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Abstract. Given a smooth, projective variety Y over an algebraically closed field of charac-
teristic zero, and a smooth, ample hyperplane section X ⊂ Y , we study the question of when
a bundle E on X, extends to a bundle E on a Zariski open set U ⊂ Y containing X. The
main ingredients used are explicit descriptions of various obstruction classes in the deformation
theory of bundles, together with Grothendieck-Lefschetz theory. As a consequence, we prove
a Noether-Lefschetz theorem for higher rank bundles, which recovers and unifies the Noether-
Lefschetz theorems of Joshi and Ravindra-Srinivas.

1. Introduction

We work over an algebraically closed field of chacteristic zero, which we denote by k.

One of the most fundamental results in algebraic geometry are the Lefschetz theorems which
state that if Y is a smooth, projective variety and X ⊂ Y is a smooth member of an ample
linear system, then the Picard groups of Y and X are isomorphic provided dimX ≥ 3; when
dimX = 2, the same is true, if in addition, we assume that X is a very general member of a
sufficiently ample linear system. These theorems imply in particular, that any line bundle on
X extends to a line bundle on Y . From this point of view, one may ask if there are analogous
results for higher rank bundles.

Let L be an ample line bundle on a smooth projective variety Y , and X be a smooth member
of the associated linear system |H0(Y, L)|. For k ≥ 0, let Xk denote the k-th order thickening
of X in Y , so that X0 = X. The obstruction for a bundle E on Xk−1 to lift to a bundle on Xk

is a class ηE ∈ H2(X, End E ⊗OY (−kX)|X) (see §2). Clearly, the vanishing of these classes is a
necessary condition for E to extend to the ambient variety Y . The fact that these classes depend
on the bundle E is one of the main points of departure when we study extension questions for
higher rank bundles; when E is a line bundle, End E ∼= OX , and so the obstruction classes do
not depend on the bundle per se. Consequently, one cannot hope to get a uniform result for all
bundles of any given rank.

Another noteworthy point when studying higher rank bundles is that even if these obstruction
classes vanish, in most cases the bundle extends only as a reflexive sheaf on Y , and would need to
satisfy additional conditions in order for the extension to be a bundle. Consider for example, the
inclusion Pn ↪→ Pn+1, and let πx : Pn+1 \{x} → Pn denote the projection map for x ∈ Pn+1 \Pn.
Since the composition Pn ↪→ Pn+1 \ {x} → Pn is the identity map, the pull-back bundle π∗xE for
any bundle E on Pn is an extension of E on the variety Pn+1 \ {x}. Even if π∗xE extends to a
bundle on Pn+1, note that there exists an N > n such that E does not extend to a bundle on
PN . For if this were to be so, then by the Babylonian theorems (see [1] for the rank 2 case, and
[18] for arbitrary rank), E would have to be a sum of line bundles.

The following result (see also [6]) summarises the discussion above.
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Theorem 1. Let Y be a smooth, projective variety of dimension at least 4, and X ⊂ Y be
a smooth, ample hyperplane section. Let E be a bundle on X satisfying the property that
H2(X, End E ⊗ OY (−kX)|X) for all k ∈ Z>0. Then there exists a Zariski open set U ⊂ Y
containing X and a bundle E on U such that E ⊗ OU

∼= E.

When Y is a threefold, we have the following result.

Theorem 2. Let Y be a smooth 3-fold and X ⊂ Y be a general, ample hyperplane section of Y .
Let E be a bundle on X such that the “multiplication” map

(1) H0(X, End E ⊗KX(a))⊗H0(X,OX(b))→ H0(X, End E ⊗KX(a+ b))

is surjective ∀ a, b ≥ 0. Then there exists a Zariski open set U ⊂ Y containing X and a bundle
Ẽ on U such that Ẽ ⊗OU

∼= E.

When E is a line bundle, the above result yields the Formal Noether-Lefschetz theorem proved
in [17]. Using our formalism, and a remark by M.V.Nori, we are also able to prove the following
version of the Noether-Lefschetz theorem for divisor class groups (compare with the result of
[17]) which generalises the main result of a paper of Joshi [12].

Theorem 3. Let Y be a normal projective 3-fold over k, OY (d) be an ample, invertible sheaf
such that the linear system V := H0(Y,OY(d)) is base point free. Let X denote a very general
member of |V| and, π : Ỹ → Y and X̃ := Ỹ ×Y X be the desingularisations of Y and X
respectively. Assume further that,

(i) H1(Ỹ ,Ω2eY ⊗ π∗OY (d)) = 0.
(ii) The multiplication map

H0(Y,OY (d))⊗H0(Y,KY ⊗OY (d))→ H0(Y,KY ⊗OY (2d))

is surjective.

Then the restriction map of divisor class groups Cl(Y)→ Cl(X) is an isomorphism.

1.1. Outline of the proof and some remarks. Given a bundle E on a smooth hypersurface
X ⊂ Y , we suppose that we have been able to extend it to a bundle Ek−1 on Xk−1, the (k−1)-st
order thickening of X in Y . Then the obstruction for Ek−1 to lift to a bundle Ek on Xk, is an
element of the cohomology group H2(X, End E(−kX)|X). Thus we see that if the hypothesis of
Theorem 1 is satisfied, then the bundle lifts to Xk, ∀ k > 0 and so we have a projective system of
bundles {Ek}. Let Ê denote the inverse limit of this system; then Ê is a formal vector bundle on
Ŷ . The conclusion then follows from Grothendieck’s Lefschetz theory (see definition 2, section
4).

