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Abstract. Let k be an algebraically closed field, char k 6= 2, 3, and let X ⊂ P2 be an elliptic
curve with defining polynomial f . We show that any non-trivial torsion point of order r,
determines up to equivalence, a unique minimal matrix Φr of size 3r×3r with linear polynomial
entries such that det Φr = fr. We also show that the identity, thought of as the trivial torsion
point of order r, determines up to equivalence, a unique minimal matrix Ψr of size (3r − 2) ×
(3r − 2) with linear and quadratic polynomial entries such that det Ψr = fr.

1. Introduction

In this note, we investigate matrix representations of homogeneous polynomials. The precise
question, which dates back to at least the work of Dickson (see [6]) is the following: given a
homogeneous polynomial of degree d in n variables, is it possible to obtain it as the determinant
of a matrix whose entries are linear homogeneous polynomials in the same variables.

More recently, questions which are slightly different and more general have been a subject of
investigation. These include investigating if a positive integral power of the polynomial has a
determinantal representation, removing the restriction that the entries of the matrices are linear
so that they are now allowed to be homogeneous polynomials of degree less than d, or demanding
that the matrix satisfy additional conditions such as being symmetric or skew-symmetric. Of
course, every polynomial f is the determinant of a 1× 1 matrix with entry f , and has a trivial

Pfaffian (= square root of the determinant) representation via the matrix

(
0 f
−f 0

)
, and

so on. To avoid any kind of degeneracy, we will assume that the matrix is minimal : i.e., no
non-zero scalar entries are allowed in the matrix.

Notice that given an m×m matrix Φ with linear entries and M, N ∈ GL(m, k), the determi-
nant of the product MΦN is a scalar multiple of the determinant of Φ; hence we shall only be
interested in “suitable” equivalence classes of representations rather than all representations.

Questions about matrix representations of polynomials arise in diverse contexts. One such
instance is in complexity theory, and is exemplified by the “Permanent vs Determinant conjec-
ture” due to Valiant (see [11]) and its strengthening due to Mulmuley and Sohoni (see [9]). Our
interest though stems from classical questions in algebraic geometry, which is a natural setting
for the study of homogeneous polynomials and their zero sets, which we briefly describe.

2. Statement of results

In this note, we take up the study of matrix representations of positive integral powers of
smooth, cubic homogeneous polynomials in three variables and give explicit descriptions of
these representations using methods from algebraic geometry. This is done by first rephrasing
the question in terms of vector bundles on an elliptic curve. Here is a brief sketch of how this is
done.

Given a vector bundle E on a smooth hypersurface X ⊂ Pn, n > 1, we consider H0
∗(X,E) :=⊕

ν∈Z H0(X,E(ν)) as a graded S-module where S := H0
∗(Pn,OPn) is the polynomial ring in (n+
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1) variables. By Serre’s theorems, this is a finitely generated S-module. Let si ∈ H0(X,E(ai))
for 1 ≤ i ≤ l be a set of minimal generators. Then we have a surjection of OPn-sheaves, L0 :=⊕l

i=1OPn(−ai) � E, which induces a surjection H0
∗(Pn, L0) � H0

∗(X,E). The sheafification of
the associated minimal graded resolution yields an exact sequence

0→ L1
Φ−→ L0 → E → 0,

where L1 is the sheaf corresponding to the first syzygy module. Since X is smooth, and E
is a vector bundle on X, it is Cohen-Macaulay. By the Auslander-Buchsbaum formula (see
[7], Chapter 19), we see that L1 is a vector bundle on Pn. Furthermore, H1

∗(Pn, L1) = 0 and
hence when n = 2, it follows by Horrocks’ theorem that L1 is a sum of line bundles on Pn.
Consequently, Φ is a minimal square matrix whose entries are homogeneous polynomials in 3
variables whose determinant is the defining polynomial of X. Furthermore, if for example, E is
a line bundle, then the size of the matrix Φ is of size atmost d × d. In case E is rank 2 with
detE = OX(α) for some α ∈ Z, then using the alternate bilinear pairing E × E → detE, one
sees that Φ can be taken to be skew-symmetric (see [2]) of size atmost 2d × 2d and that the
Pfaffian of Φ is the defining polynomial of X. Conversely, any such matrix defines a rank 2
bundle E. This establishes a dictionary between equivalence classes of matrices representing the
defining polynomial of X, and vector bundles supported on X.

