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Abstract. Let X be a smooth, complex projective variety, and Y be a very general, sufficiently
ample hypersurface in X. A conjecture of M. V. Nori states that the natural restriction map
CHp(X)Q → CHp(Y )Q is an isomorphism for all p < dimY and an injection for p = dimY .
This is the generalized Noether-Lefschetz conjecture. We prove an infinitesimal version of this
conjecture.

1. Introduction

A fundamental theorem concerning the topology of algebraic varieties is the Weak Lefschetz
theorem (also known as the Lefschetz hyperplane section theorem).

Theorem 1. Let X be a smooth, projective variety of dimension m+1 over the field of complex
numbers, and Y ⊂ X be a hyperplane section. The restriction map of singular cohomology
groups Hi(X,Z) → Hi(Y,Z) is an isomorphism for i < m, and a monomorphism for i = m.
Equivalently, one has that Hi(X,Y ;Z) = 0 for i ≤ m.

The philosophy of motives, and the conjectures of Bloch and Beilinson imply (see for e.g. §2,
[13] for details) that motivic analogs of the above theorem should also be true, namely that

Conjecture 1 (Weak Lefschetz conjecture). CHp(X) ⊗ Q → CHp(Y ) ⊗ Q is an isomorphism
for p < m/2, and a monomorphism for p = m/2.

In the special case when X = Pm+1, this conjecture is an old question of Hartshorne (see [7]).
Very little is known about this conjecture, except in the case p = 1, where the statement even
holds integrally. In this case, using the correspondence between divisors and line bundles, the
theorem is usually stated as follows:

Theorem 2 (Grothendieck-Lefschetz theorem, [6]). Let X be a smooth, projective variety of
dimension at least 4, and Y be a smooth hyperplane section. The restriction maps of Picard
groups Pic(X)→ Pic(Y ) is an isomorphism.

When X is a 3-fold, a slightly weaker result is true.

Theorem 3 (Noether-Lefschetz theorem, [2]). Let X be a smooth, projective 3-fold, and Y be
a very general, sufficiently ample hypersurface in X. The restriction map Pic(X) → Pic(Y ) is
an isomorphism.

Pioneering work in the context of algebraic cycles, especially various refinements and ex-
tensions of the Noether-Lefschetz theorem, was carried out by M. Green and C. Voisin, among
others, beginning in the 1980’s (see [16] for a detailed account of these and related developments).
Their results, especially [5] (which was also independently proved by C. Voisin (unpublished)),
in turn inspired M. Nori to prove the following remarkable connectivity theorem (see Lemmas
2.1 and 2.2, and Theorem 4, [10]).
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Theorem 4. Let X be a smooth, projective variety of dimension m + 1, and OX(1) be a
sufficiently ample line bundle. Let S := |OX(1)|, A := X × S, and B := {(x, f) ∈ X ×
S|f(x) = 0} be the universal hypersurface. Then for any smooth morphism g : T → S, one has
Hp(AT ,Ω

q
(AT ,BT )) = 0 for p ≤ m and p+ q ≤ 2m. Consequently, Hi(AT , BT ;Q) = 0 for i ≤ 2m.

Here Ωq
(AT ,BT ) is defined by the exact sequence

0→ Ωq
(AT ,BT ) → Ωq

AT
→ i∗Ω

q
BT
→ 0,

where i : BT → AT is the natural inclusion. Let k = k(S) denote the function field of the
parameter space S above, and k̄ denote its algebraic closure. Let Xk̄ := X×C k̄, and Y := B×S k̄.
We have the following consequence of Theorem 4.

Theorem 5. Hp(Xk̄,Ω
q
(Xk̄,Y )) = 0, for p ≤ m and p+ q ≤ 2m.

