THE NOETHER-LEFSCHETZ THEOREM FOR THE DIVISOR CLASS
GROUP

G. V. RAVINDRA AND V. SRINIVAS

ABSTRACT. Let X be a normal projective threefold over a field of characteristic zero and |L| be a
base-point free, ample linear system on X. Under suitable hypotheses on (X, |L|), we prove that
for a very general member Y € |L|, the restriction map on divisor class groups Cl(X) — C1(Y)
is an isomorphism. In particular, we are able to recover the classical Noether-Lefschetz theorem,
that a very general hypersurface X C P2 of degree > 4 has Pic (X) = Z.

We work over an algebraically closed field of characteristic zero, which shall be denoted by k.

Let X be an irreducible normal projective 3-fold defined over k and Ox (1) be an ample line
bundle on X. Let V € H°(X,0x(1)) define a base-point free linear system |V|, so that the
induced morphism f : X — PV := P(V) is finite. If Y is a general member of this linear system
on X, then Y is a normal projective surface, by Bertini’s theorem. Since Y is an effective
Cartier divisor in X, we have a natural homomorphism Cl(X) — CI(Y') on divisor class groups,
defined by [D] — [D NY], where D is any Weil divisor on X which does not have Y as a
component, and [D N Y] is the intersection cycle. This homomorphism on class groups is the
refined Gysin homomorphism CHy(X) — CH(Y) of [4]. The Noether-Lefschetz problem in this
context is to find conditions on (X, Ox(1)) which imply that the above map Cl(X) — CL(Y) is
an isomorphism.

If X is non-singular, and Ox (1) is “sufficiently ample”, then the Noether-Lefschetz Theorem
asserts that Cl(X) = Pic(X) — Pic(Y) = CI(Y) is an isomorphism for a “very general” choice
of Y. Let S be the k-parameter variety for divisors in the linear system. By “very general”
we may mean one of two things: either (i) that k is uncountable, and that ¥ € S lies in the
complement of a countable union of proper subvarieties of S, or (ii) that Y is the geometric
generic member of the linear system, defined after making a base change to the algebraic closure
of the function field £(5), and the Picard groups are computed after this base change. We will
comment further below (see §3) about the relation between these conditions. In the case when
k=C, X =P, and Ox(1) = Ops(d) with d > 4, we obtain the “classical” Noether-Lefschetz
theorem.

Proofs of versions of the Noether-Lefschetz theorem may be found in several places; for exam-
ple see [3] for a “modern” treatment, including also statements valid in characteristics p > 0. All
proofs in the literature which are known to us use either the monodromy of Lefschetz pencils, or
Hodge theory in some form (see for example [1]). They do not seem to cover the case of divisor
class groups of singular varieties, at least in their present forms.

If X is normal, and 7 : X > Xisa proper birational morphism from a non-singular proper 3-
fold X (e.g., a resolution of singularities of the normal projective 3-fold X ), then the sheaf m.wy is
a torsion-free coherent sheaf on X, which restricts to w Xpop ON the regular locus Xpeg = X \ Xsing-
Denote this sheaf by Kx. It is well known to be independent of the choice of the birational
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morphism 7 (the Grauert-Riemenschneider theorem, see [5] for example), and for non-singular
X (or more generally, for X with only rational singularities), coincides with its canonical sheaf.

The main result of this paper is the following.

Theorem 1. Let X be a normal projective 3-fold over k, with an ample invertible sheaf Ox (1),
and a subspace V C H°(X,Ox (1)), defining a base-point free linear system, and thus giving a
morphism f : X — PY. Assume further that the coherent sheaf (f.Kx)(1) is generated by its
global sections.

Let Y denote a very general member of the linear system |V|. Then the restriction map
Cl(X) — CI(Y) is an isomorphism.

In particular, the theorem is true for non-singular X such that Ox(1) is very ample, |V]|
is the corresponding complete linear system, and wx (1) is generated by global sections. This
is certainly true when Ox(1) is sufficiently ample, and includes the “classical” case X = P3,
Ox (1) = Ops(d) with d > 4.

The proof of the theorem as stated above differs from existing proofs in two ways. Firstly,
it is purely algebraic in nature and in the spirit of Grothendieck’s proof of the Grothendieck-
Lefschetz theorem; no use is made of monodromy or Hodge theory. Secondly, we explicitly
say how “positive” the linear system needs to be. Our algebraic approach has an advantage
of yielding a result for the divisor class group, which is perhaps not easily available from the
monodromy/Hodge theory approach.

