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THE GROTHENDIECK-LEFSCHETZ THEOREM
FOR NORMAL PROJECTIVE VARIETIES

G. V. RAVINDRA AND V. SRINIVAS

Abstract

We prove that for a normal projective variety X in characteristic 0,
and a base-point free ample line bundle L on it, the restriction map
of divisor class groups Cl(X) → Cl(Y ) is an isomorphism for a general
member Y ∈ |L| provided that dim X ≥ 4. This is a generalization of
the Grothendieck-Lefschetz theorem, for divisor class groups of singular
varieties.

We work over k, an algebraically closed field of characteristic 0.
Let X be a smooth projective variety over k and Y a smooth complete

intersection subvariety of X. The Grothendieck-Lefschetz theorem states that
if dimension Y ≥ 3, the Picard groups of X and Y are isomorphic.

In this paper, we wish to prove an analogous statement for singular vari-
eties, with the Picard group replaced by the divisor class group.

Let X be an irreducible projective variety which is regular in codimension 1
(for example, X may be irreducible and normal). Recall that for such X, the
divisor class group Cl(X) is defined as the group of linear equivalence classes
of Weil divisors on X (see [10], II, §6). If dim X = d, then Cl(X) coincides
with the Chow group CHd−1(X) as defined in Fulton’s book [7]. If Y ⊂ X is
an irreducible Cartier divisor, which is also regular in codimension 1, there is
a well-defined restriction homomorphism1

Cl(X) → Cl(Y ),

determined by the rule

[D] �→ [D ∩ Y ],

where D is any irreducible Weil divisor in X distinct from Y , and [D ∩ Y ]
denotes the Weil divisor on Y associated to the intersection scheme D ∩ Y .

Received April 21, 2005 and, in revised form, May 31, 2005 and June 15, 2005. Srinivas
was partially supported by a Swarnajayanthi Fellowship of the D.S.T.

1The terminology is from the non-singular case, where one is considering restriction of
line bundles.

563



564 G. V. RAVINDRA AND V. SRINIVAS

This may be viewed as a particular case of the refined Gysin homomorphism
CHi(X) → CHi−1(Y ) defined in [7], for i = dimX − 1.

Now let X be an irreducible projective variety over k, regular in codimen-
sion 1, and let L be an ample line bundle over X, together with a linear
subspace V ⊂ H0(X, L ) which gives a base-point free ample linear system
|V| on X. Let Y ∈ |V| be a general element of this linear system; by Bertini’s
theorem, we have Ysing = Y ∩ Xsing. In this context, our main result is the
following, which is an analogue of the Grothendieck-Lefschetz theorem.

Theorem 1. In the above situation, for a dense Zariski open set of Y ∈
|V|, the restriction map

Cl(X) → Cl(Y )

is an isomorphism, if dim X ≥ 4, and is injective, with finitely generated
cokernel, if dim X = 3.

Our proof is purely algebraic, in the style of the proof of the Grothendieck-
Lefschetz theorem given in [11], Chapter IV. The above result has an appli-
cation in the theory of Deligne’s 1-motives (see [4]), which is discussed in §4
below; for this, it is of interest to have such an algebraic proof. In an ap-
pendix, we also sketch a different, transcendental proof of the theorem, when
k = C, due to N. Fakhruddin, using results from stratified Morse theory, and
properties of the weight filtration on cohomology.

1. The Grothendieck-Lefschetz theorem for big linear systems

In the situation of Theorem 1, if X̃
π−→ X is a desingularisation of X, we

have the following (Cartesian) diagram:

Ỹ ↪→ X̃

↓ ↓
Y ↪→ X

Note that Ỹ is a general member of the pull-back linear system π∗ V on
the smooth proper variety X̃, and therefore is smooth, by Bertini’s theorem;
hence Ỹ → Y is a desingularisation of Y . If X is singular, then Ỹ is a general
member of the linear system determined by π∗V ⊂ H0(X̃, π∗L ) where π∗L

is not ample, but is big and base-point free.
Let EX = π−1(Xsing) ⊂ X̃ be the exceptional locus. Then EY = EX ∩ Ỹ

is the exceptional locus for Ỹ → Y . We have natural isomorphisms

Cl(X) ∼= Cl(X \ Xsing) ∼= Pic(X \ Xsing) ∼= Pic(X̃ \ EX),

Cl(Y ) ∼= Cl(Y \ Ysing) ∼= Pic(Y \ Ysing) ∼= Pic(Ỹ \ EY ).
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This is because (i) the divisor class group is unchanged upon removal of a
closed subset of codimension ≥ 2, and (ii) the divisor class group coincides
with the Picard group, for non-singular varieties. Thus, Theorem 1 may be
viewed as an assertion about the natural restriction homomorphism

Pic(X̃ \ EX) → Pic(Ỹ \ EY ).

Also, by a standard argument (repeated below), Pic(X̃) → Pic(X̃ \ EX) is
surjective, with kernel isomorphic to the free abelian group on the irreducible
divisorial components of EX , and a similar assertion holds for Pic(Ỹ ) →
Pic(Ỹ \ EY ). Indeed, since X̃, Ỹ are non-singular, any line bundle on any
Zariski open subset extends to a line bundle on the variety, so the two re-
striction maps are surjective, with kernel given by the line bundles associated
to divisors with support in EX and EY respectively. However, if E is any
non-zero divisor on X̃ with support in EX , then O

X̃
(E) is a non-trivial line

bundle: if not, we would have a non-constant rational function f on X̃ with
divisor E; then f determines a non-zero regular function on X \Xsing, which
must extend to a regular function on the normalization Xn of X. But Xn is an
irreducible projective variety, so any global regular function on it is constant,
which is a contradiction. This argument applies to Ỹ as well.

Thus, Theorem 1 is a consequence of the following version of the Grothen-
dieck-Lefschetz theorem for a big and base-point free linear system, describ-
ing the kernel and cokernel of the restriction map on Picard groups, for the
inclusion Ỹ ↪→ X̃ of a general member of the linear system. The statement is
perhaps a bit technical, but there is an obvious geometric motivation for the
conditions stated.

Theorem 2. Let X̃ be a non-singular projective k-variety, M a big in-
vertible sheaf, V ⊂ H0(X̃, M ) a k-subspace giving a base-point free linear
system on X̃. Let ϕ : X̃ → PN

k be the morphism determined by |V |, and
X̃

π−→ X → PN
k be the Stein factorization of ϕ. Suppose dim X̃ ≥ 3. Then for

a Zariski open subset of divisors Ỹ ∈ |V |, the restriction map

ρ : Pic(X̃) → Pic(Ỹ )

has the following properties:

(a) ρ has kernel (freely) generated by the classes of the irreducible divisors
E ⊂ X̃ with dimπ(E) = 0, and ρ has a finitely generated cokernel.

(b) If F is a divisor on Ỹ supported in EY , such that OỸ (F ) ∈
image Pic(X̃), then there is a divisor E on X̃ supported in EX with
O

X̃
(E) ⊗OỸ

∼= OỸ (F ).
(c) If dim X̃ ≥ 4, then the classes of OỸ (E), with E supported in EY ,

generate Coker(ρ).
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2. Some lemmas on the vanishing of cohomology

Next, we collect together some technical lemmas used in the proof of The-
orem 2.

We first state a lemma due to Grothendieck (see [9, 13]).
Lemma 2.1 (Artin-Rees formula). Let f : V → W be a proper morphism

of Noetherian schemes, F a coherent sheaf on V , I ⊂ OW a coherent ideal
sheaf, and J = f−1I.OW the inverse image ideal sheaf on V . There exists
n0 ≥ 0 such that for all n ≥ n0, the natural map

In−n0 ⊗ Ri f∗(J n0F ) → Ri f∗(J nF )

is a surjection.
Here, J nF denotes the image of the multiplication map J n ⊗F → F .
Lemma 2.2. Let W̃

π−→ W be a proper surjective morphism, where W̃ is
an irreducible non-singular variety of dimension d, and dim W ≥ 2. Let F
be a coherent sheaf on W̃ , with Rd−1π∗F 
= 0. Then there exists an effective
divisor E ⊂ W̃ whose support has 0-dimensional image under π, such that
Rd−1 π∗F(−E) → Rd−1 π∗F is the zero map.

Proof. Let S ⊂ W be the support of Rd−1 π∗F . Then S consists of points
w ∈ W with dim π−1(w) ≥ d − 1, and under our hypotheses, this forces
dim S = 0.

