre-sheaf of DG-categories. We refer to
([17]) for details.

Suppose Y ⊂ X is a closed subvariety and Yn is its n-th infinitesimal neighborhood. The we

can consider Kperf
Yn

as pre-sheaves on Y . Let Kperf
(Y,Yn)

denote the homotopy fiber of

Kperf
Yn
→ Kperf

Y .

In particular, one has a long exact sequence of homotopy sheaves:

· · · → Kperf
i,(Yn,Y ) → K

perf
i,Yn
→ Kperf

i,Y → Kperf
i−1,(Yn,Y ) → · · ·

where Kperf
i,(Yn,Y ) are the sheaves of homotopy groups associated to Kperf

(Yn,Y ).

Remark 2.8. In the following, we shall always assume that our (presheaves of) spectra and
presheaves of spectra are fibrant-cofibrant. In particular, we choose once and for all a functorial
fibrant-cofibrant replacement.1

There is a standard way to associate a pre-sheaf of spectra to a chain complex of sheaves
such that the homotopy sheaves of the corresponding pre-sheaf of spectra are the homology

sheaves of the given complex. Given a scheme X/k and a subfield F ⊂ k, let HH/F
X denote

the corresponding Hochschild homology pre-sheaf of spectra relative to F . Similarly, let HN /F
X

(resp. HC/FX , and HP/F
X ) denote the corresponding negative cyclic (resp. cyclic, and periodic

cyclic) homology presheaves of spectra. Just as above, we let HH/F
(Yn,Y ) denote the homotopy

1In this note, we work with the local projective model structure on the category of pre-sheaves of spectra.
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fiber of the restriction map HH/F
Yn
→ HH/F

Y . One defines HN /F
(Yn,Y ), HC

/F
(Yn,Y ), and HP/F

(Yn,Y ) in

a similar manner. The short exact sequence

0→ HN(C ·)→ HP(C ·)→ HC(C ·)[−2]→ 0

sheafifies to give a cofibre sequence of presheaves of spectra:

HN /F
X → HP/F

X → Ω−2HC/FX .

For the inclusions Y ↪→ Yn, this gives rise to a commutative diagram of presheaves of spectra:

HN /F
(Yn,Y )

//

��

HP/F
(Yn,Y )

//

��

Ω−2HC/F(Yn,Y )

��

HN /F
Yn

//

��

HP/F
Yn

//

��

Ω−2HC/FYn

��

HN /F
Y

// HP/F
Y

// Ω−2HC/FY
By a theorem of Goodwillie ([5], Theorem II.5.1),HP is invariant under infinitesimal thickenings.
In particular, the natural morphism

HP/F
Yn
→ HP/F

Y

is a weak equivalence. It follows that HP/F
(Yn,Y ) is contractible, and, in particular, the corre-

sponding homotopy sheaves are trivial. It follows that one has an isomorphism of sheaves

HC/Fi−1,(Yn,Y ) → HN
/F
i,(Yn,Y ).

Suppose now X is a scheme over a field k of characteristic zero. Let Y ⊂ X denote a closed
subvariety, and Yn denote its n-th infinitesimal thickening. In this situation, Goodwillie’s theo-

rem ([6], Theorem 4.5) allows one to identify the sheaves Kperf
(Yn,Y ) with negative cyclic homology.

We shall use this result in the following to reduce the computation of relative K-theory to that
of relative negative cyclic homology. There is a natural chern character

Kperf
X → HN /Q

X .

This gives rise to a diagram of presheaves of spectra:

Kperf
(Yn,Y )

//

��

Kperf
Yn

//

��

Kperf
Y

��

HN /Q
(Yn,Y )

// HN /Q
Yn

// HN /Q
Y

Goodwillie’s theorem says that the left vertical arrow is a weak equivalence. In particular,
it induces an isomorphism on the corresponding sheaves of homotopy groups. Combining the
results of the previous paragraph one has an isomorphism:

(1) Ki,(Yn,Y ) → HC
/Q
i−1,(Yn,Y ).
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We now recall a pro-sheaf version of the previous results. For the rest of this section, we
assume that X is a smooth variety over a field k of characteristic zero, and Y is a closed smooth
subvariety. As before, Yn is the n-th infinitesimal neighborhood of Y in X. By ([13], Lemma
5.9), the natural restriction maps

Kperf
i,Yn
→ Kperf

i,Y

and

HC/Fi,Yn
→ HC/Fi,Y

are surjective. It follows that we have short exact sequences:

0→ Kperf
i,(Yn,Y ) → K

perf
i,Yn
→ Kperf

i,Y → 0,

and

0→ HC/Fi,(Yn,Y ) → HC
/F
i,Yn
→ HC/Fi,Y → 0.