When Y is a threefold (so X is a surface), by Serre’s theorems, H2(X, End E(kX)|X) 6= 0, for
k � 0. The assumption that E lives on a “general” hypersurface X implies that the obstruction
classes for E to deform to a “nearby” fibre X ′ in the universal family X → S are all zero.
This implies, by the hypothesis of Theorem 2, that the obstructions for E to extend across
infinitesimal thickenings also vanish. The conclusion again follows by Grothendieck-Lefschetz
theory.

As mentioned above, Theorem 3 recovers the theorem of Joshi [12] when X is smooth, and L
is sufficiently ample. The idea of the proof in both the theorems is the same: first one proves the
so-called infinitesimal Noether-Lefschetz theorem (INLT), as stated in [14] (see also [5]), and then
one uses this and a standard “spreading out” argument to prove the global Noether-Lefschetz
theorem. The difference in the two proofs is in the proof of the infinitesimal Noether-Lefschetz
theorem (INLT): while in op. cit. this is achieved by showing that if the first Chern class of a
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line bundle L, on a smooth fibre X, c1(L) ∈ H1(X,Ω1
X), in the universal family X → S deforms

to a neighbouring fibre X ′, then it lifts to the first Chern class of a line bundle L on the ambient
3-fold Y . This is where both the hypotheses are used. While we further break up the proof
of INLT into two steps: in the first step, we show that if a line bundle L on X deforms to a
neighbouring fibre, then it lifts to a line bundle L1 on the first order thickening X1 ⊂ Y . This
is where hypothesis (ii) in Theorem 3 is used. Next using hypothesis (i), we show that the first
chern class of L1 lifts to the first chern class c1(L) of a line bundle L on Y . Moreover our proof
of the INLT is a consequence of the general theory of obstruction classes and deformation theory
developed in §2 for arbitrary rank bundles.

The first algebraic proof of the Noether-Lefshetz theorem was Hodge-theoretic, based on the
theory of infiinitesimal variations of Hodge structures introduced by Griffiths (see [3]). The
theory was greatly developed by Green (see [7, 8]) and Voisin in an unpublished article as well
as in [19, 20]. Related results may also be found in [13] and [2].
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3. Some results on deformation theory and obstruction classes for bundles

3.1. Notation and set-up. Let Y be a smooth, projective variety over an algebraically closed
field of characteristic 0 of dimension n+1. Let OY (1) be an ample line bundle, and assume that,
for a positive integer d, V ⊂ H0(Y,OY (d)) is a base point free linear system. Let S ⊂ P(V ∗)
denote a Zariski open set parametrising smooth hypersurfaces, X := {(y, s)|s(y) = 0} ⊂ Y × S
denote the universal hypersurface, and p : X → Y , and q : X → S denote the two projections.
For a point s0 ∈ S, let m ⊂ OS denote its (maximal) ideal sheaf and let X ⊂ Y be the smooth
hypersurface parametrized by s0 ∈ S.

Let Xk be the k-th infinitesimal neighbourhood of X in Y : so if X is the zero locus of a
section s0 ∈ H0(Y,OY (d)), then Xk is the zero locus of the section sk+1

0 ∈ H0(Y,OY ((k + 1)d).
We will let Ŷ denote the formal completion of Y along X. Similarly, let Xk := X ×S OS/m

k+1

be the k-th order infinitesimal neighbourhood of X = Xs in X . Note that since X0 → X0 = X
is an isomorphism, we have an inclusion of ideals IOX ⊂ mOX where I ∼= OY (−d) is the ideal
sheaf of X in Y . This implies that there is a morphism of schemes pk : Xk → Xk ∀ k ≥ 0,
compatible with the morphism p : X → Y , and with the isomorphism X0 → X0 = X.

By a 1-step resolution of a sheaf E on a projective scheme T , we shall mean a sequence

0→ F1 → F0 → E → 0,

where F0 := ⊕r
i=1OT (ai) is a sum of line bundles such that the map F0 → E is given by a set

of generators of the graded module ⊕H0(T,E ⊗OT (ν)). In particular, the map at the level of
global sections

H0(T, F0(ν))→ H0(T,E(ν))
is a surjection for all ν ∈ Z, and the sheaf F1 is the kernel of the map F0 → E. Furthermore, if
H1(T, F0(ν)) = 0 for all ν ∈ Z, then H1(T, F1(ν)) = 0 for all ν ∈ Z.
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For any sheaf F on Y , we will let F denote its restriction to X.

3.2. The basic spectral sequence. Let E be a bundle on Xk−1. Any lift of E to a co-
herent sheaf E on Xk, is an element of Ext1

Xk
(E,E(−kd)) i.e., E sits in an exact sequence of

OXk
−sheaves

(2) 0→ E(−kd)→ E → E → 0.

It is a standard fact from deformation theory, that the obstruction for E to lift to a coherent
sheaf on Xk is an element

ηE ∈ H2(X, End E(−kd)).

Similarly, if E is a bundle on Xk−1, then any lift of E to a coherent sheaf E on Xk is an
element of Ext1

Xk
(E,E ⊗ SkV ∗) i.e., the lift E sits in an exact sequence of OXk

-sheaves

(3) 0→ E ⊗ SkV ∗ → E → E → 0.

Here we have used the identification of the ideal sheaf of Xk−1 ⊂ Xk:

IXk−1/Xk
∼= SkV ∗ ⊗OX .

It is a standard fact from deformation theory, that the obstruction for E to lift to a coherent
sheaf on Xk is an element

ηE ∈ H2(X, End E ⊗ SkV ∗).

The following local criterion for flatness (Proposition 2.2, [10]) tells us that such lifts are in
fact vector bundles on Xk and Xk respectively.