Let I ⊂ OW be the ideal sheaf of S, and let

J = image
(
π∗I → O

W̃

)
be the inverse image ideal sheaf in O

W̃
. Lemma 2.1 above implies that there

exists an m0 ≥ 0 such that the map

Im−m0 ⊗ Rd−1 π∗(Jm0F) → Rd−1 π∗(JmF)

is a surjection.
We claim that, for large enough m, the map Rd−1 π∗(JmF) → Rd−1 π∗(F)

is the zero map. This is because by Lemma 2.1, we have a diagram

Im−m0 ⊗ Rd−1 π∗(Jm0F) �� ��

��

Rd−1 π∗(JmF)

��

Im−m0 ⊗ Rd−1 π∗(F) �� Rd−1 π∗(F)

where the top horizontal arrow is surjective. The bottom horizontal map is 0,
if m is large enough, since I is the ideal defining the support of Rd−1 π∗(F);
hence the right vertical arrow is 0.

Since W̃ is non-singular, there exists an effective (Cartier) divisor E0 in
W̃ such that J = O

W̃
(−E0) ⊗ J , where J ⊂ O

W̃
defines a subscheme of
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codimension ≥ 2. In particular, we have inclusions of ideal sheaves Jm ⊂
O

W̃
(−mE0) ⊂ O

W̃
.

Now consider the exact sequence

0 → JmF → F(−mE0) → F(−mE0) ⊗OmZ → 0.

Here mZ ⊂ W̃ is the subscheme defined by the ideal sheaf Jm ⊂ O
W̃

. This
gives a long exact sequence

Rd−1 π∗(JmF) → Rd−1 π∗(F(−mE0)) → Rd−1 π∗(F(−mE)|mZ).

We note that the last term is zero since the codimension of Z in W̃ is ≥ 2.
Hence the first arrow is a surjection.

To conclude the proof of the lemma, we note that the (zero) map
Rd−1 π∗(JmF) → Rd−1 π∗(F) factors as

Rd−1 π∗(JmF) → Rd−1 π∗(F(−mE0)) → Rd−1 π∗(F).

Since the first map is a surjection, the second is necessarily the zero map. The
lemma thus holds with E = mE0, where m is sufficiently large. �

Another version of the above lemma is available, in a situation analogous
to Lemma 3.1.

Lemma 2.3. Let W̃
π−→ W be a desingularisation of a normal projective

variety of dimension d and F be a coherent sheaf on W̃ . Assume that there
exists an effective divisor E on W̃ with π-exceptional support, such that −E

is π-ample.

(a) There exists a positive integer r0 such that Ri π∗F(−rE) = 0 for all
r ≥ r0 and all i > 0.

(b) Suppose L is ample on W , and F is locally free on W̃ . Then there
exists a positive integer r1 such that for each r ≥ r1, and for all n ≥ n1

(depending on r), we have

Hi(W̃ ,F(rE) ⊗ π∗L−n) = 0 for all i < d,

Hi(W̃ ,F(−rE) ⊗ π∗Ln) = 0 for all i > 0.

Proof. The assertion in (a) is just Serre’s vanishing theorem, since O
W̃

(−E)
is π-ample. The two assertions in (b) are equivalent (with perhaps different
values of r1, n1), using Serre duality on W̃ . The second assertion in (b) follows
from (a), using the Leray spectral sequence for π, and Serre’s vanishing on W

for the ample line bundle L. �
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We recall a form of the Grauert-Riemenschneider theorem which we need
below.

Theorem 3. Let W be a non-singular projective variety over k, and M

a big and base-point free line bundle on W . Then Hi(W, M−1) = 0 for
i < dimW .

Proof. A proof of this statement can be found in [6], Cor. 5.6(b). �

3. Proof of Theorem 2

3.1. Some preliminary reductions. From now on, we fix the following
notation (used in Theorem 2): X̃ is a smooth projective k-variety, M a big
line bundle on X̃, V ⊂ H0(X̃,M) a subspace giving a linear system |V |
without base points, Ỹ a general member of this linear system, π : X̃ → X

obtained by Stein factorization of the morphism determined by |V |, Ỹ → Y

the induced morphism (which is also the Stein factorization of the restriction
to Ỹ of the original morphism on X̃), and L the invertible sheaf on X such
that π∗L = M .

We first make a further reduction.
Lemma 3.1. To prove Theorem 2, it suffices to do it in the case when the

morphism π : X̃ → X (obtained by Stein factorization) has a purely divisorial
exceptional locus, with non-singular irreducible components, and there exists
a π-ample divisor of the form −E where E is an effective divisor with π-
exceptional support.

Proof. Since X̃ → X and Ỹ → Y are obtained from Stein factorizations of
the morphisms determined by the base-point free linear system |V |, we have
that X, Y are normal projective varieties, such that Y is a Cartier divisor in
X. There is an induced restriction homomorphism Cl(X) → Cl(Y ).

It is easy to see that the conclusions of Theorem 2 hold for Pic X̃ →
Pic Ỹ if and only if the conclusions of Theorem 1 hold for Cl(X) → Cl(Y )
(i.e., the restriction map on class groups is an isomorphism if dim X ≥ 4, and
an inclusion with finitely generated cokernel if dim X = 3).

In particular, if we replace X̃ → X by another resolution of singularities
π′ : X̃ ′ → X, and Ỹ by the inverse image Ỹ ′ of Y in that resolution, it suffices
to prove Theorem 2 for this new pair (X̃ ′, Ỹ ′), and the pull-back linear system
from X (note that there is an open subset of the linear system consisting of
divisors which are “general” for both X̃ and X̃ ′).

Now by Hironaka’s theorem, we can find a resolution of singularities π′ :
X̃ ′ → X such that the exceptional locus is divisorial, with non-singular irre-
ducible components. Further, there is an effective exceptional divisor E such
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that −E is π′-ample; this is because the resolution may be obtained by suc-
cessive blow-ups at centres lying over the singular locus, so that the resolution
may be viewed as a blow-up of an ideal sheaf whose radical defines the singu-
lar locus. The pull-back ideal sheaf is an invertible sheaf which is π′-ample,
and is the ideal sheaf on X̃ ′ of some subscheme with exceptional support. �

Remark 3.2. This reduction is needed only in the proof that, if dimX ≥ 4,
then Cl(X) → Cl(Y ) is surjective.

We follow the line of proof of the Grothendieck-Lefschetz theorem as given
in [11]. The idea is to pass from Ỹ to the formal completion X of X̃ along Ỹ .
Then from X we pass to a neighbourhood U of Ỹ in X̃, using a version of the
Lefschetz conditions, and then to X̃ itself.

Lemma 3.3. With notation as above, if dim X̃ ≥ 4, then Pic(X) ∼= Pic(Ỹ ).
If dim X̃ = 3, then Pic(X) → Pic(Ỹ ) is injective, with finitely generated
cokernel.

Proof. Consider the short exact sequence

0 → M−m ⊗OỸ → O×
Xm+1

→ O×
Xm

→ 0

where Xm is the mth infinitesimal neighbourhood of Ỹ ⊂ X̃ and in particular
X1 = Ỹ . As usual, O×

T denotes the (multiplicative) sheaf of invertible regular
functions on T . The first horizontal sheaf map is the “exponential map”,
defined on sections by s �→ 1+s. Taking the cohomology long exact sequence,
one has:

→ H1(Ỹ , M−m ⊗OỸ ) → H1(X̃m+1,O×
Xm+1

)

→ H1(Xm,O×
Xm

) → H2(Ỹ , M−m ⊗OỸ ) →

By the Grauert-Riemenschneider vanishing theorem (Theorem 3 above),
the extreme terms vanish if dim Ỹ ≥ 3, and thus we have Pic(Xm+1) ∼=
Pic(Xm) for each m ≥ 1. From the Grothendieck formula (see for example
[10], II, Ex. 9.6,)

Pic(X) ∼= lim
←−
m

Pic(Xm),

we then get Pic(X) ∼= Pic(Ỹ ).
If dim Ỹ = 2, then the same argument shows that Pic(Xm) → Pic(Ỹ ) is

injective for each m. On the other hand, H1(X̃,O
X̃

) → H1(Ỹ ,OỸ ) is an iso-
morphism, since Hi(X̃,O

X̃
(−Ỹ )) vanishes for i<3 (Grauert-Riemenschneider

vanishing, Theorem 3 above). Hence Pic0(X̃) → Pic0(Ỹ ) is an isogeny, and
in particular is surjective. Hence Coker Pic(X̃) → Pic(Ỹ ) is a quotient of the
Neron-Severi group of Ỹ , and is finitely generated. A similar conclusion then
clearly holds for CokerPic(X) → Pic(Ỹ ). �
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3.2. The condition Lef(X̃, Ỹ ). In the proof of the Grothendieck-Lef-
schetz theorem (see [11], Ch. IV), one considers the Lefschetz condition which
implies the injectivity of the morphism between the Picard groups. We will
show that it holds in our situation as well.