This gives rise to a commutative diagram of pro-sheaves with exact rows:

0 // (Kperf
i,(Yn,Y ))

//

��

(Kperf
i,Yn

) //

��

(Kperf
i,Y ) //

��

0

0 // (HC/Qi−1,(Yn,Y ))
// (HC/Qi−1,Yn

) // (HC/Qi−1,Y ) // 0

We record the following corollary for future reference:

Corollary 2.9. Let X and Y be as above. Then, by (1), one has an isomorphism:

Hp
cont(Y, (K

perf
q,(Yn,Y )))→ Hp

cont(Y, (HC
/Q
q−1,(Yn,Y ))).

2.4. Pro-Kassel-Sletsjøe Spectral sequence. In the following, we will need to compute con-

tinuous cohomology groups on a scheme Y/k with coefficients given by the pro-system (HH/Q
p,Yn

)

(with notation as in the previous section). We shall achieve this by first using geometric methods
to compute the analogous result over k and then descending to Q. The Kassel-Sletsjøe spectral
sequence ([11], 4.3a ; [4] Lemma 3.4) allows one to pass from k to a subfield F . We recall the
relevant statements in our setting of pro-sheaves.

Given a commutative algebra A over k, one has a natural decomposition for Hochschild
homology:

HH/k
p (A) ∼= ⊕HH(i),/k

p (A).

Furthermore, one has HH
(p),/k
p (A) = Ωp

A/k and HH
(p),/k
p (A) = 0 for i > p. If A is regular, then

one also has HH
(i),/k
p (A) = 0 for all i < p.

One can sheafify the construction of the last paragraph. In particular, for any scheme X/k,
one has a decomposition:

HH/k
p,X
∼= ⊕HH(i),/k

p,X .

If X is smooth, then the only non-vanishing term on the right is the i = p term, where one has

HH(p),/k
p,X = Ωp

X/k.

Let F be a subfield of k and A be a k-algebra. Then one has the following spectral sequence:
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Lemma 2.10. ([11], 4.3a) For each p ≥ 1 there is a bounded second quadrant homological
spectral sequence (0 ≤ i < p, j ≥ 0):

pE
1
−i,i+j = Ωi

k/F ⊗k HH
(p−i),/k
p−i+j (A)⇒ HH

(p),/F
p+j (A).

One can sheafify this spectral sequence to obtain a spectral sequence of sheaves on X:

pE
1
−i,i+j = Ωi

k/F ⊗k HH
(p−i),/k
p−i+j,X ⇒ HH

(p),/F
p+j,X

Suppose now that X/k is smooth and Y is a closed subvariety of X, and Yn is the n-th infini-
tesimal neighborhood of Y . Then one obtains a spectral sequence of pro-sheaves on Y :

pE
1
−i,i+j = (Ωi

k/F ⊗k HH
(p−i),/k
p−i+j,Yn

)⇒ (HH(p),/F
p+j,Yn

)

Since X is smooth, by Lemma 2.5 and the previous remarks, the only non-zero E1 terms are
the ones where j = 0, and, in this case, one has:

pE
1
−i,i+j = (Ωi

k/F ⊗k Ωp−i
Yn/k

).

In particular, one has has a finite decreasing exhaustive filtration F · of (Ωp
Yn/F

) such that

griF := F i/F i+1 ∼= ((Ωi
k/F ⊗k Ωp−i

Yn/k
)).

Note that F 0 = (Ωp
Yn/F

) and F p+1 = 0.

3. Sheaves of Differentials

In the following, let X be as before, a smooth projective variety over k. We let Y ⊂ X denote
a smooth subvariety, and Yn the n-th infinitesimal neighborhood of Y in X. In particular, if I
is the ideal of definition of Y , then In+1 is the ideal of definition of Yn and Y = Y0. Let (X,OX)
denote the corresponding formal scheme. Let Ωp

X/k, Ωp
Yn/k

, and Ωp
X/k denote the corresponding

sheaves of differential forms. If F is a subfield of k, then let Ωp
X/F , Ωp

Yn/F
, and Ωp

X/F denote

the corresponding sheaves of differential forms over F . Finally, let (Ω·X/F , d), (Ω·Yn/F
, d) , and,

(Ω·X/F , d) denote the corresponding de Rham complexes.