Proof. The result follows from the fact that cohomology and Kähler differentials commute with
direct limits. First, note that we can write k̄ as the inverse limit of schemes Tα where each
Tα → S is finite étale over an affine open in S. Note that each Tα is affine (since it is finite
over an open affine), and therefore the transition maps in the inverse system ATα are all affine.
It follows that both lim

←−
Tα

ATα and lim
←−
Tα

BTα exists in the categoy of schemes. Since fiber products

commute with taking inverse limits, one has Xk̄
∼= lim
←−
Tα

ATα and Y ∼= lim
←−
Tα

BTα . Moreover, the

universal property of Kähler differentials implies that Ω1
Xk̄
∼= lim
−→
Tα

Ω1
ATα

and Ω1
Y
∼= lim
−→
Tα

Ω1
BTα

. Since

taking exterior powers commutes with direct limits, we have an analogous result for the higher
order Kähler differentials. One also has an analogous statement for the relative differentials,
since taking direct limits is an exact functor. Combining everything we have:

Hp(Xk̄,Ω
q
(Xk̄,Y ))

∼= Hp(lim
←−
Tα

ATα , lim−→
Tα

Ωq
(ATα ,BTα ))

∼= lim
−→
Tα

Hp(ATα ,Ω
q
(ATα ,BTα )).

Here the last isomorphism follows from the fact that cohomology commutes with direct limits.
The result now follows from Theorem 4.

�

Using his connectivity theorem, Nori proved the existence of non-trivial cycles in the Griffiths
group which are in fact not detected by the Abel-Jacobi map, thus generalizing the original
result due to Griffiths. Furthermore, in keeping with the philosophy of motives, he conjectured
the following generalization of the Noether-Lefschetz theorem:

Conjecture 2 (see [10], Conjecture 7.2.5). With notation as above, CHp(Xk̄)⊗Q→ CHp(Y )⊗Q
is an isomorphism for p ≤ m− 1, and a monomorphism for p = m.

We note that for p = 1, this conjecture is also true integrally and is Theorem 3 above. The
reader may refer to [15] to see the equivalence between the two statements. As explained in §3
[13], one can factor the above restriction map as follows: Let I ∼= OX(−1) be the sheaf of ideals
of Y in Xk̄, and let Yn be the subscheme with sheaf of ideals In+1. Let Xk̄ be the completion of
Xk̄ along Y . Then the restriction map in Conjecture 2 factors as

Hp(Xk̄,Kp,Xk̄)⊗Q→ Hp
cont(Xk̄, (Kp,Yn))⊗Q→ Hp(Y,Kp,Y )⊗Q.

Here the middle term is the continuous cohomology of Y , in the sense of Jannsen (see [8]), with
values in the pro-sheaf (Kp,Yn). One may view the first arrow in the factorization above as the
“algebraization” map, and the second one as the “deformation” map. Define CHp

cont(Xk̄) :=
Hp

cont(Xk̄, (Kp,Yn)). In [14] (see Corollary 4.2), we proved the following result.
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Theorem 6 (Infinitesimal Weak Lefschetz theorem). Let X be a smooth, projective variety of
dimension m + 1, and Y ⊂ X be a smooth hyperplane section. The natural restriction map
CHp

cont(X)→ CHp(Y ) is an isomorphism for p < m/2, and an injection1 for p = m/2.

In this article, we prove the following infinitesimal version of Nori’s conjecture.

Theorem 7 (Infinitesimal Noether-Lefschetz theorem). Let X be a smooth, projective variety
and OX(1) be a sufficiently ample line bundle. For Y ⊂ Xk̄ as above, Hp

cont(Xk̄, (Kq,Yn)) →
Hp(Y,Kq,Y ) is an isomorphism for p < m and p + q < 2m, and an injection for p = m and
p + q ≤ 2m. In particular, CHp

cont(Xk̄) → CHp(Y ) is an isomorphism for p < m, and a
monomorphism for p = m.

Remark 1. We note that both the infinitesimal Lefschetz theorems hold integrally, though the
conjectures are for Chow groups with rational coefficients.

Remark 2. When p = 1, then the above Infinitesimal Noether-Lefschetz theorem implies the
Noether-Lefschetz theorem (Theorem 3 above). Note that by Proposition 3.1, [14], we have
Pic(Xk̄)

∼= CH1
cont(Xk̄), and so by Grothendieck’s algebraisation theorem (see [6]) for vector

bundles, we have Pic(Xk̄)
∼= Pic(Xk̄)

∼= Pic(Y ). The global Noether-Lefschetz theorem now
follows by a standard “spreading out” argument (see for instance, §3, [15]).

Remark 3. Effective versions of Nori’s connectivity theorem have been proved in [9, 12], and
in [12] it has been conjectured that the same should hold even in the motivic version, and
consequently for Theorem 7. It follows quite easily from our proof that this is indeed the case.