If E is a coherent sheaf on some open neighbourhood of Ỹ in X̃, then
Ê denotes the corresponding (formal) coherent sheaf on the formal comple-
tion X of X̃ along Ỹ . With this notation, recall the following definition (see
[11], page 164; this is a slight modification of Grothendieck’s definition in [9],
page 112, as remarked by the referee).

Definition 1. The pair (X̃, Ỹ ) satisfies the Lefschetz condition Lef(X̃, Ỹ )
if for every open set U ⊂ X̃ containing Ỹ , and every locally free sheaf E on
U , there exists an open set U ′ with Ỹ ⊂ U ′ ⊂ U such that the natural map

H0(U ′, E|U ′) → H0(X, Ê )

is an isomorphism.
Note that there is a finite (perhaps empty) set S0 ⊂ X of (closed) points

x ∈ X with dimπ−1(x) = dim X −1. Since Ỹ is general, we may assume that
Y ∩S0 = ∅. Further note that any divisor in X̃ whose support is disjoint from
Ỹ must be supported in π−1(S0). If E is any divisor on X̃ with support in
π−1(S0), then Ô

X̃
(E) ∼= OX.

Recall that the dual of a coherent sheaf N on X̃ is N ∨=HomO
X̃

(N ,O
X̃

);
recall also that N is reflexive if N → (N ∨)∨ is an isomorphism.

Lemma 3.4. Let N be a reflexive, coherent sheaf on X̃ which is locally
free in a neighbourhood of Ỹ . Then there exists an effective divisor E on X̃,
where either E = 0 or dim π(supp E) = 0, such that the natural map

H0(X̃, N (E)) → H0(X, N̂ )

is an isomorphism.

Proof. Let n = dim X̃. Using Serre duality on X̃ and formal duality on X

(see [11], III, Theorem 3.3), we reduce to proving that

Hn
Ỹ

(X̃, N ∨(−E) ⊗ ω
X̃

) → Hn(X̃, N ∨(−E) ⊗ ω
X̃

)

is an isomorphism, for appropriate E. Here, we note that though N may not
be locally free, Serre duality implies that the dual of the finite-dimensional
vector space Hn(X̃, N ∨(−E) ⊗ ω

X̃
) is

Hom(N ∨(−E) ⊗ ω
X̃

, ω
X̃

) = H0(X̃, N (E)),

since N is reflexive.
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For any effective divisor E supported in π−1(S0), consider the commutative
diagram with exact rows:

Hn−1(X̃ \ Ỹ , N ∨(−E) ⊗ ω
X̃

) δ1−→ Hn
Ỹ

(X̃, N ∨(−E) ⊗ ω
X̃

)
↓ φ1 ↓ φ2

Hn−1(X̃ \ Ỹ , N ∨ ⊗ ω
X̃

) δ2−→ Hn
Ỹ

(X̃, N ∨ ⊗ ω
X̃

))

� Hn(X̃, N ∨(−E) ⊗ ω
X̃

)
↓ φ3

� Hn(X̃, N ∨ ⊗ ω
X̃

)

The last maps in the sequences are onto since X̃ \ Ỹ has cohomological
dimension at most n−1. Moreover, the map φ2 is an isomorphism by excision
since Ỹ ∩E = ∅. The Leray spectral sequence for the map π : X̃ \ Ỹ → X \Y

applied to the cohomology group Hn−1(X̃\Ỹ , N ∨(−E)⊗ω
X̃

) has Ep,q
2 = 0 for

p > 0 (X\Y is affine!). By Lemma 2.2, there exists an E as in the statement of
the lemma such that the map Rn−1 π∗(N ∨(−E)⊗ω

X̃
) → Rn−1 π∗(N ∨⊗ω

X̃
)

is the zero map, and thus the map φ1 is the zero map, for this choice of E.
This in turn implies that the corresponding map δ1 is zero.

We thus have the following commutative diagram:

Hn
Ỹ

(X̃, N ∨(−mE) ⊗ ω
X̃

) ∼= Hn(X̃, N ∨(−mE) ⊗ ω
X̃

)
↓ ∼= ↓

Hn
Ỹ

(X̃, N ∨ ⊗ ω
X̃

) � Hn(X̃, N ∨ ⊗ ω
X̃

)

Dualising, we have
H0(X̃, N (mE)) ∼= H0(X, N̂ )

�
Corollary 3.5. The condition Lef(X̃, Ỹ ) holds.
Proof. For any open set U ⊃ Ỹ in X̃, and any locally free sheaf NU on U ,

we can find a reflexive sheaf N on X̃ extending NU , i.e., with N |U∼= NU

(first choose a coherent extension, then replace it by its double dual). For
a suitable divisor E with dim(suppE) = 0, we have a commutative diagram
induced by restriction maps:

H0(X̃, N (E)) ∼= H0(X, N̂ )
↘ ↗

H0(U, N (E))

In particular, for any open V such that Ỹ ⊂ V ⊂ U and V ∩ supp E = ∅ the
above factorisation gives a surjection

H0(V, N (E)) ∼= H0(V, N ) � H0(X, N̂ ).
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But since N is locally free on V and V is irreducible, the map is also an
injection. Thus Lef(X̃, Ỹ ) holds. �

Corollary 3.6. For normal X, Y as above, the condition Lef(X, Y ) holds.

Proof. Since X and Y are normal, one has π∗OX̃
∼= OX and π∗OỸ

∼= OY .
Lef(X, Y ) then follows from Lef(X̃, Ỹ ) applied to sheaves which are pull-backs
of locally free sheaves on neighbourhoods of Y in X. �

Corollary 3.7. The kernel of the restriction map Pic(X̃) → Pic(Ỹ ) is
freely generated by the classes of irreducible effective divisors which map to
points in X.

Proof. It is obvious that the classes of such divisors are contained in the
kernel since Y ∩S0 = ∅ (as Y is general). On the other hand, if N is a line bun-
dle on X̃ with N ⊗OỸ

∼= OỸ , then we first note that N̂ ∼= OX by Lemma 3.3,
and there is thus an invertible element of H0(X, N̂ ); by Lemma 3.4, this for-
mal global section is obtained from a global section on X̃ of N (E) for some
divisor E on X̃ supported over S0 ⊂ X. This section of N (E) has no zeroes
when restricted to Ỹ , so its divisor of zeroes E′ is also supported over S0, and
hence N ∼= O

X̃
(E′ − E). �

Corollary 3.8. For each n ≥ 0, and any effective divisor F on X̃ with
π-exceptional support, the natural maps

H0(X̃,M⊗n) → H0(X̃,M⊗n(F )) → H0(X,M̂⊗n(F ))

are isomorphisms.

Proof. Since M = π∗L , where L is invertible on the normal variety X,
and π∗OX̃

= OX , it follows that M⊗n ↪→ M⊗n(E + F ) is an isomorphism
on global sections for any effective divisor E supported in π−1(S0), and any
n ≥ 0. �

3.3. The condition ALeff(X̃, Ỹ ). We now introduce a second condition
ALeff(X̃, Ỹ ) (Almost Effective Lefschetz), which is a variation of Grothen-
dieck’s Effective Lefschetz Condition (denoted by “Leff” in [11]). In the proof
in [11] of the Grothendieck-Lefschetz theorem, the condition Leff is used to
show the surjectivity of the restriction map between the Picard groups; ALeff
has a similar role here.

Definition 2. We say the pair (X̃, Ỹ ) satisfies the ALeff condition if

(1) Lef(X̃, Ỹ ) holds and
(2) for any (formal) invertible sheaf E on X there exists an open set U

containing Ỹ and an invertible sheaf E on U , together with a map
Ê → E , which is an isomorphism outside the exceptional locus of
π : Ỹ → Y .
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Note that the formal scheme X is a ringed space with underlying topological
space Ỹ , so the second condition above is meaningful.