Here is the statement of the main theorem of this note.

Theorem 1. Let X be an elliptic curve in the plane given by a homogeneous cubic polynomial
f ∈ k[x0, x1, x2]. Then up to a constant factor,

(1) There are 3 (inequivalent) representations of f by symmetric linear determinants and
these are in one-to-one correspondence with the non-trivial 2-torsion points of X.

(2) Every point of the elliptic curve determines, up to equivalence, a linear Pfaffian represen-
tation of f which corresponds to a decomposable rank 2 bundle; in addition to these, there
are 3 other linear Pfaffian representations of f ; each of which correspond to indecom-
posable rank 2 bundles. Furthermore, these are completely determined by the non-trivial
2-torsion points of X.

(3) There are 2 (inequivalent) representations of f as Pfaffians of skew-symmetric minimal
matrices of size 4× 4, each of which correspond to indecomposable rank 2 bundles.

(4) For any r, there is a bijective correspondence between torsion points of order r and
(equivalence classes of ) indecomposable 3r × 3r matrices with linear entries whose de-
terminant is f r.

(5) For any r ≥ 2, the identity, thought of as a torsion point of order r, yields a unique
(up to equivalence) (3r − 2) × (3r − 2) matrix with linear and quadratic entries whose
determinant is f r.

Remark 1. In Theorem 1.3 and 1.4, we cannot describe the equivalence completely for r ≥ 3.

As mentioned before, the first part of the above theorem is well-known and a proof can be
found for instance in [2].

3. Preliminaries

Let V be the 3-dimensional vector space of linear forms on P2. Let M3×3(V ) denote the space
of all 3×3 matrices with entries in V . LetM0 ⊂M3×3(V ) be the open set consisting of matrices
whose determinants have smooth zero loci. Let G0 := GL(3, k)×GL(3, k). Then G0 acts freely
and properly on M0 via Φ 7→ MΦN t. This action in turn factors via the group G′0 := G0/Gm

where Gm embeds in G0 diagonally as λ 7→ (λ, λ−1). The determinant map,

det :M0 → P(Sym3 V )
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which associates to a matrix Φ, its determinant det Φ, factors via

d̃et :M0/G
′
0 → P(Sym3 V ).

One checks that dimM0/G
′
0 = 10 and dimP(Sym3 V ) = 9.

Let Msym
3×3(V ) denote the space of all 3 × 3 symmetric matrices with entries in V . Let M ⊂

Msym
3×3(V ) be the open set consisting of matrices whose determinants have smooth zero loci. Let

G1 := GL(3, k). It is clear that the determinant map factors as

d̃et :M/G1 → P(Sym3 V )

where M/G1 is the quotient for the G1 action on M given by Φ 7→ MΦM t. One checks that
dimM/G1 = dimP(Sym3 V ) = 9.

Finally, let Mss
6×6(V ) denote the space of all 6× 6 skew-symmetric matrices with entries in V .

There is an embedding
M3×3(V ) ↪→Mss

6×6(V )

defined by

φ 7→
(

0 φ
−φt 0

)
.

We shall, by abuse of notation, refer to the image of the above embedding by M3×3(V ). Let N
denote the open set in Mss

6×6(V ) of those matrices whose Pfaffians have smooth zero loci. Let
G2 := GL(6, k). It is clear that the Pfaffian map

Pf : N → P(Sym3 V )

which associates to a matrix Φ, its Pfaffian Pf(Φ), which has the property that (Pf(Φ))2 = det Φ,
factors via

P̃f : N/G2 → P(Sym3 V )

where N/G2 is the quotient for the G2 action on N is given by Φ 7→MΦM t.

For the case of non-degenerate Pfaffian representations, we let

X := {[Φ] ∈ N/G2 | Φ 6∼G2

(
0 φ
−φt 0

)
, φ ∈Mss

3×3(V )},

and this gives a map

P̃f indec : X → P(Sym3 V ).