Proposition 1. Let A′ → A be a surjective homomorphism of noetherian rings whose kernel J
has square zero. Then an A′−module M ′ is flat over A′ if and only if

(1) M := M ′ ⊗A A
′ is at over A, and

(2) The natural map M ⊗A J →M ′ is injective.

The following result is due to A.P.Rao.

Proposition 2. Let A be a bundle on Xk−1 and B̄ be a bundle on X.

(i) Then there is an exact sequence

0→ H1(X, Ā∨ ⊗ B̄(−kd))→ Ext1
Xk

(A, B̄(−kd))→ H0(X, Ā∨ ⊗ B̄)→ H2(Ā∨ ⊗ B̄(−kd)).

(ii) If A lifts to a bundle A on Xk, then

0→ H1(X, Ā∨ ⊗ B̄(−kd))→ Ext1
Xk

(A, B̄(−kd))→ H0(X, Ā∨ ⊗ B̄)→ 0

forms a split exact sequence.

Proof. (i) By the local-to-global Ext spectral sequence, we have a 4-term sequence

(4)
0 → H1(X,HomXk

(A,B(−kd)))→ Ext1
Xk

(A,B(−kd))→ H0(X, Ext1
Xk

(A,B(−kd)))
→ H2(X,HomXk

(A,B(−kd))).

Since HomXk
(A,B(−kd)) ∼= Ā∨ ⊗B(−kd), it is enough to prove

Ext1
Xk

(A,B(−kd)) ∼= Ā∨ ⊗B.

The inclusion Xk−1 ⊂ Xk yields an exact sequence

(5) 0→ OX(−kd)→ OXk
→ OXk−1

→ 0.
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We will first compute Ext1
Xk

(OXk−1
(−a), F ) for any bundle F on X. To do this, we

tensor (5) by OXk
(−a) and apply HomXk

(−, F ) to get a long exact sequence

0→HomXk
(OXk−1

(−a),F )→HomXk
(OXk

(−a),F )→HomXk
(OX(−a−kd),F )→Ext1Xk

(OXk−1
(−a),F )→0

The first two terms are isomorphic to F (a), and the third term is isomorphic to
F (a+ kd). Thus we see that

(6) Ext1
Xk

(OXk−1
(−a), F ) ∼= F (a+ kd).

Next, we consider a 1-step resolution of A on Xk−1:

(7) 0→ G→ L0 → A→ 0,

Tensoring this sequence by HomXk
(−, B(−kd)), we get a long exact sequence

(8)
0 → HomXk

(A,B(−kd)) → HomXk
(L0, B(−kd)) → HomXk

(G,B(−kd)) →

Ext1
Xk

(A,B(−kd)) → Ext1
Xk

(L0, B(−kd)) → Ext1
Xk

(G,B(−kd)) →

Now the first three terms form the exact sequence

(9) 0→ Ā∨ ⊗B(−kd)→ L̄∨0 ⊗B(−kd)→ G
∨ ⊗B(−kd)→ 0.

Hence we have an exact sequence

(10) 0→ Ext1
Xk

(A,B(−kd))→ Ext1
Xk

(L0, B(−kd))→ Ext1
Xk

(G,B(−kd)).

where the middle term is isomorphic to L̄∨0 (kd)⊗B(−kd) = L̄∨0 ⊗B by (6).
We carry out the same steps for G by considering the following 1-step resolution on

Xk−1:

(11) 0→ G′ → L1 → G→ 0.

In this case we get an exact sequence

(12) 0→ Ext1
Xk

(G,B(−kd))→ Ext1
Xk

(L1, B(−kd)) ∼= L̄∨1 ⊗B → Ext1
Xk

(G′, B(−kd)).

From (10) and (12), we see that

(13) Ext1
Xk

(A,B(−kd)) = ker [L̄∨0 ⊗B → L̄∨1 ⊗B ].

On the other hand, the resolutions of A and G above when put together yield a
sequence

L1 → L0 → A→ 0
which is a resolution for A on Xk−1. On applying the functor HomXk

(−, B(−kd)) to
this sequence we get

0→ Ā∨ ⊗B → L∨0 ⊗B → L∨1 ⊗B

Thus we have

(14) Ext1
Xk

(A,B(−kd)) ∼= Ā∨ ⊗B.

(ii) Suppose A lifts to a bundle A on Xk. Then we have an exact sequence of OXk
-sheaves

0→ Ā(−kd)→ A→ A→ 0.

Applying HomXk
(·, B̄(−kd)) to the above sequence, we get a long exact sequence

0→ HomXk
(A, B̄(−kd))

∼=−→ HomXk
(A, B̄(−kd))→ HomXk

(Ā(−kd), B̄(−kd))→
Ext1

Xk
(A, B̄(−kd))→ Ext1

Xk
(Ā(−kd), B̄(−kd))→ · · · .

(15)
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The last three terms yield an exact sequence

0→ H0(X, Ā∨ ⊗ B̄)→ Ext1
Xk

(A, B̄(−kd))→ H1(X, Ā∨ ⊗ B̄).

It is easy to check that either of the two maps in the sequence above, provide a splitting
to the spectral sequence in (i).

�

Remark 1. The map
Ext1

Xk
(A, B̄(−kd))→ H0(X, Ā∨ ⊗ B̄)

in the above exact sequence can be described as follows: Let

0→ B̄(−kd)→ C → A→ 0

be a sequence of OXk
−modules. On restricting it to X, we get

Tor1
Xk

(A,OX)→ B̄(−kd)→ C ⊗OX → Ā→ 0.