For any formal coherent sheaf F on X, we will make the following abuses
of notation: For any divisor D on X̃, let F (D) denote the formal coherent
sheaf F ⊗OX

Ô
X̃

(D), and for any coherent G on X̃, let F ⊗ G denote the
formal coherent sheaf F ⊗OX

Ĝ.
Proposition 3.9. Let X̃, Ỹ be as in Lemma 3.1, with dim X̃ ≥ 3, and

let E be an effective divisor on X̃ with exceptional support such that −E is
π-ample. Then for any formal locally free sheaf F on X, there exists r > 0
such that for any m ≥ 0, if we set

Gm = F (rE)⊗ M⊗m,

then for all m � 0,

Coker
(
H0(X, Gm) ⊗k OX → Gm

)
is supported on Ỹ ∩ E.

Proof. The proof is in several steps. Let Fn = F ⊗OXn
, for n ≥ 1, be the

sequence of locally free sheaves (on the sequence of schemes Xn) associated
to the formal locally free sheaf F . We have exact sequences

0 → F ⊗ M⊗m−n → F ⊗ M⊗m → Fn ⊗ M⊗m → 0

for each m ∈ Z and n > 0, where the ideal sheaf of Ỹ in O
X̃

is identified
with M−1.

Lemma 3.10. Let d = dim Ỹ . There exists r0 > 0 such that, for each
r ≥ r0, all m � 0 (depending on r), and all i > 0, we have

Hi(Ỹ , F1 ⊗O
X̃

(−rE) ⊗ M⊗m) = 0,

Hd−i(Ỹ , F1 ⊗O
X̃

(rE) ⊗ M⊗−m) = 0.

Proof. We have that M = π∗L where L is ample on X. Now apply
Lemma 2.3(b). �

Lemma 3.11. There exists r0 > 0 so that, for any r ≥ r0 and any m ∈ Z,
the vector space

H1(X, F (rE)⊗ M⊗m)

is finite dimensional.
Proof. We have exact sheaf sequences

0 → F1(rE)⊗ M⊗m−n → Fn+1(rE) ⊗ M⊗m → Fn(rE) ⊗ M⊗m → 0.

Since dim Ỹ ≥ 2, we have for each given m that

H1(Ỹ , F1(rE) ⊗ M⊗m−n) = 0
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provided n � m, from Lemma 3.10; thus for n � m,

H1(Xn+1, Fn+1(rE)⊗ M⊗m) → H1(Xn, Fn(rE) ⊗ M⊗m)

is injective. Hence, in the Grothendieck formula

H1(X, F (rE)⊗ M⊗m) = lim
←−
n

H1(Xn, Fn(rE)⊗ M⊗m),

the maps in the inverse system on the right are, for n � 0, injective maps
of finite-dimensional k-vector spaces (the above inverse limit formula holds,
because the corresponding inverse system for H0 is an inverse system of
finite-dimensional k-vector spaces, hence satisfies the Mittag-Leffler condition
(ML)). Thus the inverse limit H1(X, F (rE) ⊗ M⊗m) is a finite-dimensional
vector space. �

Now consider the exact sequences

0 → F (−rE)⊗ M⊗m → F (−rE)⊗ M⊗m+1 → F1(−rE) ⊗ M⊗m+1 → 0.

Lemma 3.12. There exists r1 > 0 so that, for each r ≥ r1, and all m � 0
(depending on r), the map

H1(X, F (−rE)⊗ M⊗m) → H1(X, F (−rE)⊗ M⊗m+1)

is surjective.
Proof. It suffices to see that

H1(Ỹ , F1(−rE) ⊗ M⊗m+1) = 0.

This follows from Lemma 3.10. �
Fix an r large enough so that the conclusions of Lemma 3.11 and 3.12 hold.

Define

Vm = image H1(X, F (−rE)⊗ M⊗m)
βm−−→ H1(X, F (rE)⊗ M⊗m),

where the map is induced by the natural inclusion O
X̃

(−rE) → O
X̃

(rE),
determined by the tautological section of O

X̃
(2rE). From Lemma 3.11, Vm

is a finite-dimensional vector space, and from Lemma 3.12, the natural maps

H1(X, F (−rE)⊗ M⊗m) → H1(X, F (−rE)⊗ M⊗m+1)

induce surjections Vm → Vm+1, for all large enough m. Hence Vm → Vm+1

is in fact an isomorphism, for all large enough m. Consider the commutative
diagram of formal sheaves with exact rows:

0→F (−rE) ⊗ M⊗m→F (−rE)⊗ M⊗m+1→F1(−rE) ⊗ M⊗m+1→0
↓ ↓ ↓

0→ F (rE)⊗ M⊗m → F (rE)⊗ M⊗m+1 → F1(rE) ⊗ M⊗m+1 →0
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The vertical arrows are induced by the natural inclusion O
X̃

(−rE) → O
X̃

(rE)
(as above, in defining Vm). There is an induced cohomology diagram with
exact rows:

H0(X, F (−rE)⊗ M⊗m+1)→H0(Ỹ , F1(−rE) ⊗ M⊗m+1)
↓ ↓ α

H0(X, F (rE)⊗ M⊗m+1) → H0(Ỹ , F1(rE) ⊗ M⊗m+1)

→H1(X, F (−rE)⊗ M⊗m)→H1(X, F (−rE)⊗ M⊗m+1)
↓ βm ↓ βm+1

→ H1(X, F (rE)⊗ M⊗m) → H1(X, F (rE)⊗ M⊗m+1)

Since Vm → Vm+1 is an isomorphism, we see that

image
(
H0(X, F (rE)⊗ M⊗m+1) → H0(Ỹ , F1(rE)⊗ M⊗m+1)

)
contains the subspace

image H0(Ỹ , F1(−rE) ⊗ M⊗m+1).

Since m � 0, the global sections of the sheaf F1(−rE)⊗M⊗m+1 generate it
on Ỹ \E (since the direct image of this sheaf on Y is globally generated, and
Ỹ → Y is an isomorphism outside Ỹ ∩ E). Hence, the natural map between
coherent formal sheaves

H0(X, F (rE)⊗ M m+1) ⊗k OX → F (rE)⊗ M⊗m+1

restricts to a surjection on Ỹ \ E. This proves Proposition 3.9 �
Remark 3.13. The referee has pointed out that, in Proposition 3.9, we

can in fact get the stated conclusion for any integer r, and all sufficiently
large m (depending on r). Consider the pairs (r, m) for which the conclusion
of the proposition holds. Given r, we have seen already that there is a positive
integer r0 > r so that (i) the conclusion holds for (r0, m) for all m ≥ m0, say,
and (ii) so that O

X̃
(−(r0 − r)E) is very ample for π. Then choose m1 so that

π∗OX̃
(−(r0 − r)E) ⊗OX L⊗m is globally generated for all m ≥ m1. Then

O
X̃

(−(r0 − r)E) ⊗ M⊗m is globally generated, for all m ≥ m1. Hence the
conclusion of the proposition holds for (r, m) with m ≥ m0 + m1.

Proposition 3.14. For X̃, Ỹ as above, the condition ALeff(X̃, Ỹ ) holds.
Proof. By Proposition 3.9, for any invertible formal sheaf F on X, one has

a map of formal locally free sheaves

(1) (M̂⊗−M )⊕s(−F1) → F → 0

for some M � 0, s > 0, with cokernel supported in Ỹ \ E, where F1 is an
effective divisor on X̃ with exceptional support.
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Similarly, for the dual formal line bundle F∨, we have a map, surjective
outside the exceptional locus,

(M̂⊗−N )⊕t(−F2) → F∨ → 0

for some N � 0, t > 0. Dualizing this we have an injection

(2) F → (M̂⊗N )⊕t(F2)

which is a split inclusion on stalks at any point of Ỹ \ E.
Composing the maps in (1) and (2), we have a map between formal locally

free sheaves

(3) (M̂⊗−M )⊕s(−F1)
τ̂−→ (M̂⊗N )⊕t(F2)

such that Im τ̂ ↪→ F with cokernel supported in Ỹ \ E.
The map τ̂ may be described by an s × t matrix of elements of

H0(X, M̂⊗N+M (F1 + F2)).

By the condition Lef(X̃, Ỹ ) (or rather Corollary 3.8),

H0(X, M̂⊗N+M (F1 + F2)) ∼= H0(X̃, M⊗N+M ),

so that the map τ̂ is the formal completion of a map of locally free sheaves
on X̃

(M⊗−M )⊕s(−F1)
τ−→ (M⊗N )⊕t(F2).