We may compare our result, for smooth X, with the assumption that f is an embedding, such
that H2(Ox) — H?(Oy) is not surjective, for a general hyperplane section Y'; this hypothesis is
sufficient to yield the Noether-Lefschetz theorem using the monodromy argument, for example.
We do not quite recover this statement, though we do get it for X = P3. However, we do have a
statement for smooth X, for a finite map f which is not an embedding, and it is not clear to us
that this can also be obtained by monodromy arguments. In any case, it is not clear to us what
the “most general” assertion (in the direction of the Theorem) should be, which would include
our results, as well as the classical statement obtained by monodromy/Hodge theory.

The approach here is a generalisation of a method introduced by the second author and
N. Mohan Kumar (see [10]). It consists of first proving a Formal Noether-Lefschetz theorem,
and then using this to obtain the “global” Noether-Lefschetz theorem. For other applications
of this method, see [9], [13], [14].

The plan of the paper is as follows. In section 1, we give a reformulation in terms of Picard
groups of desingularizations, which amounts to considering a Noether-Lefschetz problem for a
very general member of a big and base-point free linear system on a smooth proper 3-fold. In
section 2, we introduce and prove the Formal Noether-Lefschetz theorem. In section 3, we show
how the Formal Noether-Lefschetz theorem implies the global Noether-Lefschetz theorem.

1. REFORMULATION

First let X be a normal projective 3-fold over k, and let Ox(1) be an ample line bundle
over X, together with a linear subspace V C H(X, Ox(1)) which gives a base point free linear
system |V| on X. Let Y € |V| be a general element of this linear system; by Bertini’s theorem,
we have Yy =Y N Xgipng, and Y is a normal projective surface.
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X5 Xisa desingularisation of X (by which we mean here that 7 is a proper birational
morphism, and X is non-singular) we have the following (Cartesian) diagram:

Y — X
[yl I
Y — X

Note that Y is a general member of the pull-back linear system 7*V on the smooth proper
variety X , and therefore is smooth, by Bertini’s theorem; hence Y >Yisa desingularisation
of Y. If X is singular, then Y isa general member of the linear system determined by 7*V C
HO(X, 7*Ox (1)) where m*Ox (1) is not ample, but is big and base-point free. Let g := f o be
the composite morphism X - X — PV,

Conversely, if Xisa non-singular and proper 3-fold, and g : X >PVisa morphism which is
generically finite (to its image), then we can consider the Stein factorization of g,

X~ xLpy,
where X is a normal projective 3-fold, f is finite, and 7 is a proper birational map. By the
exceptional locus of the generically finite proper morphism ¢, we will mean the union of the
positive dimensional components of fibers of the morphism; this coincides with the exceptional
locus of the proper birational morphism 7 obtained by Stein factorization. Notice that there
is a closed subset S C X of dimension < 1 such that X \ 77(S) — X \ S is an isomorphism.
Thus, for any irreducible component E of the g-exceptional locus, we have dim g(F) < 1.

In this context, we have the following analogue of the Noether-Lefschetz theorem, for Picard
groups.

Theorem 2. Let X be a non-singular proper 3-fold, and g : X — P]kv a morphism, generically
finite to its image. Assume that the coherent sheaf g. K ® Opn (1) is globally generated. Let Y
be the pullback of a very general hyperplane in PN. Then there is an exact sequence

0 — A — Pi¢(X) — Pic(Y) —» B — 0
where A is freely generated by the irreducible divisors in X which map to points under g, and B
is the group generated by the irreducible divisors in'Y which map to points under g |3. Further,

the class of a g |g-exceptional divisor lies in the image of Pic(X) — Pic(Y) precisely when it is
the restriction of a g-exceptional divisor class in Pic(X).

Notice that if ' is any irreducible component of the g-exceptional locus of X , then since Y is
a general member of a base-point free linear system on X, we have: (i) E NY = if dim g(E)=0
(this is neccessarily the case if dim E = 1) (ii) the irreducible components of the exceptional
locus of Y — IF’kN are divisors (curves), and these are irreducible components of E N }7, where
E C X is an irreducible divisor with dim g(F) = 1. Also, we note that any non-zero exceptional
divisor for g determines a non-zero class in Pic X , and a similar assertion holds for g | and
PicY.