Since Tor1
Xk

(A,OX) ∼= Ā(−kd), the map Ā(−kd)→ B̄(−kd) gives an element in H0(X, Ā∨⊗B̄).
Furthermore, if this map is the zero map, then we see that

0→ B̄(−kd)→ C ⊗OX → Ā→ 0

is an exact sequence of OX−modules, and hence we get an element in Ext1
X(A, B̄(−kd)) ∼=

H1(X, Ā∨ ⊗ B̄(−kd)).

3.3. An explicit description of ηE via projective resolutions. Let X ⊂ Y be as above
and E be a bundle on Xk−1 for some k ≥ 1. Let

(16) 0→ F̃1
Φ−→ F̃0 → E → 0

be a 1-step resolution of E on Y .

On restricting this to Xk−1, we get the following 4-term sequence

(17) 0→ Tor1
OY

(E,OXk−1
)→ F1 → F0 → E → 0,

where Fi := F̃i ⊗OXk−1
for i = 1, 2.

The first term can be computed from the short exact sequence

0→ OY (−kd)→ OY → OXk−1
→ 0,

by tensoring with E. Doing so, yields a sequence

0→ Tor1
OY

(E,OXk−1
)→ E(−kd)→ E → E → 0.

Hence we have an isomorphism

Tor1
OY

(E,OXk−1
) ∼= E(−kd).

Thus (17) is the sequence of vector bundles on Xk−1

(18) 0→ E(−kd)→ F1 → F0 → E → 0.

This 4-term sequence defines an element

(19) η̃E ∈ H2(Xk−1, End E(−kd)).

Breaking this up, we get the following two short exact sequences of bundles on Xk−1:

(20) 0→ E(−kd)→ F1 → G→ 0.

(21) 0→ G→ F0 → E → 0.
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We will also need their dual sequences:

(22) 0→ G∨ → F∨1 → E∨(kd)→ 0.

(23) 0→ E∨ → F∨0 → G∨ → 0.

The following two results will come in handy later.

Lemma 1. There is an exact sequence

(24) 0→ F̃0(−kd)→ F̃1 → G→ 0.

Proof. Let F̃0(−kd) ↪→ F̃0 be multiplication by the section sk
0 ∈ H0(Y,OY (kd)). Clearly this

map factors via F̃1 and has G as its cokernel. �

Corollary 1. The boundary map H0(X,G(ν)→ H1(X,E(ν − kd)) in the cohomology sequence
associated to (20) is the zero map ∀ ν ∈ Z, provided that we have H1(X,OX(ν)) = 0 for all
ν ∈ Z.

Proof. It is enough to show that the map H0(X,F1(ν)) → H0(X,G(ν)) is surjective ∀ ν ∈ Z.
But from the cohomology sequence of (24), we see that the map H0(X, F̃1(ν)) → H0(X,G(ν))
is surjective ∀ ν ∈ Z. This map factors via H0(X,F1(ν)) and so we are done. �

We recall some general facts from homological algebra.

(a) The short exact sequences (21) and (20) give two elements,
(i) α ∈ Ext1

OX
(E,G) ∼= H1(X,E∨ ⊗G), and

(ii) β ∈ Ext1
OX

(G,E(−kd)) ∼= H1(X,G∨ ⊗ E(−kd)).
(b) Via the Yoneda correspondence, the 4-term sequence (18) on restriction to X, yields an

element
η̄E ∈ H2(X, End E(−d)).

(c) Consider the composite maps

H0(X, End E) ∂1−→ H1(X,G⊗ E∨) ∂2−→ H2(X, (End E)(−kd)), and

H0(X, End E)
∂∨2−−→ H1(X,G∨ ⊗ E(−kd))

∂∨1−−→ H2(X, (End E)(−kd))
Here ∂1 and ∂2 are the (co)boundary maps in the long exact sequences of cohomology
associated to (21) and (20) respectively, and ∂∨1 and ∂∨2 are the (co)boundary maps in
the long exact sequences of cohomology associated to the dual sequences (23) and (22)
respectively. If 1 ∈ H0(X, End E) denotes the identity endomorphism id : E → E, then
one has

∂1(1) = α, ∂2(α) = η̄E , ∂
∨
2 (1) = β, and ∂∨1 (β) = η̄E.

The following result gives a more explicit way of checking when the obstruction class η̄E

vanishes.

Proposition 3. Let 1 ∈ H0(X, End E) denote the identity endomorphism id : E → E. Then
one has

η̄E = 0 ⇐⇒ ∂∨1 (∂∨2 (1)) = ∂2(∂1(1)) = 0.

Proof. ( =⇒ ) Suppose that η̄E = 0. This is equivalent to saying that E lifts to Xk i.e. there
exists a sequence of OXk

−modules

(25) 0→ E(−kd)→ E → E → 0,
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The surjection in the above sequence, together with (16), gives rise to a pull-back diagram

(26)

0 0
↓ ↓

E(−kd) = E(−kd)
↓ ↓

0 → F̃1 → P̃ → E → 0
|| ↓ ↓

0 → F̃1 → F̃0 → E → 0
↓ ↓
0 0

Restricting the above diagram to X, we get

(27)

↓ ↓
E(−kd) = E(−kd)

↙ ↓ ↓ 0

→ Tor1
OX

(E ,OX) = E(−(k + 1)d) → F 1 → P → E → 0
↓ || ↓ ↓

0 → E(−kd) → F 1 → F 0 → E → 0
↓ ↓ ↓
0 0 0

Since the leftmost vertical map is the zero map, we get a commutative diagram

(28)

0 0
↓ ↓

E(−kd) = E(−kd)
↓ ↓

0 → F 1 → P → E → 0
↓ ↓ ||

0 → G → F 0 → E → 0
↓ ↓ ↓
0 0 0

The first two columns imply that
(29)
β = [ 0→ E(−kd)→ F 1 → G→ 0 ] ∈ Image

(
H1(X,F∨0 ⊗ E(−kd))→ H1(X,G∨ ⊗ E(−kd))

)
||

Ker
(

H1(X,G∨ ⊗ E(−kd))
∂∨1−−→ H2(X,E∨ ⊗ E(−kd))

)
Thus we have ∂∨1 (∂∨2 (1)) = ∂∨1 (β) = 0.