4. Linear Matrix representations: Proofs of Theorem 1.1 and 1.2

Proof of Theorem 1.1. Every elliptic curve in the plane has three distinct non-trivial theta char-
acteristics, each of which corresponds to a non-trivial 2-torsion point on the elliptic curve. The
required statement is a direct consequence of Proposition 4.2, [2]. �

The following important theorem due to Atiyah (see [1], Theorem 5 and Corollary 1) will play
an important role for us.

Theorem 2. Let X be an elliptic curve.

(1) Then for any r > 0, there exists an indecomposable vector bundle Fr, unique up to
isomorphism, with h0(Fr) = 1. Moreover, F0 = OX and Fr is defined inductively by the
exact sequence,

0→ OX → Fr → Fr−1 → 0.

(2) Let E be any indecomposable rank r bundle of degree 0. Then there exists a line bundle
A such that E ∼= Fr ⊗A and such that A⊗r = detE.

(3) Fr ∼= F∨r (i.e., Fr is self-dual).
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Theorem 3. With notation as above,

(1) The general fibre of the morphism P̃f has dimension 1.

(2) The morphism P̃f indec is generically finite of degree 3.

Proof. We will first need to show that the map P̃f is dominant. By Proposition 5.1 of [2], this
is equivalent to the fact that any smooth elliptic curve X supports a rank two vector bundle E
with detE = OX and h0(E) = 0 and has a minimal resolution of the form

(1) 0→ OP2(−2)⊕6 Φ−→ OP2(−1)⊕6 → E → 0.

Take any L ∈ Pic0(X), L 6∼= OX , and let φ be the matrix in the minimal resolution of L (see
Prop 3.1, [2]). Then the bundle L⊕L−1 (which has determinant OX and h0 = 0) has a minimal

resolution with matrix Φ =

(
0 φ
−φt 0

)
. Thus the map P̃f is dominant. Since Pic0(X) ∼= X,

we see that the fibre is indeed at least 1- dimensional.

To understand the fibres, we will consider two cases: namely when E ∼= A⊕A′ is a sum of line
bundles and the other case when E is indecomposable. So let E ∼= A⊕ A′. Since detE = OX ,
A′ ∼= A−1 and so E ∼= A⊕A−1. Since h0(E) = 0, this implies that h0(A) = 0 = h0(A−1) and so
degA = 0, A 6∼= OX . Thus the decomposable Pfaffian representations are precisely the ones in
the previous paragraph.

Now suppose that E is indecomposable. Then by Theorem 2, there exists a line bundle A of
degree 0 such that E ∼= F2 ⊗A. Thus E can be written as a non-trivial extension

0→ A→ E → A→ 0.

Taking determinants, we get A⊗2 ∼= OX . The indecomposable bundle E which is described by
the non-trivial extension

0→ OX → E → OX → 0

has h0(E) = 1 and hence is not the desired element. Thus E has to be isomorphic to one of the
three non-trivial extensions

0→ κi → E → κi → 0, i = 1, 2, 3,

where κi’s are non-trivial 2-torsion elements in Pic0(X). Thus the total number of equivalence
classes of indecomposable Pfaffian representations of a smooth cubic is 3. �

We refer the reader to [3, 4] for more general results on Pfaffian representations of plane
curves of all degrees.

5. Non-linear matrix representations

As mentioned in the introduction, one might ask whether the defining polynomial of any
elliptic curve in the plane can be written as the determinant of say, a minimal (symmetric) 2×2
matrix or as a Pfaffian of a minimal 4× 4 skew-symmetric matrix.

5.1. Non-linear determinants.

Proposition 1. Let X ⊂ P2 be an elliptic curve.

(1) X cannot be defined as the zero set of the determinant of a minimal, symmetric 2 × 2
matrix with homogeneous polynomial entries.