3.1. De Rham cohomology sheaves. We start by recalling a theorem of Ogus comparing the
de Rham cohomology sheaves H∗dR(Yn/F ) and H∗dR(Y/F ).

Theorem 3.1. ([12], Theorem 1.3) The natural restriction map of de Rham complexes

Ω·X/F → Ω·Yn/F

is a quasi-isomorphism. In particular, the natural restriction maps

H·dR(Yn/F )→ H·dR(Y/F ).

are isomorphisms.

Note that in loc. cit. this result is proved when X is smooth over k = C; however, the same
proof applies to any k of characteristic zero. More generally, Ogus’s proof also applies to de
Rham complexes over subfields F ⊂ k.
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3.2. Continuous cohomology of cotangent sheaves over k. In this section, we assume
further that Y is a smooth ample hyperplane section. For any subfield F ⊂ k, one has a natural
surjection of sheaves of abelian groups on Y :

Ω1
Yn/F

→ Ω1
Y/F → 0.

Let Ω1
(Yn,Y )/F denote the kernel of this morphism. Similarly, one has a natural surjection:

Ωq
Yn/F

→ Ωq
Y/F → 0.

Again, let Ωq
(Yn,Y )/F denote the kernel. In ([13]), the authors proved the q = 1 case of the

following theorem.

Theorem 3.2. Let X be a smooth projective variety over k, and Y ⊂ X a smooth ample
hyperplane section. Then the natural restriction map

Hp(Y,Ωq
Yn/k

)→ Hp(Y,Ωq
Y/k)

is an isomorphism for p+q < dim(Y )−1 and an injection for p+q = dim(Y )−1. In particular,

Hp(Y,Ωq
(Yn,Y )/k) = 0

for all p+ q < dim(Y ).

Corollary 3.3. Let X and Y be as in the theorem. Then the natural restriction map

Hp
cont(Y, (Ω

q
Yn/k

))→ Hp(Y,Ωq
Y/k)

is an isomorphism for p+ q < dim(Y )− 1 and an injection for p+ q = dim(Y )− 1.

Proof. Recall that one has an exact sequence:

0→ R1lim←−Hp−1(Y,Ωq
Yn/k

)→ Hp
cont(Y, (Ω

q
Yn/k

))→ lim←−Hp(Y,Ωq
Yn/k

)→ 0.

Theorem 3.2 implies that the pro-system (Hp−1(Y,Ωq
Yn/k

)) satisfies the Mittag-Leffler condition

for all p+ q < dim(Y ). Therefore, the left-most term in the above exact sequence is zero for all
p+ q < dim(Y ). Again, by the previous theorem, one has an isomorphism

lim←−Hp(Y,Ωq
Yn/k

)→ Hp(Y,Ωq
Y/k)

for p + q < dim(Y ) − 1. This gives the desired isomorphism for p + q < dim(Y ) − 1. Suppose
now that p+ q = dim(Y )− 1. In this case, the R1 term above still vanishes. Furthermore, since
taking inverse limits is left exact, the previous theorem gives an injection:

lim←−Hp(Y,Ωq
Yn/k

)→ Hp(Y,Ωq
Y/k).

�

We begin with some preliminary lemmas.

Lemma 3.4. Let X and Y be as in the theorem. For all q > 0 and n ≥ 0, one has an exact
sequence of sheaves on Y :

0→ Ωq−1
Y/k ⊗OX

In+1/In+2 → Ωq
X/k ⊗OX

OYn → Ωq
Yn/k

→ 0.
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Proof. By Lemma 4.2 in [13], one has the following cotangent sheaf sequence

(2) 0→ In+1/In+2 → Ω1
X/k ⊗OX

OYn → Ω1
Yn/k

→ 0,

Lemma 18.4 in [14], (applied twice; the second time with a suitable twist) gives rise to a
4-term sequence

(3) Ωq−2
X/k ⊗OX

In+2/In+3 → Ωq−1
X/k ⊗OX

In+1/In+2 → Ωq
X/k|Yn → Ωq

Yn/k
→ 0.