With these remarks, one can easily see that Theorem 2 is equivalent to Theorem 1, using
the fact (see [12], §1 for a more detailed explanzicion) that for any proper birational morphism

h :V — V from a non-singular proper variety V to a normal projective variety V', we have a
natural isomorphism

Pic(V)
(subgroup generated by h-exceptional divisors)

Cl(V) =
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The surjection Pic(V) — CIl(V) may be viewed as a particular case of the proper push-forward
map on Chow groups (see [4]), and this is compatible with intersection with a Cartier divisor
(this is a particular case of functoriality under proper push-forwards of the refined Gysin maps,
as constructed in [4], for example).

The equivalence of Theorem 1 and Theorem 2 allows us to say that Theorem 2 for ()N( . 9)
depends only on the corresponding ample linear system |V| on the normal variety X obtained
by Stein factorization. In particular, by Hironaka’s theorem, we may assume without loss
of generality that m : X — X is a resolution of singularities, whose exceptional locus is a
divisor with simple normal crossings, obtained by blowing up an ideal sheaf corresponding to a
subscheme supported on Xj;,4; in particular, that there exists an effective divisor £ on X which
is m-exceptional, such that O (—F) is m-ample.

Thus, we will prove Theorem 2 below, with the additional hypothesis that the g-exceptional
locus is a divisor with simple normal crossings, and that there is a g-exceptional effective divisor
FE such that —F is g-ample.

We now set up some further notation. Let V c HO(X ;O%(1)) be as in Theorem 2, and
let S := P(V*) be the corresponding parameter space for members of the linear system. Let
X := X x S and p:X — )N(, q : X — S denote the two projection maps. Further, let Y C X
denote the total space of the given family of divisors in X parametrised by S. If V be the vector
bundle defined by the exact sequence

0—=-V—=Ve0s—0z(1)—0,

then
Y=Pz(V)CX xS

Let s € S be a (closed) point parametrizing a general smooth divisor Y in X in the given
linear system (here “general” means “for s lying in some non-empty Zariski open subset of S”).
The following result is proved in our earlier paper [12].

Theorem 3. For a general Y as above, we have the following.

(a) There is an exact sequence

0 — A — Pic(X) — Pic(Y) — C — 0,
and an inclusion B — C, where
(i) A is freely generated by irreducible g-exceptional divisors in X which have 0-dimensional
1mage
(ii) B is freely generated by the irreducible g |5 -exceptional divisors in }7, which have 0-
dimensional image under g, modulo the group generated by the classes of exceptional
divisors of the form E-?, where E is an irreducible g-exceptional divisor on X with
dimg(E) = 1.
(iii) C is a free abelian group of finite rank.
(b) The pair (X,Y) satisfy Grothendieck’s Condition Lef(X,Y), as well as the condition
ALeff(X,Y) (a weak form of Grothendieck’s Effective Lefschetz Condition, see [12]).
(c) IfY denotes the formal scheme obtained by completing X along Y, then Pic(Y) — Pic(Y)
is injective, and there is an eract sequence

0 — A — Pic(X) - Pic(Y) - B—0

with A, B as above (i.e., as in in Theorem 2).
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Thus, the content of the Theorem is that, if we are willing to replace Pic(Y) by Plc(Y)
the Picard group of isomorphism classes of formal line bundles on the formal completion of X
along Y then we do have the conclusion of Theorem 2, for all Y corresponding to a non-empty
Zariski open set in our linear system S. (For this conclusmn, we do not need the hypothesis on
global generation of the sheaf f.Kx(1).) The fact that the group C is free abelian, though not
explicitly stated in [12], follows from results proved there: the fact that it is finitely generated
(see [12], lemma 3.3), and that coker Pic(Y) — Pic(Y) is torsion-free. This torsion-freeness
(proved in §5 (ii) of [12]) follows because it is true with ¥ replaced by each of the schemes Y;, in

the inverse system of schemes defining the formal scheme }A/; at this finite level, the cokernel of
the map on Picard groups is a subgroup of a certain cohomology H? (see the exact cohomology
sequence appearing in the proof of lemma 3.3 in [12]) which is a vector space over the ground
field k (of characteristic 0).