We end this section with a quick note about the proof: the idea of the proof is exactly
as in [13, 14] – whereas in those papers, we reduced the proof to Lefschetz connectivity and
Kodaira-Nakano vanishings, here the same role is played by Nori’s connectivity theorem and
Serre vanishing.

2. Cohomological connectivity for infinitesimal thickenings of hypersurfaces

We begin by proving Nori’s connectivity theorem for the thickenings Yn, for n� 0.

Proposition 1. With notation as above, we have for n� 0,

Hp(Xk̄,Ω
q
(Xk̄,Yn)) = 0 for all p ≤ m.

Proof. In the following, let in : Yn → Xk̄ denote the natural embedding, and let i0 = i. Consider
the following diagram with exact rows:

(1)

0 0
↓ ↓

Ωq
Xk̄

(−n− 1) = Ωq
Xk̄

(−n− 1)

↓ ↓
0 → Ωq

(Xk̄,Yn) → Ωq
Xk̄

→ in∗Ω
q
Yn
→ 0

↓ ↓ ||
0 → i∗Ω

q−1
Y (−n− 1) → in∗Ω

q
Xk̄|Yn

→ in∗Ω
q
Yn
→ 0

↓ ↓
0 0

The exactness of the bottom row follows from Lemma 3.4 in [14] and exactness of the push-
forward map in∗. The middle vertical can be seen to be exact by an application of the projection

1The injectivity part was not stated in [14], but it is immediate from Theorem 4.1 in op. cit. which is the
analog of Theorem 7 above.
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formula: in∗Ω
q
Xk̄|Yn

∼= Ωq
Xk̄|Yn

. The left-most vertical is exact by the snake lemma. The long

exact sequence in the cohomology associated to the leftmost column yields an exact sequence

(2) Hp(Ωq
Xk̄

(−n− 1))→ Hp(Ωq
(Xk̄,Yn))→ Hp(Ωq−1

Y (−n− 1))→ Hp+1(Ωq
Xk̄

(−n− 1)).

By Serre vanishing (and duality), the first, third and fourth terms vanish for n � 0 and
p < m. Therefore, we see that Hp(Ωq

(Xk̄,Yn)) = 0 for n � 0 if p < m. When p = m, the first

term vanishes for large n, and so we are left with the exact sequence

(3) 0→ Hm(Ωq
(Xk̄,Yn))→ Hm(Ωq−1

Y (−n− 1))→ Hm+1(Ωq
Xk̄

(−n− 1)).

Let αq denote the right hand map in the above exact sequence.

Claim: The map αq : Hm(Ωq−1
Y (−n− 1))→ Hm+1(Ωq

Xk̄
(−n− 1)) is injective for n� 0.

To prove the claim, we will first note that this map factors as

(4) Hm(Ωq−1
Y (−n− 1))→ Hm(Ωq

Xk̄|Y
(−n))→ Hm+1(Ωq

Xk̄
(−n− 1)),

and then show that each of these maps is an injection.

To see the factorization, we consider the following diagram, where the top two rows are the
exact sequences in the leftmost columns in diagram (1) for Ωq

(Xk̄,Yn) and Ωq
(Xk̄,Yn−1) respectively:

(5)

0 0
↓ ↓

0 → Ωq
Xk̄

(−n− 1) → Ωq
(Xk̄,Yn) → i∗Ω

q−1
Y (−n− 1) → 0

↓ ↓ ↓
0 → Ωq

Xk̄
(−n) → Ωq

(Xk̄,Yn−1) → i∗Ω
q−1
Y (−n) → 0

↓ ↓
Ωq
Xk̄|Y

(−n) → in∗Ω
q
(Yn,Yn−1)

↓ ↓
0 0

The left vertical is the usual restriction (to Y ) sequence of the bundle Ωq
Xk̄

, twisted by

OXk̄(−n), and hence is exact. The middle vertical sequence is obtained from the commuta-

tive diagram whose two rows are the defining sequences for Ωq
(Xk̄,Yn) and Ωq

(Xk̄,Yn), with the

obvious the maps between them. Finally, note that the right most top vertical is the zero map.
A consideration of the associated diagram in cohomology and an application of the snake lemma
gives the desired factorization. On the other hand, we have the following commutative diagram
with exact rows and column:

(6)
0
↓

0 → Ωq
Xk̄

(−n− 1) → Ωq
(Xk̄,Yn) → Ωq−1

Y (−n− 1) → 0

↓
Ωq
Xk̄

(−n)

↓
0 → Ωq−1

Y (−n− 1) → Ωq
Xk̄|Y

(−n) → Ωq
Y (−n) → 0

↓
0
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As noted above, the exactness of the bottom row is from Lemma 3.4 in [14]. Now the first map
in equation (4) is the map between the cohomologies of the first two terms in the bottom row in
the above diagram, and the second map in equation (4) is the boundary map of cohomologies
of the vertical short exact sequence.