By op. cit. this sequence is exact everywhere except perhaps at the second term, where one first
directly checks that the composite of the first and second maps (from the left) is zero.

Further when n = 0, the cokernel of the first map above can be computed, so that we get the
exact sequences (see [9], 5.16 (d), page 126):

(4) 0→ I/I2 ⊗OX
Ωq−1
Y/k → Ωq

X/k ⊗OX
OY → Ωq

Y/k → 0, and

(5) In+2/In+3 ⊗OX
Ωq−2
X/k → Ωq−1

X/k ⊗OX
In+1/In+2 → Ωq−1

Y/k ⊗ I
n+1/In+2 → 0.

Putting (5) and (3) together, we get an exact sequence

Ωq−1
Y/k ⊗OX

In+1/In+2 → Ωq
X/k ⊗OX

OYn → Ωq
Yn/k

→ 0.

Now all that remains to be checked is left exactness in the above sequence. This is done by
noting that the composite

Ωq−1
Y/k ⊗OX

In+1/In+2 → Ωq
X/k ⊗OX

OYn → Ωq
X/k ⊗OX

OY

is the same as the composite of the injective maps

Ωq−1
Y/k ⊗OX

In+1/In+2 → Ωq
X/k ⊗OX

In/In+1 → Ωq
X/k ⊗OX

OY

(the map on the left is obtained by tensoring the injective map in (4) with the locally free sheaf
In/In+1 and hence is injective). This proves the desired left exactness. �

Remark 3.5. Alternatively, as pointed out by the referee, the previous lemma can also be
proved by first noting that the statement is local in the etale topology on X, and therefore one
is reduced to Y = Ad−1 and X = Ad, where the statement is clear.

Lemma 3.6. Let X and Y be as above. Then,

Hp(Y,Ωq
X/k|Y ⊗OX

In/In+1) = 0

for all 0 ≤ p+ q < dim(Y ).

Proof. We have an exact sequence:

0→ Ωq−1
Y/k ⊗ I/I

2 → Ωq
X/k|Y → Ωq

Y/k → 0.

Tensoring the above exact sequence with the locally free sheaf In/In+1 gives an exact sequence:

0→ Ωq−1
Y/k ⊗ I/I

2 ⊗ In/In+1 → Ωq
X/k|Y ⊗ I

n/In+1 → Ωq
Y/k ⊗ I

n/In+1 → 0.

Then, by Kodaira-Nakano vanishing, one has that Hp(Y,Ωq−1
Y/k ⊗ I/I

2 ⊗ In/In+1) = 0 for all

p+ q− 1 < dim(Y ). It follows that the cohomology of the middle term and the right-most term
are isomorphic for all p + q < dim(Y ). On the other hand, Kodaira-Nakano vanishing applied
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to the right-most term gives that Hp(Y,Ωq
Y/k ⊗I

n/In+1) = 0 for all p+ q < dim(Y ). Therefore,

Hp(Y,Ωq
X/k ⊗ I

n/In+1) = 0 for all p+ q < dim(Y ). �

Proof. (Theorem 3.2) Consider the following commutative diagram of sheaves on Y :

0

��
Ωq
X/k|Yn ⊗OYn

In/In+1

��
0 // Ωq−1

Y/k ⊗OX
In+1/In+2 //

��

Ωq
X/k ⊗OX

OYn
//

��

Ωq
Yn/k

//

��

0

0 // Ωq−1
Y/k ⊗OX

In/In+1 // Ωq
X/k ⊗OX

OYn−1
//

��

Ωq
Yn−1/k

// 0

0

Here the left-most vertical arrow is zero. The bottom two rows are exact by Lemma 3.4. The
middle column is given by tensoring the standard exact sequence

0→ In/In+1 → OYn → OYn−1 → 0

with the locally free sheaf Ωp
X/k|Yn and is therefore also exact. By Lemma 3.6,

Hp(Y,Ωq
X |Y ⊗ I

n/In+1) = 0

for all p + q < dim(Y ). Therefore, taking the long exact sequence in cohomology associated to
the middle vertical column in the diagram above gives isomorphisms