Similarly, the middle and the bottom rows imply that

(30)
α = [ 0→ G→ F 0 → E → 0 ] ∈ Image

(
H1(X,E∨ ⊗ F 1)→ H1(X,E∨ ⊗G)

)
||

Ker
(

H1(X,E∨ ⊗G) ∂2−→ H2(X,E∨ ⊗ E(−kd))
)

Thus we have ∂2(∂1(1)) = ∂2(α) = 0.
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(⇐=) We next prove the converse. So assume that ∂2(∂1(1)) = 0 = ∂∨1 (∂∨2 (1)). We shall show
that E lifts to Xk. Now ∂2(∂1(1)) = 0 implies that

∂1(1) ∈ Ker
(

H1(X,E∨ ⊗G) ∂2−→ H2(X,E∨ ⊗ E(−kd))
)

= Im
(

H1(X,E∨ ⊗ F 1)→ H1(X,E∨ ⊗G)
)
.

Hence there exists a push-forward diagram

(31)

0 0
↓ ↓

E(−kd) = E(−kd)
↓ ↓

0 → F 1 → P → E → 0
↓ ↓ ||

0 → G → F 0 → E → 0
↓ ↓ ↓
0 0 0

As before, notice that the first two columns imply that ∂∨2 (∂∨1 (1)) = 0.

Using the middle column, we obtain a pull-back diagram

(32)
0 → E(−kd) → P̃ → F̃0 → 0

|| ↓ ↓
0 → E(−kd) → P → F 0 → 0

Let Φ : F̃1 → F̃0 be the map in (16) and φ : F 1 → F 0 denote its restriction to X. We claim
that Φ factors as F̃1 → P̃ → F̃0. To see this, we apply the functor HomY (F̃1, ·) to (32), to get a
commutative diagram

(33)
H0(Y, F̃∨1 ⊗ P̃ ) → H0(Y, F̃∨1 ⊗ F̃0) → H1(Y, F̃∨1 ⊗ E(−kd))

↓ ↓ ||
H0(X, F̃∨1 ⊗ P ) → H0(X, F̃∨1 ⊗ F 0) → H1(Y, F̃∨1 ⊗ E(−kd))

Under the composite (of the middle vertical arrow followed by the right arrow in the bottom
row)

H0(Y, F̃∨1 ⊗ F̃0)→ H0(X, F̃∨1 ⊗ F 0)→ H1(Y, F̃∨1 ⊗ E(−kd)),
we are given that Φ 7→ φ 7→ 0: this is because from (31), we see that the map φ : F 1 → F 0

factors as F 1 → P → F 0; this implies that in (33), we have

φ ∈ Image
(

H0(X, F̃∨1 ⊗ P )→ H0(X, F̃∨1 ⊗ F 0)
)
,

and hence Φ 7→ 0 in the top row which proves our claim. Thus we have a diagram

(34)

0 0
↓ ↓

E(−kd) = E(−kd)
↓ ↓

0 → F̃1 → P̃ → E → 0
|| ↓ ↓

0 → F̃1 → F̃0 → E → 0
↓ ↓
0 0

where E , in the rightmost column, is defined so that the diagram has exact rows and columns.

On restricting the right most column to Xk−1, we get

· · · → Tor1
OY

(E,OXk−1
) = E(−kd)→ E(−kd)→ E ⊗OXk−1

→ E → 0.



10 G. V. RAVINDRA AND AMIT TRIPATHI

Since the map E(−kd)→ E(−kd) is a surjection, we see that E ⊗OXk−1
∼=E. The fact that E is

a bundle on Xk follows from the local criterion for flatness stated in Proposition 1. �

Remark 2. For our purposes, we may (and do) assume that the map

H0(X, End E)→ H2(X, End E(−kd))

in the spectral sequence in Proposition 2 is the map ∂1 ◦ ∂2 = ∂∨2 ◦ ∂∨1 and that 1 7→ η̄E = ηE .

Remark 3. One can also define the obstruction class ηE via its Atiyah class. Let

aE ∈ H1(Xk−1,Ω1
Xk−1

⊗ End E)

denote the Atiyah class of E and consider the cotangent sheaf sequence for the inclusion Xk−1 ⊂
Y :

0→ OX(−kd)
d(sk

0)
−−−→ Ω1

Y ⊗OXk−1
→ Ω1

Xk−1
→ 0.

Tensoring this sequence by End E and taking cohomology, we get a boundary map

H1(Xk−1,Ω1
Xk−1

⊗ End E)→ H2(X, End E(−kd)).

By a result in [11], aE 7→ ηE under this map.

4. Proofs of the main theorem

4.1. Grothendieck-Lefschetz theory. We first recall the Lefschetz conditions of Grothendieck
(see [9]).

Definition 1. Let Y be a scheme and X ⊂ Y be a subscheme. Let ̂ denote the completion of
Y along X. We say that the pair (Y,X) satisfies the Lefschetz condition, written Lef(Y,X), if
for every open set U ⊂ Y , and every vector bundle E on U , there exists an open set U ′ with
X ⊂ U ′ ⊂ U such that the natural map

H0(U ′, E|U′ )→ H0(Ŷ , Ê)

is an isomorphism.