(2) There are two families of 1-dimensional minimal, non-symmetric 2× 2 matrices, trans-
pose to each other, which represent X in the above sense.
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Proof. Any such matrix

(
a b
b c

)
has determinant of the form ac − b2 where a, b, c are homo-

geneous polynomials. If b = 0, then the determinant is not irreducible, hence the resulting zero
locus is not smooth. If b 6= 0, the determinant has even degree. Since the elliptic curve is given
by a cubic polynomial, the statement of (1) is obvious. For (2), it is easy to see that in the 2×2

matrix

(
a b
c d

)
, either (a, b) are linear forms and (c, d) are quadratic forms, or (a, c) are linear

forms and (b, d) are quadratic forms. The two possibilities (up to a twist) are

(2) 0→ OP2(−2)⊕2 φ−→ OP2(−1)⊕OP2 → L→ 0 and,

(3) 0→ OP2(−1)⊕OP2(−2)
ψ−→ O⊕2

P2 →M → 0.

It is straightforward to check (i) (using Riemann-Roch for instance) that degL = 1 and degM =
2 and, (ii) φ and ψ are transpose to each other.

�

5.2. Non-linear Pfaffians. Any skew-symmetric matrix Φ whose Pfaffian, denoted by Pf(Φ),
is the defining equation of the elliptic curve X has to be of even size since the Pfaffian of any
odd sized skew-symmetric matrix is zero. This leaves us with two choices viz. 6×6 which yields
a linear Pfaffian representation and 4× 4 which yields a non-linear Pfaffian representation of X.
Any 4× 4 skew-symmetric matrix has the form

(4) Φ =


0 a b c
−a 0 d e
−b −d 0 g
−c −e −g 0

 with Pf(Φ) = ag − be + cd.

In particular, we have

deg a+ deg g = deg b+ deg e = deg c+ deg d = 3,

and so each non-zero entry is either a linear or quadratic polynomial. To determine the possible
Φ′s (see [5, 8] for similar computations), we look at the possible minimum resolutions

0→ L1
Φ−→ L0 → E → 0.

It is easy to check that L1
∼= L∨0 ⊗OP2(α−3) where detE = OX(α). By twisting with a suitable

OX(m), we may assume that

L0 = O⊕`P2 ⊕
4−⊕̀
i=1

OP2(−mi), l ≥ 0, 0 < m1 ≤ · · · ≤ m4−`.

Lemma 1. The only possible minimum resolutions are of the form

0→ L1
Φ−→ L0 → E → 0,

where

(a) L0 = O⊕3
P2 ⊕OP2(−1), or

(b) L0 = OP2 ⊕OP2(−1)⊕3.

Proof. We first need to rule out the possibilities L0 = O⊕4
P2 and L0 = O⊕2

P2 ⊕ OP2(−m1) ⊕
OP2(−m2) with 0 < m1 ≤ m2.

If L0 = O⊕4
P2 , then this implies that L1 = OP2(−m)⊕4 for some m. Hence the degrees of all

the non-zero terms in the matrix Φ are equal. This is not possible since Pf(Φ) has odd degree.
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Now suppose that L0 = O⊕2
P2 ⊕OP2(−m1)⊕OP2(−m2). Since L1 = L∨0 ⊗OP2(α− 3), we see

that
deg a = 3− α, deg b = 3− α−m1, deg c = 3− α−m2,

deg d = 3− α−m1, deg e = 3− α−m2 deg g = 3− α−m1 −m2.

Since deg a+ deg g = deg b+ deg e = deg c+ deg d = 3, we see on solving for α,m1 and m2, that
that this is impossible.

Next let L0 = O⊕3
P2 ⊕OP2(−m) with m > 0. Then L1 = OP2(α−3)⊕3⊕OP2(m+α−3). We see

that, using the fact that deg a+deg g = 3, this implies that deg a = 3−α and deg g = −m+3−α.
We see that the only possible solution is m = 1 and α = 1.

Finally suppose that L0 = OP2 ⊕
⊕3

i=1OP2(−mi) with m3 ≥ m2 ≥ m1 > 0. Plugging in for
deg a+ deg g = deg b+ deg e = deg c+ deg d = 3, we get

deg a = 3− α−m1, deg b = 3− α−m2, deg c = 3− α−m3,
deg d = 3− α−m1 −m2, deg e = 3− α−m1 −m3, deg g = 3− α−m2 −m3.