Hp(Y,Ωq
X/k ⊗OX

OYn)→ Hp(Y,Ωq
X/k ⊗OX

OYn−1)

for all p + q < dim(Y ) − 1 and an injection when p + q = dim(Y ) − 1. Taking cohomology of
the horizontal exact sequences in the diagram above gives the following diagram of long exact
sequences:

// Hp(Y,Ωq
X/k ⊗OX

OYn) //

��

Hp(Y,Ωq
Yn/k

) //

��

Hp+1(Y,Ωq−1
Y/k ⊗ I

n+1/In+2)

��

//

// Hp(Y,Ωq
X/k ⊗OX

OYn−1) // Hp(Y,Ωq
Yn−1/k

) // Hp+1(Y,Ωq−1
Y/k ⊗ I

n/In+1) //

By the previous remarks and Lemma 3.6, it follows that the restriction map

Hp(Y,Ωq
Yn/k

)→ Hp(Y,Ωq
Yn−1/k

)

is an isomorphism when p + q < dim(Y ) − 1, and an injection when p + q = dim(Y ) − 1. In
particular, the restriction morphism

Hp(Y,Ωq
Yn/k

)→ Hp(Y,Ωq
Y/k)
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is an isomorphism when p+ q < dim(Y )− 1 and an injection when p+ q = dim(Y )− 1.
Finally, applying this result to the long exact sequence in cohomology associated to the short

exact sequence:
0→ Ωq

(Yn,Y )/k → Ωq
Yn/k

→ Ωq
Y/k → 0

now gives the second part of the theorem.
�

In the rest of this section, we use the previous results to investigate the following morphism:

Hp
cont(Y, (Ω

q
Yn/k

/dΩq−1
Yn/k

))→ Hp(Y,Ωq
Y/k/dΩq−1

Y/k).

In particular, we will prove the following theorem:

Theorem 3.7. Let X and Y be as in Theorem 3.2 and suppose that q ≥ 1. Then the natural
restriction morphism

Hp
cont(Y, (Ω

q
Yn/k

/dΩq−1
Yn/k

))→ Hp(Y,Ωq
Y/k/dΩq−1

Y/k).

is an isomorphism for all p+ q < dim(Y )− 1 and an injection for p+ q = dim(Y )− 1.

We begin with some preliminary remarks. First, note that we have a diagram of pro-sheaves:

0 // (dΩq−1
Yn/k

) //

��

(Ωq,cl
Yn/k

) //

��

(Hq
dR(Yn/k)) //

��

0

0 // dΩq−1
Y/k

// Ωq,cl
Y/k

// Hq
dR(Y/k) // 0

Here Ωp,cl
Yn/k

denotes the sheaf of (locally) closed forms and Hq
dR(Yn/k) are the usual de Rham

cohomology sheaves. In particular, the rows in the above commutative diagram are exact by
definition. Furthermore, by Theorem 3.1, the prosystems (Hq

dR(Yn/k)) are constant and, in
particular, isomorphic to the constant pro-system (Hq

dR(Y/k)). It follows that one has isomor-
phisms:

Hp
cont(Y, (H

q
dR(Yn/k)))→ Hp(Y,Hq

dR(Y/k)).

Proposition 3.8. The natural morphism

Hp
cont(Y, (dΩq−1

Yn/k
))→ Hp(Y, dΩq−1

Y/k)

is an isomorphism for p+ q < N and an injection for p+ q = N if and only if the morphism

Hp
cont(Y, (Ω

q,cl
Yn/k

))→ Hp(Y,Ωq,cl
Y/k)

is an isomorphism for p+ q < N and an injection for p+ q = N .

Proof. The commutative diagram above induces the following diagram in cohomology where the
rows are exact:

// Hp
cont(Y, (dΩq−1

Yn/k
)) //

��

Hp
cont(Y, (Ω

q,cl
Yn/k

)) //

��

Hp
cont(Y, (H

q
dR(Yn/k))) //

��
// Hp(Y, dΩq−1

Y/k) // Hp(Y,Ωq,cl
Y/k) // Hp(Y,Hq

dR(Y/k)) //
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The result is now a consequence of the 5-lemma and the fact that the restriction maps

Hp
cont(Y, (H

q
dR(Yn/k)))→ Hp(Y,Hq

dR(Y/k))

are isomorphisms. �

Proof. (Theorem 3.7) Consider the following two statements:

(1) The following morphism is an isomorphism for all p+ q < dim(Y )− 1 and injective for
p+ q = dim(Y )− 1:

Hp
cont(Y, (Ω

q
Yn/k

/dΩq−1
Yn/k

))→ Hp(Y,Ωq
Y/k/dΩq−1

Y/k).