Thus we have Îm(τ ) ↪→ F , with cokernel supported on Ỹ \ E.
Now Im(τ ) is a coherent sheaf on X̃, such that for any point y ∈ Ỹ \ E,

the stalk at y satisfies

Im(τ )y ⊗O
X̃,y

Ô
X̃,y

∼= Fy
∼= OX,y

∼= Ô
X̃,y

,

(where the completions are with respect to the ideal defining Ỹ ). Hence Im(τ )
is a coherent sheaf of rank 1, which is invertible on X̃ at all points in Ỹ \ E.
Since X̃ is non-singular, the double dual of Im(τ ) is an invertible sheaf F̃ on
X̃, such that

F̃ ⊗OỸ |Ỹ \E
∼= F1 |Ỹ \E .

Thus we have ALeff(X̃, Ỹ ). �
Remark 3.15. The above argument, applied to an arbitrary formal locally

free sheaf F , implies the existence of a coherent, reflexive sheaf F together
with an injective map F̂ → F which restricts to an isomorphism on Ỹ \ E.
We do not know if F can be chosen to be locally free in a neighbourhood of Ỹ ;
perhaps the “natural” extension to our situation of the Grothendieck “Leff”
condition is for this property to hold.
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Corollary 3.16. If dim X̃ ≥ 4, the cokernel of the restriction map Pic(X̃)
→ Pic(Ỹ ) is generated by exceptional divisors of Ỹ which map to points in Y .

Proof. By Lemma 3.3 one has Pic(X) ∼= Pic(Ỹ ). Let N be a line bundle on
Ỹ , and N its unique lift to a formal line bundle on X. Proposition 3.14 implies
that there exists an invertible sheaf G on X̃ such that Ĝ ∼= N on Ỹ \E. Thus
G |Ỹ ⊗N∨ is a line bundle on Ỹ which has trivial restriction to Ỹ \E, and is
thus the line bundle associated to a divisor on Ỹ with exceptional support. It
remains to show that, up to tensoring with a line bundle restricted from X̃,
it corresponds to a sum of exceptional divisors for Ỹ → Y with 0-dimensional
image in Y .

Let E1, . . . , Er be the irreducible exceptional divisors of X̃ → X, indexed
so that for some 0 ≤ s ≤ t ≤ r, we have:

(i) E1, . . . , Es are the irreducible divisors in X̃ with 0-dimensional image
in X.

(ii) Es+1, . . . , Et are the irreducible divisors with 1-dimensional image
in X

(iii) Et+1, . . . , Er are the irreducible exceptional divisors for X̃ → X whose
images in X have dimension ≥ 2.

Since Ỹ ∈ |V | is a general member, we have:

(a) Ỹ ∩ Ei = ∅ for 1 ≤ i ≤ s.
(b) For each s + 1 ≤ i ≤ t, let Ỹ ∩ Ei =

⋃si

j=1 Fij be the irreducible
(equivalently connected) components of the intersection; then Ỹ ∩Ei

is non-singular, reduced, and has no common irreducible component
with Ỹ ∩ Ei′ for any i′ 
= i.

(c) For t + 1 ≤ i ≤ r, Fi = Ỹ ∩ Ei is reduced and irreducible.

Here, (a) is clear, and (c) follows from Bertini’s theorem. For (b), note that
the linear system |V | restricts to a base-point free linear system |Vi | on
Ei, and the Stein factorization of the corresponding morphism has the form
πi : Ei → Ci for some irreducible curve Ci, such that |Vi | is the pull-back
of a linear system from Ci. Hence the general member of |Vi | is a disjoint
union of a finite set of fibers of Ei → Ci, over points of Ci for which Ei → Ci

is smooth.
Thus, the line bundle determined by an irreducible exceptional divisor F

on Ỹ lies in the image of the Pic(X̃) → Pic(Ỹ ), except possibly when F is one
of the Fij in (b) above, and the image of each such Fij in Y is a point. �

Lemma 3.17. Assume dim X̃ ≥ 3, and Ỹ ∈ |V | is general. Let F be a
divisor on Ỹ with exceptional support, such that OỸ (F ) is the restriction of a
line bundle from X̃. Then there is a divisor F̃ on X̃ with exceptional support
such that O

X̃
(F̃ ) |Ỹ = OỸ (F ).
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Proof. From the description of the irreducible exceptional divisors of Ỹ →
Y given in (a), (b), and (c) of the proof of Corollary 3.16 above, we see that
it suffices to assume (in the notation of (b)) that

(4) F =
t∑

i=s+1

∑
j

nijFij ,

for some integers nij , s + 1 ≤ i ≤ t, 1 ≤ j ≤ si. Here, the divisors

Fi :=
si∑

j=1

Fij

for each s + 1 ≤ i ≤ t satisfy O
X̃

(Ei) |Ỹ ∼= OỸ (Fi).
So it suffices to show: If F in (4) is such that OỸ (F ) is the restriction of a

line bundle from X̃, then nij is independent of j, for each s + 1 ≤ i ≤ t. This
is done using a suitable computation with intersection numbers.

Let T ⊂ X̃ be a general complete intersection of dimension 3, in some
projective embedding of X̃. Then by Bertini’s theorem, we may assume that:

(i) T is irreducible and non-singular, and the scheme theoretic intersec-
tion T ∩ Ei is a reduced, irreducible surface, for each 1 ≤ i ≤ r.

(ii) The scheme theoretic intersection Z := T ∩ Ỹ is a (reduced, irre-
ducible) non-singular surface in T .

(iii) Z ∩ Ei = ∅ for 1 ≤ i ≤ s, and Z ∩ Ei is a reduced, irreducible curve
for each t + 1 ≤ i ≤ r.

(iv) Z ∩Fij is a reduced, irreducible curve in Z, for each s+1 ≤ i ≤ t, for
all j.

If T0 is the image of T in X, let T → T0 be the normalization. Then
πT : T → T is a resolution of singularities, such that T ∩Ei, 1 ≤ i ≤ r are the
irreducible exceptional divisors of πT . The surface πT (Z) = Z ⊂ T is a normal
Cartier divisor in T (it is a general member of the ample, base-point free linear
system on T determined by |V |). Let πZ : Z → Z be the restriction of πT ;
then πZ is a resolution of singularities of a normal, projective surface, with
irreducible exceptional curves Z ∩Ei, t+1 ≤ i ≤ r and Z ∩Fij , s+1 ≤ i ≤ t,
1 ≤ j ≤ si.

Since the linear equivalence class of F =
∑

i,j nijFij is assumed to lie in the
image of the restriction Pic X̃ → Pic Ỹ , we have that OZ(

∑
i,j nijZ∩Fij) is in

the image of Pic T → Pic Z. For each i, the Fij are irreducible components of
general fibers of Ei → Ci. Hence Fij∩Z are irreducible components of general
fibers of T ∩Ei → Ci, and are thus algebraically equivalent as 1-cycles on the
smooth projective 3-fold T . Hence, for any divisor D on T , the intersection
number (D · (Fij ∩ T ))T is independent of j, for each i. Since Fij ∩ Z is a
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Cartier divisor in Z, if DZ is any divisor on Z representing OT (D) |Z , the
projection formula gives an equation between intersection numbers

(5) (DZ · (Fij ∩ Z))Z = (D · (Fij ∩ T ))T

computed on the surface Z and the 3-fold T , respectively.
Apply this to our divisor F |Z=

∑
i,j nijFij ∩Z, which is assumed to be of

the form DZ for some divisor D on T . We get that

(6) (
∑
ij

nij(Fij ∩ Z) · (Fi′j′ ∩ Z))Z

is independent of j′, for each s + 1 ≤ i′ ≤ t.
Since Fij ∩ Z are irreducible exceptional divisors for πZ : Z → Z, which is

a resolution of singularities of a normal surface, the intersection matrix

(Fij ∩ Z, Fi′j′ ∩ Z)Z

is negative definite. Regard (6) as a system of linear equations satisfied by
the nij , with coefficients given by intersection numbers. The solutions of the
system (6) for the “unknowns” nij correspond to elements in the Z-span of the
Fij , which are in the orthogonal complement of the span of all the differences
(Fij1 ∩ Z) − (Fij2 ∩ Z), for all 1 ≤ j1 < j2 ≤ si, and all s + 1 ≤ i ≤ t.
The span of these differences clearly has co-rank t − s, so the orthogonal
complement has rank t − s. We have t − s elements

∑si

j=1(Fij ∩ Z) which
lie in the orthogonal complement, which are clearly independent, so must
span the orthogonal complement after tensoring with Q. This implies that
FZ =

∑
i,j nij(Fij ∩ Z) must be a rational linear combination of the divisors∑si

j=1(Fij∩Z), and so nij must be independent of j, for each i, as desired. �
Assume now that dim X ≥ 4. The conditions Lef and ALeff imply that we

have the following diagram, with exact rows and columns:

0 0
↓ ↓

0 → I
′

X → Z[EX ] → Z[EY ] → I
′

Y → 0
↓ ↓ ↓ ↓

0 → IX → Pic(X̃) → Pic(Ỹ ) → IY → 0
↓ ↓

Cl(X) → Cl(Y )
↓ ↓
0 0

Here Z[EX ] and Z[EY ] are the subgroups in the respective Picard groups freely
generated by the irreducible exceptional divisors in X̃ and Ỹ , and IX , I ′X , IY ,
I ′Y are defined by the exactness of the rows. Clearly I ′X , I

′

Y are generated
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by the irreducible exceptional divisors in X̃ and Ỹ , respectively, which have
0-dimensional image under π.