Solving these, we get m1 = m2 = m3 = 1 and α = 0. �

Let

(5) 0→ OP2(−2)⊕3 ⊕OP2(−1)
Φ−→ O⊕3

P2 ⊕OP2(−1)→ E → 0 and,

(6) 0→ OP2(−2)⊕3 ⊕OP2(−3)
Ψ−→ OP2(−1)⊕3 ⊕OP2 → G→ 0

be the two possibilities from the above lemma. We shall refer to E above (resp. a resolution of
E) as being of the first kind. Similarly, we shall refer to G above (resp. a resolution of G) as
being of the second kind.

Lemma 2. Let E be a rank 2 vector bundle of the first kind on X. Then there is a rank 2
bundle G which fits into an exact sequence

0→ G⊗OX(−1)→ O⊕3
X ⊕OX(−1)→ E → 0,

such that G has a minimal resolution of the second kind. Similarly if G is a rank 2 bundle of
the second kind on X, then there is a rank 2 bundle E which fits into an exact sequence

0→ E ⊗OX(−2)→ OX(−1)⊕3 ⊕OX → G→ 0,

such that E has a minimal resolution of the first kind.

Equivalently, the matrices Φ and Ψ always occur in pairs and satisfy Φ.Ψ = f.I4 = Ψ.Φ where
I4 is the 4× 4 identity matrix and f = Pf(Φ) = Pf(Ψ).

Proof. Let 0 → L1
Φ−→ L0 → E → 0 be a minimal resolution as above. Consider the map

L0(−3)
f.I4−−→ L0 given by multiplication by the diagonal matrix f.I4, where f is the polynomial

defining X. Since the composite map L0(−3)
f.I4−−→ L0 → E is zero, we get a map L0(−3)

Ψ−→ L1

satisfying Φ.Ψ = fI4. We will now show that Ψ is skew-symmetric. This will in particular prove
that Pf(Ψ) = f . To do this, we repeat the same process for the map Ψ, to get a map Φ0 such
that Ψ.Φ0 = fI4. Multiplying on the right of both sides by the matrix Φ, we get fΦ0 = fΦ.
This implies that Φ0 = Φ. Thus we have Ψ.Φ = fI4 = Φ.Ψ. Taking transposes for the first
equality, we get Φt.Ψt = fI4 = Φ.Ψ. Since Φt = −Φ, we get Ψt = −Ψ. �

Remark 2. There is a constructive proof to show that that if Φ is a skew-symmetric matrix of
size 2d× 2d, then there exists a companion skew- symmetric matrix Ψ of size 2d× 2d such that
Ψ ◦ Φ = fI2d where f := Pf(Φ) = Pf(Ψ) and I2d is the identity matrix of size 2d × 2d. The
matrix Ψ is obtained from Φ in the following way: the (i, j)-th entry of Ψ is the Pfaffian of the
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skew-symmetric matrix obtained by deleting the i-th and j-th rows and columns of Φ. We refer
the reader to [10] for details.

Corollary 1. In Lemma 2, E is indecomposable if and only if G is so.

Proof. Assume that E is decomposable. Then E ∼= A ⊕ A−1(α) for some degree 0 line bundle
A. Here as usual detE = OX(α). This implies that the matrix Φ is degenerate i.e., of the form

Φ =


0 0 q2 l3
0 0 q3 −l2
−q2 −q3 0 0
−l3 l2 0 0


Then by remark 2, we have

Ψ =


0 0 −l2 q3

0 0 l3 q2

l2 −l3 0 0
−q3 −q2 0 0


and so G is also decomposable. The converse follows by interchanging E and G. �

The following result gives a concrete example of a bundle of the first kind.

Lemma 3. The bundle E := TP2(−1)|X is indecomposable and has a minimal resolution of the
first kind.

Proof. Restricting the Euler sequence on P2 to X yields the sequence

(7) 0→ OX(−1)→ O⊕3
X → E → 0.