(2) The following morphism is an isomorphism for all p+ q < dim(Y )− 1 and injective for
p+ q = dim(Y )− 1:

Hp
cont(Y, (dΩq

Yn/k
))→ Hp(Y, dΩq

Y/k).

We shall prove both of these statements simultaneously via induction on q. We begin with the
base case q = 1. Consider the following commutative diagram with exact rows:

0 // (dOYn) //

��

(Ω1
Yn/k

) //

��

(Ω1
Yn/k

/dOYn) //

��

0

0 // dOY
// Ω1

Y/k
// Ω1

Y/k/dOY
// 0

By considering the diagram of long exact sequences in cohomology associated to the above
diagram and applying Corollary 3.3, one concludes that statement (1) for q = 1 follows if the
natural restriction map

Hp
cont(Y, (dOYn))→ Hp(Y, dOY )

is an isomorphism for all p < dim(Y ) − 1 and an injection for p = dim(Y ) − 1. On the other
hand, we have a commutative diagram with exact rows:

0 // (k) //

��

(OYn) //

��

(dOYn) //

��

0

0 // k // OY
// dOY

// 0

Therefore,

Hp
cont(Y, (dOYn))→ Hp(Y, dOY )

is an isomorphism if and only if

Hp
cont(Y, (OYn))→ Hp(Y,OY )

is an isomorphism. The result now follows from the exact sequences

0→ I/In+1 → OYn → OY → 0
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and Kodaira-Nakano vanishing. This proves statement (1) for q = 1. Now for statement (2) in
the case q = 1, consider the following diagram with exact rows:

0 // (Ω1,cl
Yn/k

) //

��

(Ω1
Yn/k

) //

��

(dΩ1
Yn/k

) //

��

0

0 // Ω1,cl
Y/k

// Ω1
Y/k

// dΩ1
Y/k

// 0

Just as above, it is enough to show that the restriction map

Hp
cont(Y, (Ω

1,cl
Yn/k

))→ Hp(Y,Ω1,cl
Y/k)

is an isomorphism for p < dim(Y )− 1 and an injection for p = dim(Y )− 1. By Proposition 3.8,
this is equivalent to showing that the restriction map

Hp
cont(Y, (dOYn))→ H1(Y, dOY )

is an isomorphism for all p < dim(Y )− 1 and an injection for p = dim(Y )− 1. We have already
seen this above.

Suppose that the statements hold for all fixed i < q. First, note that we have a commutative
diagram with exact rows:

0 // (dΩq−1
Yn/k

) //

��

(Ωq
Yn/k

) //

��

(Ωq
Yn/k

/dΩq−1
Yn/k

) //

��

0

0 // dΩq−1
Y/k

// Ωq
Y/k

// Ωq
Y/k/dΩq−1

Y/k
// 0

This gives the following commutative diagram with exact rows:

// Hp
cont(Y, (Ω

q
Yn/k

)) //

��

Hp
cont(Y, (Ω

q
Yn/k

/dΩq
Yn/k

)) //

��

Hp+1
cont(Y, (dΩq−1

Yn/k
)) //

��
// Hp(Y,Ωq

Y/k) // Hp(Y,Ωq
Y/k/dΩq−1

Y/k) // Hp+1(Y, dΩq−1
Y/k) //

Therefore, statement (1) follows from the induction hypothesis, Corollary 3.3, and a diagram
chase. It remains to prove statement (2). Now consider the following commutative diagram
with exact rows:

0 // (Ωq,cl
Yn/k

) //

��

(Ωq
Yn/k

) //

��

(dΩq
Yn/k

) //

��

0

0 // Ωq,cl
Y/k

// Ωq
Y/k

// dΩq
Y/k

// 0
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This gives the following diagram in cohomology:

// Hp
cont(Y, (Ω

q
Yn/k

)) //

��

Hp
cont(Y, (dΩq

Yn/k
)) //

��

Hp+1
cont(Y, (Ω

q,cl
Yn/k

)) //

��
// Hp(Y,Ωq

Y/k) // Hp(Y, dΩq
Y/k) // Hp+1(Y,Ωq,cl

Y/k) //

Once again the result follows from an application of Corollary 3.3, Proposition 3.8, and a diagram
chase. �

3.3. Continuous cohomology of cotangent sheaves over F . We use the same notation
and hypothesis as in the previous section. In particular, X is a smooth projective variety over
k and F ⊂ k is a fixed subfield. In this section, we generalize the main theorems of the previous
section to similar results for differentials relative to F . These results will be used in the next
section to compute cyclic homology relative to F = Q.