It is clear that IX
∼= I

′

X : it is an injection since Z[EX ] ↪→ Pic(X̃) is so. That
it is a surjection follows from Corollary 3.7. Also Corollary 3.16 shows that
that the map I

′

Y → IY is surjective, while it is also injective, by Lemma 3.17.
Hence, from a diagram chase, we see that Cl(X) → Cl(Y ) is an isomorphism,
completing the proof of Theorem 2 when dim X̃ ≥ 4.

By a similar argument, Corollary 3.7 and Lemma 3.17 imply that, if dim X̃

= 3, then Cl(X) → Cl(Y ) is injective. The finite generation of the cokernel
results from the fact that Pic0 X̃ → Pic0 Ỹ is an isogeny (and hence an iso-
morphism), since the map on tangent spaces H1(X̃,O

X̃
) → H1(Ỹ ,OỸ ) is an

isomorphism, from Theorem 3. This completes the proof of Theorem 2 in the
case dim X̃ = 3.

For possible use elsewhere, we make explicit the following result, more or
less implicit above. We thank the referee for some illuminating remarks about
formal Cartier divisors.

Theorem 4. Let X̃ be as in Lemma 3.1, with dim X̃ = 3, and let E be an
effective divisor on X̃ with exceptional support such that −E is π-ample. Let
Ỹ ⊂ X̃ be a general member of the linear system |V |, and let X denote the
formal completion of X̃ along Ỹ . Then the map

ρX : Pic X̃ → Pic X

has the following properties.

(i) The kernel of ρX is freely generated by the classes of irreducible π-
exceptional divisors with 0-dimensional image under π.

(ii) The cokernel of ρX is generated by the classes of exceptional divisors
F on Ỹ such that dim π(supp F ) = 0 (in particular, the corresponding
line bundles on Ỹ do extend to formal line bundles).

(iii) With the notation introduced above (proof of Corollary 3.16), let A

denote the quotient of the free abelian group on Fij, s + 1 ≤ i ≤ t,
1 ≤ j ≤ si, by the subgroup generated by

∑si

j=1 Fij, for s + 1 ≤ i ≤ t.
Then there is a natural isomorphism Coker(ρX) ∼= A.

(iv) Let π : X̃ → X, π : Ỹ → Y be the Stein factorizations. There is a
natural isomorphism

Coker(Cl (X) → Cl (Y )) ∼= Coker(Pic (X) → Pic (Ỹ )).

Most of these conclusions have already been obtained in the course of the
above proof. The only remaining assertion to prove is that all the line bundles
OỸ (Fij) do extend to formal line bundles on X. We thank the referee for
suggesting a proof.
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In fact, for each i as in (iii), the divisor Ei defines a formal Cartier divisor
Êi on X with support Ei ∩ Ỹ , which is a disjoint union of the closed sets Fij ,
1 ≤ j ≤ si. Hence each connected component of the support defines a formal
Cartier divisor F̂ij on X (one may first check a similar assertion for Cartier
divisors on each of the schemes Xm, all of which have reduced scheme Ỹ , for
example). The associated formal line bundles are the desired extensions.

4. Application to 1-motives

In [4], §10, Deligne defined 1-motives over k as complexes [L → G], where
L is a lattice (free abelian group of finite rank with a continuous action of the
absolute Galois group of k), and G a semi-abelian k-variety. This gives an
algebraic way of “defining” certain (co)homology groups of a variety, in a man-
ner analogous to the way in which the Jacobian of a non-singular projective
curve “defines” its first (co)homology group algebraically. Over C, 1-motives
have a transcendental description using certain special types of mixed Hodge
structures, and there is an equivalence of categories between 1-motives over C

and the full subcategory of these special types of mixed Hodge structures. In
particular, there is an underlying philosophy (“Deligne’s Conjecture”, some
aspects of which have been proved in [1], [14]) that, if one can construct a
1-motive transcendentally using some “part” of the mixed Hodge structure
of an algebraic variety, then there must be an algebraic construction of that
1-motive as well, valid over more general ground fields. Further, if some oper-
ation between 1-motives can be constructed transcendentally, there must be
an algebraic construction of it as well, and properties of such an operation
(e.g. injectivity, isomorphism) should have algebraic proofs.

In [2], a 1-motive Alb+(X), the cohomological Albanese 1-motive, has been
associated to any variety X over a field k of characteristic 0. If X is proper,
this is a semi-abelian variety over k, and if X is also non-singular, it coin-
cides with the “classical” Albanese variety. If k = C, Alb+(X) can be con-
structed analytically, using the mixed Hodge structure on H2n−1(X, Z(n)),
where n = dimX, in a manner generalizing the analytic construction of the
Albanese variety of a non-singular proper complex variety. For a proper,
possibly singular complex variety X, one has a formula

Alb+(X)(C) = Ext1MHS(Z, H2n−1(X, Z(n)))

where the right side is the group of extensions in the (abelian) category of
mixed Hodge structures.
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If X is projective, Y ⊂ X is a (reduced, effective) Cartier divisor, then
there is a Gysin map Alb+(Y ) → Alb+(X), constructed algebraically in [2],
and which in case k = C corresponds to the Gysin map (modulo torsion)
H2n−3(Y, Z(n − 1)) → H2n−1(X, Z(n)) in topology (which is a morphism of
mixed Hodge structures).

In case X is projective over C, and Y is a general hyperplane section (here,
“general” means “in a Zariski open set of the parameter variety”), then it
is shown in [3] that Alb+(Y ) → Alb+(X) is an isomorphism when dimX =
n ≥ 3; this is an important step in the proof of the Roitman theorem for
singular projective complex varieties (the main result of [3]). In case X (and
hence Y ) is non-singular, this is a particular case of the Lefschetz hyperplane
theorem. The proof of this isomorphism in [3] is transcendental, ultimately
relying on the local structure (in the Euclidean topology) of a morphism of
complex varieties, which is given by the theory of Whitney stratifications (see
[15], or [8], for example).

This suggests that, if X is projective over a field k of characteristic 0, of
dimension ≥ 3, and Y ⊂ X is a general hyperplane section, then the Gysin
map Alb+(Y ) → Alb+(X) is an isomorphism; further, the “philosophy of
1-motives” suggests that there is a purely algebraic proof of this fact.

The validity of the isomorphism over an arbitrary k of characteristic 0 can
be deduced from the case k = C. An algebraic proof, on the other hand, can
be obtained as follows.

It is easy to see that the general case follows from the case when k is
algebraically closed, so we assume this holds. Next, the category of 1-motives
admits a notion of Cartier duality, which is an auto-antiequivalence of the
category. So it suffices to show that the Cartier dual to Alb+(Y ) → Alb+(X)
is an isomorphism.

It is shown in [2] that the Cartier dual of Alb+(X) is another 1-motive,
explicitly described as follows (implicitly, this gives an algebraic description
of Alb+(X)).

Let π : X ′ → X be the normalization map, Cl(X ′) the divisor class group
of the normal projective variety X ′, and Cl0(X ′) the largest divisible sub-
group. Then Cl0(X ′) is naturally identified with (the k-points of) an abelian
variety (which can be identified with the Picard variety of any resolution of
singularities). Let LX denote the group of all Weil divisors D on X ′ such
that:

(i) π∗(D) = 0 as a cycle on X.
(ii) [D] ∈ Cl(X) lies in the subgroup Cl0(X ′).