Standard cohomology computations will show that E is globally generated with h0(E) = 3 and
h0(E(−1)) = h0(E∨) = 0. By Serre duality, h1(E) = 0 and hence E is 1-regular. Let s ∈ H0(E)
be a general section. Since E is globally generated, the zero locus is pure of codimension 2 and
hence nowhere vanishing. Thus we have an exact sequence of bundles

0→ OX
s−→ E → L→ 0.

Determinant considerations imply that L ∼= OX(1). Tensoring this sequence by OX(−1) and
taking cohomology, we get a cohomology sequence

· · · → H0(X,E(−1))→ H0(X,OX)
∂−→ H1(X,OX(−1))→ · · · .

Since the first term is zero, this means that the boundary map ∂ is non-zero. In particular,
the above extension is non-split. To prove indecomposability, let us suppose that E = A ⊕ B.
Since E is globally generated, this means that both A and B are globally generated too. Hence
deg(A) ≥ 0 and deg(B) ≥ 0. Suppose deg(A) = 1. Then by Riemann-Roch, h0(A) = 1.
Global generation implies that there is a surjection H0(A)⊗OX = OX → A. This implies that
A ∼= OX , hence a contradiction. Similarly deg(A) 6= 2 (for then deg(B) = 1 and then we arrive
at a contradiction). Thus deg(A) = 0 or deg(B) = 0. Global generation implies that A ∼= OX
or B ∼= OX . Thus we have E = OX ⊕OX(1), again a contradiction.

Since E is 1-regular and h0(E(−ν)) = 0 for ν > 0, the minimal generators of E lie in degrees
0 and 1. From the cohomology long exact sequence associated to sequence (7), one first checks
that not all its generators are in degree 0 i.e.,⊕

ν∈Z
H0(OX(ν)⊕3)→

⊕
ν∈Z

H0(E(ν))
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is not a surjection. This fails for ν = 1 and can be seen as follows. We have the long exact
sequence of cohomology for the sequence (7) after tensoring with OX(1):

· · · → H0(OX(1)⊕3)→ H0(E(1))→ H1(OX)→ H1(OX(1))→ H1(E(1))→ 0.

Since H1(OX(1)) = 0, this implies that E has one generator in degree 1 which is not generated
by the sections in degree 0. The same argument as above shows that these are all the generators
and so we have an induced surjection O⊕3

X ⊕OX(−1) � E. This surjection in turn can be lifted
to a minimal resolution of E on P2:

0→ OP2(−2)⊕3 ⊕OP2(−1)
Φ−→ O⊕3

P2 ⊕OP2(−1) � E → 0,

such that Pf(Φ) is the defining polynomial of X. �

Proof of Theorem 1.3. By Lemma 3, the existence of a 4 × 4 skew-symmetric matrix whose
Pfaffian is the defining polynomial of X is guaranteed. By theorem 2, the bundle E above is
unique up to unique isomorphism. By Lemma 2 and Corollary 1, there is an indecomposable
bundle G of the second kind, unique up to unique isomorphism. The Pfaffian of the skew-
symmetric matrix which occurs in the minimal resolution of G is the defining polynomial of X.
This finishes of the proof. �

6. Higher order torsion points on an elliptic curve

Theorem 4. Let X ⊂ P2 be a smooth elliptic curve with defining polynomial f . Let Φr be a
minimal 3r × 3r linear matrix such that

Coker[OP2(−2)⊕3r Φr−→ OP2(−1)⊕3r]

is an indecomposable rank r bundle E with detE = OX . Then det Φr = f r. Furthermore, such
E and Φr exist and there is a bijective correspondence between the set of such bundles and the
non-trivial r-torsion points of X.

Proof. Consider the exact sequence

0→ OP2(−2)⊕3r Φr−→ OP2(−1)⊕3r → E → 0,

thought about as a minimal resolution of the bundle E. Then locally since E ∼= O⊕rX , Φr is the
diagonal matrix

Φr = (f, f, · · · , f, 1, · · · , 1)

with f occuring r times, and so detE = f r. Since E is indecomposable of degree 0, by Theorem
2, E ∼= Fr⊗A for some line bundle A with A⊗r = OX . Finally h0(E) = 0 implies that A 6∼= OX .