Theorem 3.9. Let X and Y be as in the theorem. Then the natural restriction map

Hp
cont(Y, (Ω

q
Yn/F

))→ Hp(Y,Ωq
Y/F )

is an isomorphism for all p+ q < dim(Y )− 1 and an injection for p+ q = dim(Y )− 1.

Proof. The Kassel-Sletsjøe spectral sequence (cf. §2.4) gives a filtration F · of (Ωq
Yn/F

) such that

griF := F i/F i+1 ∼= ((Ωi
k/F ⊗F Ωq−i

Yn/k
)),

F 0 = (Ωq
Yn/F

), and F q+1 = 0. Recall, if V is a finite dimensional vector space over k, then one

has an isomorphism:

Hp(Y, V ⊗k F) ∼= Hp(Y,F)⊗k V.

Filtering an arbitrary vector space by finite dimensional subspaces and using that cohomology
commutes with direct limits, gives the same result for arbitrary V . In particular, one has
isomorphisms:

Hp(Y,Ωi
k/F ⊗k Ωq−i

Y/k) ∼= Hp(Y,Ωq−i
Y/k)⊗k Ωi

k/F .

One has a similar result for continuous cohomology. Therefore, the result now follows by recur-
rence, using the filtration above, and the fact that it holds over k. We leave the details to the
reader. �

Theorem 3.10. Let X and Y be as above and suppose that 1 ≤ q. Then the natural restriction
morphism

Hp
cont(Y, (Ω

q
Yn/F

/dΩq−1
Yn/F

))→ Hp(Y,Ωq
Y/F /dΩq−1

Y/F ).

is an isomorphism for all p+ q < dim(Y )− 1 and an injection for p+ q = dim(Y )− 1.

Proof. Given the previous theorem, and Theorem 3.1, the proof of this theorem is exactly the
same as that of Theorem 3.7. Note that Proposition 3.8 also holds over F . �



18 D. PATEL AND G. V. RAVINDRA

4. Main Theorem

As in the previous sections, we let X denote a smooth projective variety over k, and Y ⊂ X
is a smooth ample hyperplane section. Let Yn denote the n-th infinitesimal thickening of Y in
X.

Theorem 4.1. The natural restriction map

Hp
cont(Y, (Kq,Yn))→ Hp(Y,Kq,Y )

is an isomorphism for all p+ q < dim(Y ) and injective for p+ q = dim(Y ).

Proof. Recall that we have an exact sequence of pro-sheaves

0→ (Kq,(Yn,Y ))→ (Kq,Yn))→ Kq,Y → 0.

Therefore, it is enough to show that

Hp
cont(Y, (Kq,(Yn,Y ))) = 0

for all p+ q < dim(Y ) + 1. By Corollary 2.9, it is enough to show that

Hp
cont(Y, (HC

/Q
q−1,(Yn,Y ))) = 0

for p+ q < dim(Y ) + 1. For the latter, it is enough to show that the natural restriction maps

Hp
cont(Y, (HC

/Q
q−1,Yn

))→ Hp(Y,HC/Qq−1,Y )

is an isomorphism for p+ q < dim(Y ) and an injection for p+ q = dim(Y ). On the other hand,
by Corollary 2.6

(HC/Qq,Yn
) ∼= (Ωq

Yn/Q/dΩq−1
Yn/Q)⊕ (Hq−2

dR (Yn/Q))⊕ (Hq−4
dR (Yn/Q)) · · · .

The result now follows from Theorem 3.10 and Theorem 3.1. �

Corollary 4.2. The natural restriction map

Hp
cont(X, (Kp,Yn))→ Hp(Y,Kp,Y )

is an isomorphism for all p < dim(Y )/2.
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