Another result in [12] (see §5 (i) is that the open set of divisors Y in the linear system
|V| for which Theorem 3 holds may be assumed to be invariant under base change to a larger
algebraically closed field. As noted there, this follows from the description of that open set given
in [12] — after possibly first making a birational modification of X, it is any non-empty open set
in S parametrizing divisors Y which are non-singular, disjoint from irreducible components of
the exceptional locus of X with 0-dimensional image, and which transversally intersect all other
exceptional divisors of X.

The upshot of the above is that, to get the Noether-Lefschetz theorem (Theorem 2) itself, we
would have to pass from this formal completion Y to Y itself.

If dimension X > 4, then for a base-point free and big linear system on )~( we have (with

similar notation) Pic(?) >~ Pic(Y) from a version of Grauert-Riemenschneider vanishing, as
observed in [12]. This resulted in our version of the Grothendieck-Lefschetz theorem in [12].

However, for a 3-fold X , we need a suitable additional hypothesis on the linear system (that

the line bundle is “sufficiently positive”), and then we need to restrict to a “very general” Y.
This is as in the classical Noether-Lefschetz theorem.

2. THE FORMAL NOETHER-LEFSCHETZ THEOREM

The goal of this section is to formulate and prove a Formal Noether-Lefschetz theorem. This
is about comparing the Picard groups of two different kinds of completions. The first one is the

~

completion Y of X along the subvariety Y assumed to be a general member of S, which we
encountered already in heorem 3. The other is the completion of )V along its fibre over the point
s € § corresponding to Y.

Let m denote the ideal sheaf defining the point s € S. Further, let Z = O (1) be the ideal
sheaf defining Y in X. One has an exact sequence

0-7Z—-05—0y—0
or equivalently on tensoring with O (1),
0—05—0z(1) = 03(1) =0
Taking cohomology, we get an exact sequence
0—-k—-V->W-=0
where W := Im(V — H(Y, Og(1))).
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Let Y, be the n-th infinitesimal neighbourhood of Y in X so that the sequence Y,, gives rise to
the formal completion Y of X along Y. Similarly let ), be the n-th infinitesimal neighbourhood
of Y = Ys in Y, and let y be the associated formal completion.

Note that since Yy — ¥} =Y is an isomorphism, we have an inclusion of ideals ZOy C mOy.
This implies that there is a morphism of formal schemes 3) —Y compatible with the scheme
morphism Y — X and with the isomorphism Y; — Y; = Y.

Now consider the following diagram:

(1) Pic())

) / \ )
Pic(X) Pic(Y)
\

-

Definition 1. We say that the condition FNL holds for (X,Y) if (with the above notation)

Pic(Y

Im(Pic(Y) — Pic(Y)) = Im(Pic(Y) — Pic(Y)).

We say that the condition FNL holds for (X, |V|) if it holds for all (X,Y), where Y runs over
a nonempty open subset of |V| (regarded as a projective space).

The above condition says that if a line bundle on Y can be lifted to every infinitesimal thicken-
ing of the corresponding fibre in the universal family, it can also be lifted to the formal completion
Y of X along Y after which the conditions Lef and ALeff imply that, upto modification by an
exceptional divisor for Y it lifts to a line bundle on X.

By a result of Grothendieck (see [7], II, Prop. 9.6 and Ex. 9.6), we have isomorphisms
Pic(Y) = lim Pic(Y;,),

n

Pic(Y) 2 lim Pic(V,).

We also have exact sheaf sequences

erp

(2) 0—Z/1"
(3) 0 — ¢"(m/m")

OX — (9; — 0
e:vp

(’)X — O;—>0

where we identify )y with Y (here exp denotes the exponential map, well-defined on any nilpotent
ideal sheaf, since we are working in characterisitic 0). Since 7 = O (1), we see that Z/Z" is
filtered by Z"/Z" ! =2 Og(—r), 1 <7 < n—1, and these sheaves have vanishing H', since O3 (1)

is big and base-point free on ¥ (Ramanujam vanishing theorem [11]). Hence we have an exact
sequence

0 — Pic(Yy,) — Pic(Y) — H*(X,T/1").