To prove the converse, we first check (the details of which we omit) that any rank r bundle
E obtained as a repeated extension of an r-torsion line bundle with itself has the following
properties:

(i) E is 1-regular (in the sense of Castelnuovo-Mumford),
(ii) h0(E(−ν)) = 0 for ν ≥ 0, and

(iii) det(E) = OX .

Conditions (i) and (ii) imply that E has all its minimal generators in degree 1 and Riemann-Roch
implies that there are 3r of them. So E has a minimal resolution of the form

0→ L1 → L0
∼= OP2(−1)⊕3r → E → 0,

where L1 is a sum of line bundles on P2. Dualising as before, we get

(8) 0→ L∨0 → L∨1 → E∨(3)→ 0.
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Now

E∨ ∼= (Fr ⊗A)∨ ∼= F∨r ⊗A∨ ∼= Fr ⊗A′

where A′ = A∨ ∼= Ar−1, and the surjection

L∨1 (−3)→ E∨

from (8) induces a surjection

H0
∗(P2, L∨1 ) � H0

∗(X,E
∨).

This together with the fact that rank(L1) = rank(L0), implies that L∨1 → E∨ is induced by a
set of minimal generators. Since E∨ also satisfies properties (i)-(iii) above and h0(E∨(1)) = 3r
by Riemann-Roch, this implies L∨1 (−3) ∼= OP2(−1)⊕3r. Thus L1

∼= OP2(−2)⊕3r. �

Theorem 5. Let X ⊂ P2 be an elliptic curve and Fr denote the unique indecomposable rank r
bundle with h0(Fr) = 1 and detFr = OX . Then Fr has a minimal resolution of the form

(9) 0→ OP2(−2)⊕3(r−1) ⊕OP2(−3)
Ψr−−→ OP2(−1)⊕3(r−1) ⊕OP2 → Fr → 0.

In particular, Ψr is a minimal (3r − 2)× (3r − 2) matrix with linear and quadratic polynomial
entries such that det Ψr = f r.

Proof. The proof is by induction. For the base case of r = 2, Fr is the bundle G above. Now
suppose that the theorem holds for Fr−1. Consider the exact sequence

0→ OX → Fr → Fr−1 → 0.

Since F∨r
∼= Fr for all r, we can consider the dual exact sequence

0→ Fr−1 → Fr → OX → 0.

Since this is a non-trivial extension, we see that the coboundary map in the long exact sequence
of cohomology, H0(X,OX) → H1(X,Fr−1) is non-zero. However, ∀s > 0, H1(X,Fs(a)) = 0 for
a > 0, and so we have a short exact sequence

0→ H0(X,Fr−1(a))→ H0(X,Fr(a))→ H0(X,OX(a))→ 0 ∀ a > 0.

The graded module N := ⊕a>0 H0(X,OX(a)) is generated by its degree 1 elements (and there
are three of them). This implies that the minimal generators of Fr−1 and N together generate
Fr and that this set is minimal. Thus we have a surjection

Θ :
(
OP2(−1)⊕3(r−2) ⊕OP2

)
⊕OP2(−1)⊕3 � Fr.

This yields an exact sequence

0→ L1 → L0 := OP2(−2)⊕3(r−1) ⊕OP2 → Fr → 0,

where L1 is the kernel of the the map Θ. Dualising the exact sequence, we get

0→ L∨0 → L∨1 → F∨r (3)→ 0.

Now F∨r
∼= Fr and since L0 is a sum of line bundles, the map of graded modules H0

∗(L
∨
1 (−3))→

H0
∗(Fr) is a surjection. This implies, by the same reasoning as in the proof of the above theorem,

that L∨1 (−3) ∼= L0 and thus we are done. �



10 G. V. RAVINDRA AND AMIT TRIPATHI

References

[1] Atiyah, M. F., Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 1957 414–452.
[2] Beauville, Arnaud., Determinantal hypersurfaces, Dedicated to William Fulton on the occasion of his 60th
birthday. Michigan Math. J. 48 (2000), 39–64.

[3] Buckley, Anita, Elementary transformations of Pfaffian representations of plane curves, Linear Algebra Appl.
433 (2010), no. 4, 758–780.
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