If Div(X ′/X) denotes the group of Weil divisors D on X ′ with π∗(D) = 0 as
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a cycle on X, then

(7) LX = ker
(
Div(X ′/X) → Cl(X ′)/ Cl0(X ′)

)
.

Note that Div(X ′/X) is a subgroup of the group of Weil divisors on X ′ which
are supported on π−1(Xsing); in particular, Div(X ′/X) is a free abelian of
finite rank. Thus LX is a free abelian group of finite rank, and the obvious
homomorphism LX → Cl0(X ′) defines a 1-motive; this is the Cartier dual to
Alb+(X).

We are given that Y is a general hyperplane section of X in a certain
projective embedding; the pull-back of the corresponding very ample linear
system to X ′ gives an ample, base-point free linear system on X ′. Hence
Y ′ = Y ×X X ′ is a general member of this linear system on X ′, and is
thus normal, by Bertini’s theorem, so that Y ′ → Y is the normalization of
Y . There is also an associated restriction map Cl(X ′) → Cl(Y ′), such that
by Theorem 1 above, it is an isomorphism when n = dimX ≥ 4, and is
an injection with finitely generated cokernel if n = 3. Hence it induces an
isomorphism Cl0(X ′) → Cl0(Y ′) between abelian varieties, and an inclusion
on quotients Cl(X ′)/ Cl0(X ′) → Cl(Y ′)/ Cl0(Y ′), if dim X ≥ 3.

Now the Gysin map Alb+(Y ) → Alb+(X) is Cartier dual to a map of
1-motives (i.e., to a map between 2-term complexes)[

LX → Cl0(X ′)
]

−→
[
LY → Cl0(Y ′)

]
where Cl0(X ′) → Cl0(Y ′) is the above isomorphism, induced by the restriction
homomorphism Cl(X ′) → Cl(Y ′). It remains to see that, for general Y , this
map is an isomorphism of 1-motives, i.e., the map LX → LY is also an
isomorphism.

Since Y ′ = Y ×X X ′, a functorial property of the refined Gysin homomor-
phism defined in [7] implies that if D is a Weil divisor on X ′ with π∗(D) = 0
as a cycle on X, then the cycle [D ∩ Y ′] has the property that π∗[D ∩ Y ′] = 0
as a cycle on Y . This gives us a map LX → LY . It is shown in [2] that this
is the map corresponding to the Cartier dual of the Gysin map.

Since Y is a general member of a very ample linear system on X, where
dim X ≥ 3, it is clear (using Bertini’s theorem) that if D is an irreducible
Weil divisor in Y ′ lying over the singular locus of Y , then there is a unique
irreducible Weil divisor D1 in X ′, lying over the singular locus of X, such that
D = D1∩Y ′ as divisors. This is because Ysing = Xsing ∩Y , giving a bijection
between the codimension 1 irreducible components of Xsing and Ysing, which
also gives a bijection between the codimension 1 irreducible components of
π−1(Xsing) ⊂ X ′ and π−1(Ysing) ⊂ Y ′. Hence, for general Y as above,
we have that Div(X ′/X) → Div(Y ′/Y ) is an isomorphism. The formula
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(7) applied to X and to Y , together with the fact (from Theorem 1) that
Cl(X ′)/ Cl0(X ′) → Cl(Y ′)/ Cl0(Y ′) is injective, implies that LX → LY is an
isomorphism, as was to be shown.

5. Some refinements, and statements in any characteristic

In this brief section, we make connections with the classical theory of Weil
divisors, in the style of Weil [16] and Lang, as exposed in Lang’s book [12],
following comments of the referee. This gives another perspective to the above
results, and yields also some statements in arbitrary characteristic.

First, in Theorem 1, one can improve the statement in the following ways.

(i) There is a dense Zariski open set Ω ⊂ |V | so that, if K is any alge-
braically closed extension field of k, XK = X ×k K, and YK ⊂ XK

is a member of the base-changed linear system |V⊗kK| on XK , cor-
responding to a K-point of Ω, then the theorem holds for the pair
(XK , YK). As stated, Theorem 1 does yield such an open subset of
|V⊗kK|, but in fact it may be taken to be ΩK . It is not difficult to
modify the proof given above to yield this conclusion as well.

(ii) When dimX = 3, the cokernel of the (injective) map on class groups is
in fact torsion-free. This follows from the proof given, since from The-
orem 4, it boils down to the assertions that the cokernel of Pic X →
Pic Ỹ is torsion-free. If K = ker(O∗

X → O∗
Ỹ

), then K is a sheaf of

Q-vector spaces on the topological space Ỹ (as may be immediately
verified on suitable affine open subsets), and we have an exact se-
quence

Pic X → Pic Ỹ → H2(Ỹ ,K)

where the last term is a Q-vector space.

A different way of seeing (ii) is by a transcendental argument, using a suitable
Lefschetz theorem, as in the Appendix: in Theorem 7, for i = n̂, the cokernel
is torsion-free and the conclusions of that theorem also hold for cohomology
with Z/nZ coefficients, for any n > 0.

The referee has also pointed out that for a geometrically integral projective
variety X over a field k, which is smooth in codimension 1, one can associate
to it an abelian k-variety PicW (X) (the “Picard variety in the sense of Weil”),
such that when k = k, the group of k-rational points PicW (X)(k) coincides
with the group Cl0(X), the maximal divisible subgroup of the group Cl (X)
of Weil divisors modulo linear equivalence. Further, the Weil-Neron-Severi
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group NSW (X) = Cl (X)/Cl0 (X) is finitely generated. With this notation,
we sketch the referee’s argument to prove the following result.

Theorem 5. Let X be an irreducible projective k-variety of dimension
d ≥ 3, which is regular in codimension 1, where k is an algebraically closed
field of any characteristic. Let f : X → PN

k be an embedding. Let K be the
algebraic closure of the function field K = k(P̂N

k ) of the dual projective space,
and let YK ⊂ XK be the generic hyperplane section. Then,

(i) PicW (X)K → PicW (YK) is an isomorphism;
(ii) the composition

NSW (X) → NSW (XK) → NSW (YK)

is injective.

The isomorphism between Weil-Picard varieties is a consequence of
[12] VIII, Theorem 4. The injectivity on Weil-Neron-Severi groups is re-
duced to a result of Weil [16]. We must show that, if L is a line bundle
on X, whose pull-back to (YK)reg, the smooth locus of YK , is algebraically
equivalent to 0, then L is algebraically equivalent to 0 on X. From [12] VI,
Theorem 1, the pull-back of L to (YK)reg determines a K-rational point of
PicW (YK) = PicW (X)K . Since K is a pure transcendental extension of k,
this must determine a k-rational point of PicW (X). Hence, changing L by
the class of some point of PicW (X), we may assume L has trivial pull-back
to (YK)reg. Now Theorem 2 of Weil [16] implies that L is itself trivial on X.

6. Appendix: Grothendieck-Lefschetz theorem
for complex projective varieties

In this appendix, we shall sketch the proof of the following theorem us-
ing results from stratified Morse theory, as explained to us by Najmuddin
Fakhruddin.

Theorem 6. Let X be a smooth projective variety of dimension at least 4
defined over the field of complex numbers, C. Let L be a big line bundle over
X generated by global sections. If Y denotes a general member of the linear
system |L |, then one has an exact sequence

0 → K → Pic(X) → Pic(Y ) → Q → 0

where K is the (free) subgroup generated by divisors in X which map to points
under the generically finite map X

π−→ P(H0(X, L )) and Q is the group gen-
erated by the irreducible components of the restriction of divisors in X which
map to curves under π.



586 G. V. RAVINDRA AND V. SRINIVAS

Theorem 6 is an immediate consequence of Corollaries 6.4 and 6.6 below.
In what follows, all cohomologies that we consider are singular cohomol-

ogy of the underlying analytic space(s), with Z-coefficients. Recall that, for
any C-variety, these cohomology groups support mixed Hodge structures,
which are functorial for morphisms between varieties (see [4]). The proofs of
Corollaries 6.4 and 6.6 are reduced to assertions about the homomorphisms
Hi(X) → Hi(Y ) for i = 1, 2, using the following standard lemma.

Lemma 6.1. Let W be a smooth proper C-variety. Then there are iso-
morphisms, functorial for morphisms of C-varieties,

Pic0(W ) ∼=
H1(W ) ⊗ C

F 1H1(W ) ⊗ C + H1(W )
,

NS(W ) = ker
(

H2(W ) → H2(W ) ⊗ C

F 1H2(W ) ⊗ C

)
.