Definition 2. Let Y be a scheme and X ⊂ Y be a subscheme. Let ̂ denote the completion
of Y along X. We say that the pair (Y,X) satisfies the effective Lefschetz condition, written
Leff(Y,X), if Lef(Y,X) is satisfied, and in addition, for every formal vector bundle E on Ŷ ,
there exists an open set U ⊃ X , and a vector bundle E on U , such that Ê ∼= E.

Theorem 4 (Grothendieck, [9]). Let Y be a smooth, projective variety and X be a smooth,
ample hyperplane section of Y . Then Leff(Y,X) holds.

Proof of Theorem 1. The vanishing of H2(X, End E ⊗ OY (−kX)|X) for all k ∈ Z>0, implies
that E extends to a bundle Ek on each thickening Xk. Thus we get a formal vector bundle
Ê := lim

←−
k

Ek on Ŷ . By Leff(Y,X), we are done. �

Proof of Theorem 2. We first make a remark about the hypothesis that E is a bundle on a
general, hyperplane section of Y . By this we mean that if X → S is the universal family of
hypersurfaces in Y , then there exists an open set S′ ⊂ S, and a bundle E → X ×SS

′, flat over S′,
such that for s ∈ S′, if Xs = X, we have Es ∼= E. Suppose that we have succeeded in extending
E to a bundle Ek−1 on Xk−1. Then one has a commutative diagram of 4-term exact sequences
(35)

0 → H1(X, (End E)(−kd)) → Ext1Xk
(Ek−1,E(−kd)) → H0(X, End E) → H2(X,(End E)(−kd)).

↓ ↓ ↓ ↓
0 → H1(X, End E)⊗SkV ∗ → Ext1Xk

(Ek−1,E⊗SkV ∗) → H0(X, (End E)(kd))⊗SkV ∗ → H2(X, End E)⊗SkV ∗.
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Here both the rows are a consequence of the exact sequence from Proposition 2 (i), (the top
row is obtained by taking A = Ek−1 and B̄ = E, and the bottom row is obtained by taking
A = Ek−1 and B̄ = E(kd)⊗ SkV ∗). The vertical maps between the various cohomology groups
are induced by the dual of the evaluation map OX(−d)→ V ∗ ⊗OX and its symmetric powers.

To show that the bundle E lifts to Xk, we need to show that 1 7→ ηEk−1
= 0 under the map

H0(X, End E)→ H2(X, (End E)(−kd))

in the top row of (35).

Since E lives on a general hypersurface, this implies that ηEi = 0 for all i ≥ 0 where Ei :=
E ⊗ OXi . Consider the exact sequence

0→ E ⊗ SkV ∗ → Ek → Ek−1 → 0.

Applying the push-forward functor Rp∗ for the projection map p : X → X, we get the short
exact sequence

(36) θk : 0→ E ⊗ SkV ∗ → p∗(Ek)→ p∗(Ek−1)→ 0.

We first claim that there are maps Ei → p∗Ei for 0 ≤ i ≤ k − 1. The proof is by induction
on i. When i = 0, this is just the isomorphism E ∼= E ⊗ OX . So assume that there is a map
Ek−2 → p∗Ek−2.

The pull-back diagram

0 → E ⊗ Sk−1V ∗ → Ek−1 → Ek−2 → 0
|| ↓ ↓

0 → E ⊗ Sk−1V ∗ → p∗Ek−1 → p∗Ek−2 → 0.

yields the desired map Ek−1 → p∗Ek−1, and taking the pull-back of the sequence (36) under this
map yields an element θ′k ∈ Ext1Xk

(Ek−1, E ⊗ SkV ∗).

Since 1 ∈ H0(X, End E) and θ′k map to the same element in H0(Y, (End E)(kd)) ⊗ SkV ∗ in
diagram (35), by the commutativity of the diagram, we see that 1 7→ 0 under the composition

H0(X, End(E))→ H2(X, End E(−kd))→ H2(X, End E)⊗ SkV ∗.

Condition (1) is equivalent, by Serre duality, to the injectivity of the map

H2(X, (End E)(−kd))→ H2(X, (End E)(kd))⊗ SkV ∗,

which implies that

1 ∈ Image [ Ext1
Xk

(Ek−1, E(−kd))→ H0(X, End E) ].

Thus we see that the bundle E extends to a bundle Ek to the thickening Xk. Set Ê to be
the inverse limit of Ek’s before. Then Ê is the extension of E to the completion Y and so by
the effective Lefschetz condition of Grothendieck, extends to a reflexive sheaf Ẽ whose singular
locus is a finite set of points in the complement of X in Y .

�

5. The Noether-Lefschetz theorem revisited

5.1. The infinitesimal Noether-Lefschetz theorem. Let Y be a smooth, projective 3-fold
and OY (1) be an ample line bundle defining a base point free linear system V . Let X ⊂ Y
be a smooth member of this linear system. We will further assume that the line bundle OY (1)
satisfies the following positivity conditions.
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(P1) The multiplication map

H0(Y,OY (d))⊗H0(Y,KY (d))→ H0(Y,KY (2d))

is surjective.
(P2) The map

H2(Y,Ω1
Y ⊗OY (−d))→ H2(Y,Ω1

Y )

is an inclusion.
(P3) H1(Y,KY (d)) = 0.

Remark 4. By the adjunction formula, we have KY ⊗OX(d) = KX ; and thus an exact sequence

0→ KY ⊗OY (d)→ KY ⊗OY (2d)→ KX ⊗OX(d)→ 0.