Now consider the cohomology sequence for the bottom row:

(7) Hm−1(Ωq
Y (−n))→ Hm(Ωq−1

Y (−n− 1))→ Hm(Ωq
Xk̄|Y

(−n));

The first term vanishes for n� 0, and so the map Hm(Ωq−1
Y (−n− 1))→ Hm(Ωq

Xk̄|Y
(−n)) is an

injection.

Next, consider the cohomology long exact sequence of the vertical short exact sequence in
diagram (6):

(8) Hm(Ωq
Xk̄

(−n))→ Hm(Ωq
Xk̄|Y

(−n))→ Hm+1(Ωq
Xk̄

(−n− 1)).

Once again, we see that the first term vanishes for n� 0, and so the map Hm(Ωq
Xk̄|Y

(−n))→
Hm+1(Ωq

Xk̄
(−n− 1)) is an injection. �

Remark 4. We note here that the above result has a straight-forward generalization to the case
when Y ⊂ Xk̄ above is a complete intersection. In this case, one notes that the term in the top
row in (1) is replaced by Ωq

Xk̄
⊗ In+1 (where I is the ideal sheaf of Y ), and the first term in the

bottom row gets replaced by Ω(q− 1, n) := ker(in∗Ω
q
Xk̄|Yn

→ in∗Ω
q
Yn

). The rest of the argument

is exactly as in the proof above; the vanishings Hp(Ωq
Xk̄
⊗ In+1) = 0 and Hp(Ω(q − 1, n)) = 0,

for p < m and n � 0, follow by standard arguments using either spectral sequences, or by
working with a resolution by sums of line bundles for In+1 for the first cohomology term,
and using the filtration on Ω(q − 1, n) by noting just as above that it can be identified with
ker(Ωq

Xk̄
⊗ In/In+1 → Ωq

Y ⊗ In/In+1).

We have the following analog of Theorem 3.2 in [14].

Proposition 2. With notation as above, we have for n� 0,

Hp(Y,Ωq
(Yn,Y )) = 0 for p < m, and p+ q < 2m.

Proof. We have an exact sequence

0→ Ωq
(Xk̄,Yn) → Ωq

(Xk̄,Y ) → in∗Ω
q
(Yn,Y ) → 0.

On taking cohomology, we have

→ Hp(Xk̄,Ω
q
(Xk̄,Y ))→ Hp(Y,Ωq

(Yn,Y ))→ Hp+1(Xk̄,Ω
q
(Xk̄,Yn))→

The first term vanishes by Nori’s connectivity theorem, and the last term, for n� 0 by Propo-
sition 1 in the required range. �

Corollary 1. Hp
cont(Y, (Ω

q
Yn

))→ Hp(Y,Ωq
Y ) is an isomorphism for p < m− 1, and p+ q < 2m,

and an injection for p = m− 1, and p+ q < 2m.

Proof. We have an exact sequence (see [8])

0→ R1 lim
←−
n

Hp−1(Yn,Ω
q
Yn

)→ Hp
cont(Y, (Ω

q
Yn

))→ lim
←−
n

Hp(Yn,Ω
q
Yn

)→ 0.

It follows from Proposition 1 above that, for a ≤ m and a + b ≤ 2m, the inverse system
{Ha(Y,Ωb

Yn
)} satisfies the Mittag-Leffler condition (in particular, all the transition maps are

isomorphisms for n � 0, and each term is isomorphic to Ha(Xk̄,Ω
b
Xk̄

)), hence the first term
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in the exact sequence vanishes. By Proposition 2, for n � 0, Hp(Yn,Ω
q
Yn

) → Hp(Y,Ωq
Y ) is an

isomorphism for p < m − 1, and p + q < 2m, and an injection for p = m − 1, and p + q < 2m.
Thus we have the desired statement. �

Finally, we have the following analogue of Theorem 3.10 in [14]. The proof is exactly as in
op. cit. and we leave its verification to the reader. In the following, for any scheme V , we let
Ωi
V/Q denote the sheaf of absolute Kähler differential q-forms.