Proof. From Serre’s GAGA, it follows that Pic(W ) ∼= Pic(Wan), where
the latter denotes the group of isomorphism classes of analytic line bun-
dles. Using the exponential sheaf sequence, and the Hodge decomposition,
we obtain the above isomorphisms in a standard way, where Pic0(W ) =
ker(Pic(W ) → H2(W )) is the maximal divisible subgroup, and the Neron-
Severi group NS (W ) = image (Pic(W ) → H2(W )) is finitely generated. �

We now state the following consequence of the relative Lefschetz theorem
with large fibres (see [8], page 195).

Theorem 7. Let W be an n-dimensional non-singular connected algebraic
variety. Let π : W → PN be a morphism and let H ⊂ PN be a general
linear subspace of codimension c. Define φ(k) to be the dimension of the set
of points z ∈ PN such that the fibre π−1(z) has dimension k. (If this set is
empty, define φ(k) = −∞.) Then the homomorphism induced by restriction,

Hi(W, Z) → Hi(π−1(H), Z)

is an isomorphism for i < n̂ and is an injection for i = n̂, where

n̂ = n − sup
k

(2k − (n − φ(k)) + inf(φ(k), c − 1)) − 1.

In the situation of Theorem 6, we first take W = X, π a generically finite
map and H a general hyperplane. Then one can easily check that n̂ ≥ 1 in this
case. Let X ′ be the (open) subvariety of X defined by removing all divisors
which map to points under π, and X ′′ be the subvariety obtained by further
removing divisors which map to curves under π. In these two cases, for the
restriction of π to X ′ and X ′′, one can check that n̂ ≥ 2 and ≥ 3 respectively.

Let Y = π−1(H), and let Y ′ and Y ′′ be defined similarly in X ′ and X ′′

respectively. Since a general hyperplane section in PN misses points, one notes
immediately that Y ′ = Y .
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Lemma 6.2. If V ⊂ W is a dense Zariski open subset of a non-singular
proper variety W , then

(i) H1(W, V ) = 0, and H2(W, V ) is a free abelian group, with a basis
given by the irreducible divisors supported on W \ V (in particular, it
is pure of weight 2);

(ii) H3(W, V ) is a free abelian group, supporting a mixed Hodge structure
with weights ≥ 3.

Proof. Let W \ V = D, and let S ⊂ D be the union of the singular locus
of D, together with all irreducible components of D of codimension ≥ 2 in X.
Then D \S =

∐
j Dj where Dj ⊂ X \S are irreducible, non-singular divisors.

We first observe that Hi(W, W \ S) = 0 for i ≤ 3, since S ⊂ W has
(complex) codimension ≥ 2. This implies that Hi(W, V ) → Hi(W \ S, V ) are
isomorphisms for i ≤ 3. Since (W \ S) \ V =

∐
j Dj , we have Thom-Gysin

isomorphisms Hi(W \S, V ) ∼=
⊕

j Hi−2(Dj)(−1) for all i ≥ 0 (where the Tate
twist (−1) increases the weights by 2). In particular, we have Hi(W \S, V ) = 0
for i < 2, H0(Dj) = Z (the trivial MHS), and H1(Dj) = Hom (H1(Dj , Z), Z)
is a torsion-free abelian group, which supports a MHS of weights ≥ 1. �

Corollary 6.3. H1(X) ∼= H1(Y ).
Proof. We have a factorization H1(X) → H1(X ′) → H1(Y ′) = H1(Y ), since

Y = Y ′ ⊂ X ′ ⊂ X. By Theorem 7, we have that H1(X ′) → H1(Y ′) = H1(Y )
is an isomorphism. In particular, H1(X ′) supports a pure Hodge structure of
weight 1. Consider the exact cohomology sequence

H1(X, X ′) → H1(X) → H1(X ′) → H2(X, X ′) → · · ·

By Lemma 6.2 with W = X, V = X ′, we have H1(X, X ′) = 0, while
H2(X, X ′) is torsion free, and it is pure of weight 2, generated by the co-
homology classes of the irreducible divisors in X \ X ′. Hence the boundary
map H1(X ′) → H2(X, X ′) is the zero map. Thus H1(X) → H1(X ′) is an
isomorphism. �

Corollary 6.4. Pic0(X) → Pic0(Y ) is an isomorphism.
Proof. The isomorphism in Corollary 6.3 is compatible with the respective

Hodge structures, and so by Lemma 6.1, induces an isomorphism on Pic0

groups. �
Proposition 6.5. Let X and Y be as in Theorem 6. One then has an

exact sequence

0 → K → H2(X) → H2(Y ) → Q → 0

where K (as in Theorem 6) is generated by divisors which map to points under
π and Q is generated by the divisors in Y which map to points under π.
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Proof. Consider the diagram:

(8)
H1(X) a1−→ H1(X ′′) a2−→ H2(X, X ′′) a3−→ H2(X)
↓ ψ1 ↓ ψ2 ↓ ψ3 ↓ ψ4

H1(Y ) b1−→ H1(Y ′′) b2−→ H2(Y, Y ′′) b3−→ H2(Y )

a4−→ H2(X ′′) a5−→ H3(X, X ′′)
↓ ψ5 ↓

b4−→ H2(Y ′′) b5−→ H3(Y, Y ′′)

Here the horizontal sequences are the cohomology long exact sequences cor-
responding to suitable pairs. The proposition amounts to the assertions that
there are isomorphisms

kerψ3

∼=−→ kerψ4,

Cokerψ3

∼=−→ Cokerψ4.

From Theorem 7, ψ2 and ψ5 are isomorphisms, while ψ1 is an isomorphism
from Corollary 6.3. We claim that ψ5 induces an isomorphism

image a4

∼=−→ image b4.

This follows by an argument using weights. Let W2 H2(X ′′) ⊂ H2(X ′′),
W2 H2(Y ′′) ⊂ H2(Y ′′) be the subgroups obtained as inverse images of the cor-
responding weight subspaces of cohomology with rational coefficients. Since
ψ5 is an isomorphism of mixed Hodge structures, it induces an isomorphism
W2 H2(X ′′) ∼= W2 H2(Y ′′). By Lemma 6.2, H3(X, X ′′) and H3(Y, Y ′′) are tor-
sion free, and have weights ≥ 3, while H2(X), H2(Y ) are pure of weight 2.
Hence we have

W2 H2(X ′′) = image a4,

W2 H2(Y ′′) = image b4,

and so ψ5 induces an isomorphism between these image subgroups.
Thus we have a commutative diagram with exact rows, and vertical iso-

morphisms as shown:

H1(X) a1−→ H1(X ′′) a2−→ H2(X, X ′′) a3−→ H2(X) a4−→ image a4 → 0
∼= ↓ ψ1 ∼= ↓ ψ2 ↓ ψ3 ↓ ψ4 ∼= ↓ ψ5

H1(Y ) b1−→ H1(Y ′′) b2−→ H2(Y, Y ′′) b3−→ H2(Y ) b4−→ image b4 → 0
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A version of the 5-lemma now implies that kerψ3 → kerψ4 and Coker ψ3 →
Coker ψ4 are isomorphisms, as desired. �

Corollary 6.6. There is an exact sequence

0 → K → NS (X) → NS (Y ) → Q → 0.

Proof. This follows from the proposition, and Lemma 6.1, since the explicit
descriptions of K and Q imply that K ⊂ NS (X), and NS(Y ) � Q. �
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95–127. MR0065219 (16:398e)

Department of Mathematics, Washington University, St. Louis, Missouri 63130

E-mail address: ravindra@math.wustl.edu

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha

Road, Mumbai-400005, India

E-mail address: srinivas@math.tifr.res.in

http://www.ams.org/mathscinet-getitem?mr=0481096
http://www.ams.org/mathscinet-getitem?mr=0481096
http://www.ams.org/mathscinet-getitem?mr=0065219
http://www.ams.org/mathscinet-getitem?mr=0065219

	1. The Grothendieck-Lefschetz theorem for big linear systems
	2. Some lemmas on the vanishing of cohomology
	3. Proof of Theorem 2
	3.1. Some preliminary reductions
	3.2. The condition Lef(X"0365X, Y"0365Y)
	3.3. The condition ALeff(X"0365X,Y"0365Y)

	4. Application to 1-motives
	5. Some refinements, and statements in any characteristic
	6. Appendix: Grothendieck-Lefschetz theorem[1] for complex projective varieties
	Acknowledgment
	References