Consider the following diagram where the vertical maps are restriction maps:

H0(Y,OY (d))⊗H0(Y,KY (d)) → H0(Y,KY (2d))
↓ ↓

H0(X,OX(d))⊗H0(X,KY (d)⊗OX) → H0(Y,KY (2d)⊗OX)

By (P3) above, the vertical map on the right is surjective. This together with (P1) implies that
the map in the bottom row is also surjective.

Theorem 5 (The infinitesimal Noether-Lefschetz theorem). With hypothesis as above,

Image[Pic(X1)→ Pic(X)] = Image[Pic(Y)→ Pic(X)].

Proof. Recall that for any smooth projective variety V , we have the exponential short exact
sequence

0→ Z→ OV → O∗V → 0.

On taking cohomology, we get a map Pic(V )→ H2(V,Z), which associates to a line bundle A,
its first Chern class c1(A) ∈ H2(V,Z).

We need to prove that if A ∈ Pic(X) extends to a line bundle A ∈ Pic(X1), then under the
hypothesis of the theorem, A is the restriction of a line bundle on Y . We will consider three
cases:

Case (i): c1(A) = 0 i.e. L ∈ Pic0(X). In this case, by the Weak Lefschetz theorem, we have
Pic0(Y ) ∼= Pic0(X), and so A is the restriction of a line bundle from Y .

Case (ii): c1(A) is a non-zero torsion element. In this case, one argues as follows: first, consider
the exact sequence

0→ Z ×m−−→ Z→ Z/mZ→ 0.

Taking cohomology, we get a commutative diagram of long exact sequences for X and Y :

H1(Y,Z) ×m−−→ H1(Y,Z) → H1(Y,Z/mZ) → H2(Y,Z) ×m−−→ H2(Y,Z)
↓ ↓ ↓ ∼= ↓ ↓

H1(X,Z) ×m−−→ H1(X,Z) → H1(X,Z/mZ) → H2(X,Z) ×m−−→ H2(X,Z)

Now if m · c1(A) = 0, then this implies that

c1(A) ∈ Image[H1(X,Z/mZ)→ H2(X,Z)].

Now by the Weak Lefschetz theorem for finite coefficients, we have

H1(Y,Z/mZ) ∼= H1(X,Z/mZ).
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Let c be the lift of c1(A) in H1(Y,Z/mZ); then c maps to a non-zero torsion element c̃ ∈ H2(Y,Z).
Consider the following diagram :

H1(Y,OY ) → Pic(Y ) → H2(Y,Z) → H2(Y,OY )
↓ ↓ ↓ ↓

H1(X,OX) → Pic(X) → H2(X,Z) → H2(X,OX)

Here the rows are the long exact sequences associated to the exponential sequences for Y and
X, and the vertical arrows are restriction maps. From the top row, we see that c̃ = c1(Ã) for
some Ã ∈ Pic(Y ); this is because H2(Y,OY ) is a C-vector space and so c̃ 7→ 0 under the map
H2(Y,Z)→ H2(Y,OY ). By the commutativity of the diagram, we see that c1(Ã⊗OX) = c1(A) ∈
H2(X,Z). This means that Ã⊗OX = A⊗C for some line bundle C ∈ Pic0(X). Since C has a
unique lift C̃ on Y , we see that A ∼= Ã⊗ C̃−1 ⊗OX . Hence we are done.

Case (iii): A ∈ Pic0(X) and c1(A) is non-zero and non-torsion. In this case, one sees that

c1(A) ∈ H1,1(X) ∩H2(X,Z).

We need to prove that if A lifts to a line bundle A on X1, then A is the restriction of a bundle
on Y . This is done by in two steps:

Step 1. Image[ Pic(X1)→ Pic(X) ] = Image[ Pic(X1)→ Pic(X) ].
Step 2. Image[ Pic(X1)→ Pic(X) ] = Image[ Pic(Y)→ Pic(X) ].

Proof of Step 1: Let A 7→ A under the map Pic(X1) → Pic(X); then we have an exact
sequence of OX1-sheaves:

0→ A⊗ V ∗ → A→ A→ 0,
and hence an element of Ext1

X1
(A,A⊗ V ∗).

Let p1 : X1 → X1 be the natural map (recall that is restricts to an isomorphism p : X0
=−→

X0 := X); applying p1,∗ to the exact sequence above, we get an exact sequence of OX1-sheaves

0→ A⊗ V ∗ → p1∗A → A→ 0,

and hence an element Ext1
X1

(A,A⊗ V ∗).
As in the proof of Theorem 2 before, we start with the commutative diagram (35) applied in

the case where E = A is a line bundle:
0 → H1(X,OX(−d)) → Ext1

X1
(A,A(−d)) → H0(X,OX) → H2(Y,OX(−d))

↓ ↓ ↓ ↓
0 → H1(X,OX)⊗ V ∗ → Ext1

X1
(A,A⊗ V ∗) → H0(X,OX(d))⊗ V ∗ → H2(X,OX)⊗ V ∗.

The fact that A lifts to X1 implies that the 1 7→ 0 under the “diagonal” map

H0(X,OX)→ H2(X,OX)⊗ V ∗.
The vertical map

H2(X,OX(−d))→ H2(X,OX)⊗ V ∗

is injective since its dual is surjective by condition (1) (and Remark 4). This in turn implies
that

1 ∈ Ker [ H0(X,OX)→ H2(X,OX(−d) ].
Thus we see that A lifts a line bundle A1 on X1.

Proof of Step 2: We let c1(A1) ∈ H1(X1,Ω1
X1

) denote the first Chern class of A1 (see [15]).
By functoriality, we note that under the natural restriction map

H1(X1,Ω1
X1

)→ H1(X,Ω1
X), c1(A1) 7→ c1(A).