Theorem 8. With notation as above, and q ≥ 1, the natural restriction map

Hp
cont(Y, (Ω

q
Yn/Q/dΩq−1

Yn/Q)))→ Hp(Y,Ωq
Y/Q/dΩq−1

Y/Q))

is an isomorphism for p < m − 1, and p + q < 2m, and an injection for p = m − 1, and
p+ q < 2m.

3. Proof of the main theorem

Theorem 9 (An infinitesimal Noether-Lefschetz theorem for K-cohomology groups). With no-
tation as above, the natural map

Hp
cont(Y, (Kq,Yn))→ Hp(Y,Kq,Y )

is an isomorphism for p < m and p+ q < 2m, and an injection for p = m and p+ q ≤ 2m.

Proof. The proof is now exactly as in [14]. We sketch it for the sake of completeness. Consider
the restriction map Kq,Yn → Kq,Y . This is surjective (see [13], see Lemma 5.9). Let Kq,(Yn,Y )

denote its kernel. We have an exact sequence of pro-sheaves

0→ (Kq,(Yn,Y ))→ (K(q,Yn))→ Kq,Y → 0.

To prove the theorem, we need to prove that

Hp
cont(Y, (Kq,(Yn,Y ))) = 0 for p ≤ m and p+ q ≤ 2m.

For any scheme V , let HC/Qi,V denote the i-th cyclic homology sheaf relative to Q, and let

HC/Qi,(Yn,Y ) be the kernel of the natural mapHC/Qi,Yn → HC
/Q
i,Y (the fact that this map is a surjection

follows by arguing exactly as in the proof of Lemma 5.9 in [13]). By Corollary 2.9 in [14], (this
follows from results in [3, 4] in the case of algebras, and their extension to schemes in [17] – see
§2.3 in [14] for details)

Ha
cont(Y, (Kb,(Yn,Y ))) ∼= Ha

cont(Y, (HC
/Q
b−1,(Yn,Y ))) for all a, b.

The term on the right hand side, can be computed using Corollary 2.6 in [14], which is the
sheafification of a result in [1], and states that one has an isomorphism of graded pro-sheaves

(HC/Qi,Yn) ∼= (Ωi
Yn/Q/dΩi−1

Yn/Q)⊕
⊕
j≥1

(Hi−2j
dR (Yn/Q)).

Finally, by a result of Ogus (see [11])2 , we have HcdR(Yn/F ) ∼= HcdR(Y/F ), for all n and any
field F of characteristic 0. Take F = Q; then the above result together with Theorem 8 gives
us the desired result. �

2The result is stated only when F = C, but as observed in [14], the proof goes through for any characteristic
zero field.
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Remark 5. Theorem 7 has the following generalisation to complete intersections (the context
for Nori’s theorem and his conjecture).

Let X be a smooth, projective variety of dimension m + c, and let OX(a1), · · · ,OX(ac)
be sufficiently ample line bundles. Let S := Πc

i=1P(H0(X,OX(ai))), A = X × S, and B :=
{(x, f1, · · · , fc) ∈ A|fi(x) = 0, i = 1, · · · , c}. Let k = k(S), and Y ⊂ Xk̄ be the “geometric
generic” fibre as in the introduction. Then one has

Hp
cont(Xk̄, (Kq,Yn)) → Hp(Y,Kq,Y ) is an isomorphism for p < m and p+ q < 2m,

and an injection for p = m and p+q ≤ 2m. In particular, CHp
cont(Xk̄)→ CHp(Y )

is an isomorphism for p < m, and a monomorphism for p = m.

As suggested by the referee, we will briefly sketch the changes required to adapt the proof
of Theorem 7 to this case. The only place where we need some extra work is in showing that
Propositon 1 holds when Y is a complete intersection – this follows from Remark 4. The proof
now proceeds in exactly the same manner, and with the same proofs.
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Advanced Studies in Pure Mathematics, Vol. 2. North-Holland Publishing Co., Amsterdam; Masson & Cie,
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