This map in turn factors as

H1(X1,Ω1
X1

)→ H1(X1,Ω1
X1
⊗OX)→ H1(X,Ω1

X).
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Since c1(A) 6= 0 by assumption, this in turn implies that, both c1(A1) and its image in
H1(X1,Ω1

X1
⊗OX), are both non-zero.

Now consider the cotangent sheaf sequence for the inclusion X1 ⊂ Y :

0→ OY (−2d)
d(s2)−−−→ Ω1

Y ⊗OX1 → Ω1
X1
→ 0,

where s ∈ H0(Y,OY (d)) is the section whose zero locus is X. Since d(s2) = s.ds, this means
that when we restrict the above sequence to X, we get an isomorphism

Ω1
Y ⊗OX

∼= Ω1
X1
⊗OX ,

which in turn induces an isomorphism

H1(X,Ω1
Y ⊗OX) ∼= H1(X,Ω1

X1
⊗OX).

Now consider the short exact sequence,

0→ Ω1
Y ⊗OY (−d)→ Ω1

Y → Ω1
Y ⊗OX → 0.

On taking cohomology, we get a long exact sequence

H1(Y,Ω1
Y )→ H1(X,Ω1

Y ⊗OX)→ H2(Y,Ω1
Y ⊗OY (−d))→ H2(Y,Ω1

Y )→ .

From condition (3) above,

H2(Y,Ω1
Y ⊗OY (−d)) ↪→ H2(Y,Ω1

Y ),

and hence we obtain a surjection

H1(Y,Ω1
Y ) � H1(X,Ω1

Y ⊗OX).

Thus we see that c1(A) lifts to H1(Y,Ω1
Y ). It is not hard to see that in fact c1(A) lifts to an

element in H1,1(Y )∩H2(Y,Z). By the Lefschetz (1, 1)-theorem, we see that this lift is c1(Ã) for
some line bundle Ã on Y .

We have the following diagram where the rows come from the exponential sequence and the
vertical maps are restriction maps. The left most vertical map is an isomorphism while the right
most vertical maps is an injection by the Weak Lefschetz theorem,

0 → Pic0(Y ) → Pic(Y ) � H2(Y,Z) ∩H1(Y,Ω1
Y )

↓ ↓ ↓
0 → Pic0(X) → Pic(X) � H2(X,Z) ∩H1(X,Ω1

X)

By a diagram chase (as in Case (ii) above), we see that A ∼= Ã⊗C̃⊗OX for some C̃ ∈ Pic0(Y ).
Thus we see that A lifts to a line bundle on Y . �

5.2. A Noether-Lefschetz theorem for the divisor class group. Let Y be a normal,
projective threefold and OY (d) be an ample line bundle defining a base point free linear system
V . Let X ⊂ Y be a general member of this linear system; by Bertini’s theorem, X is normal.
Let π : Ỹ → Y be a desingularisation and let X̃ := Ỹ ×Y X. Then X̃ is a smooth member of
the linear system π∗V , and π : X̃ → X is a desingularisation. The following result was proved
in [16].

Theorem 6. With notation as above, let f : Y → Pn be the map defined by the linear system V

and, g : Ỹ → PN denote the composite Ỹ → Y → PN . If Ŷ denotes the formal scheme obtained
by completing Ỹ along X̃, then Pic(Ŷ )→ Pic(X̃) is injective, and there is an exact sequence

0→ A→ Pic(Ỹ )→ Pic(Ŷ )→ B → 0

where
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(i) A is freely generated by irreducible g-exceptional divisors in Ỹ which have 0-dimensional
image.

(ii) B is freely generated by the irreducible g| eX -exceptional divisors in X̃, which have 0-
dimensional image under g, modulo the group generated by the classes of exceptional
divisors of the form E · X̃, where E is an irreducible g-exceptional divisor on Ỹ with
dim g(E) = 1.

Proof of Theorem 3. For any smooth member X of the linear system V , we let X̃1 denote its
first order thickening in the universal family X̃ → S := P(V ). By theorem 5 (Hypotheses (i) and
(ii) are conditions (P2) and (P1) respectively and (P3) is true by Kawamata-Viehweg vanishing
theorem since OY (1) is big and nef ), we have

Image[ Pic(X̃1)→ Pic(X̃) ] = Image[ Pic(Ỹ)→ Pic(X̃) ].

Let K = K(S) be the function field of the parameter variety S, and K be its algebraic closure.
Let X̃K and ỸK , denote the base change of X̃ and Ỹ to K respectively. By a standard spreading
out argument (see [17], §3 for details), this means we have an exact sequence

0→ A→ Pic(ỸK)→ Pic(X̃K)→ B → 0,

where A, B are as before (i.e., as in Theorem 6). Equivalently, for a very general member X̃ of
the linear system π∗V , there is an exact sequence

0→ A→ Pic(Ỹ )→ Pic(X̃)→ B → 0.

For a normal projective variety V and a desingularisation h : Ṽ → V , there is a natural
isomorphism (see [16], §1 for a more detailed explanation)

Cl(V ) ∼=
Pic(Ṽ )

(subgroup generated by h-exceptional divisors)
.

Consequently, we have the following diagram, with exact rows and columns (see [16] for more
details):

0 0
↓ ↓

0 → A → Z[EY ] → Z[EX ] → B → 0
|| ↓ ↓ ||

0 → A → Pic(Ỹ ) → Pic(X̃) → B → 0
↓ ↓

Cl(Y ) → Cl(X)
↓ ↓
0 0

Here Z[EY ] and Z[EX ] are the subgroups in the respective Picard groups freely generated by
the irreducible exceptional divisors in Ỹ and X̃. By a simple diagram chase, we now conclude
that Cl(Y )→ Cl(X) is an isomorphism. �
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