Similarly we have an exact sequence

0 — HYY,¢" (m/m™)) — Pic(Vn) — Pic(Y) — H2(Y, ¢*(m/m")).
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One has the following commutative diagram, which allows us to compare the Picard groups
of the two completions:

0— pIZ/I" — p*'Oy — p*O; — 0

(4) l | |
0— ¢"(m/m") — O3 — 05 —0

which yields (when taken along with the sequences (2), (3)) the following commutative diagram
with exact rows:

0—  Pic(Y,) — Pie(Y)— H*X,Z/I")
(5) | | |

0 = Fymoes — Pie(Y) = HA(Y,mOy/m"0y)

Definition 2. We say that the n-th Infinitesimal Noether-Lefschetz (INL,,) condition for (X,Y)
is satisfied if

Pic(Vn)
H! (yv moy/mnoy)

Proposition 1. If Y is any smooth divisor in |V, then INLy holds for (X,Y) for all large
enough n. In particular: (i) FNL holds for (X,Y) (i) FNL holds for (X,|V]).

Pic(Y,) =

_The rest of this section is devoted to a proof of the above proposition. First, for a given pair
(X,Y), the validity of the condition INL,, for all large n implies the validity of FNL for (X,Y).
Hence, if we prove INL,, for (X,Y) for any smooth divisor Y € |V, we get that FNL holds for
(X.IV]).

Now notice that, from the diagram (5), if the map
(6) H*(X,Z/T") — H*(¥,mOy/m"Oy)

is injective, then clearly the condition INL,, is satisfied for ()? , 17)

The rest of this section will be devoted to proving that the above map (6) is injective, for all
large n.

Lemma 1. Letp:) — X be as above. Then

(1) R'ps(Oy) =0V i>0
(2) p+(Oy) = 0%

(3) p.(0) =0y i

(4) BY(Y,p*F) 2 H(X,F) for alli and any coherent sheaf F on X.

(5) pemOy =7

(6) Rip,mOy =0V i>0.

(7) The map (’)y — p*(Oy ) is an injection.

(8) p«(m"Oy) =

Proof. Since Y — X is a projective bundle, we have Rp,p*F =2 F for any coherent sheaf F on
Y. This yields (1)-(4). For the statements (5) and(6), consider the sequence

0—>m(’)y —>Oy —>Oy1(§ Of,) — 0.

Applying Rp., since Rp.Oy = Og, and p induces an isomorphism of ) with 17, we get that
Rp*mOy =7
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Now we prove the remaining statements. Consider the diagram

(7) 0 — p«(m"0y) — p.(Oy) —=p«(Oy,) —= R p.(m"Oy) —0
0 " Oz Oy, 0

It suffices to show Oy, — p.(Oy,) is injective, which we may do by induction on n; this is clear
for n = 1, since the map is an isomorphism.

Consider the diagram
0 — Op(—n+1) - Oy, — Oy,, —0
! ! !
0 — pe(m™ 0y /m"Oy) — p«(Oy,) — p«(Oy, ;) — 0

The first vertical map is obtained by applying p. to the analogous map
(p*Inil/In) ® Oy, — m"’lOy/m”(’)y.
This map is a locally split (hence injective) map of locally free sheaves on Y7, with locally
free cokernel, since mOy is the ideal sheaf of Y7 in ), p*Z the ideal sheaf of p~ 'Y in Y, and
Y) € p~'Y C Y are inclusions of smooth subvarieties; hence the stalks of their ideal sheaves at

points of Y7 are generated by appropriate subsets of a suitable regular system of parameters in
a regular local ring.

Now by induction, we see that Oy, — p,Oy, is injective. U
Remark 1. For later use, we note that the sheaf
coker (Oy,, — p.O0y,)

has homological dimension 1 on X , for each n > 1, since it is set-theoretically supported on 17,
and has a filtration with subquotients which are locally free sheaves on Y.

Corollary 1. With notation as abouve,

H (Y, mOy) =2 H(X,T), V i.
Proof. Since Rp,mQOy = Z, this follows from the Leray spectral sequence. O

Consider the following diagram:
0— pI" — p'IT —p'Z/I" — 0
(8) ! ! !

0— m”(’)y — mOy — mOy

mn Oy, — 0

Taking cohomology as above, we get
0 — H¥(X,7/I") — H3X,I") — H}X,I) —
(9) ! ! !
0 — BV, g5gy) — BV, m"Op) — H(Y,mOy)) —

» mnOy

From Corollary 1, we have H (Y, mOy) = H(X,T) =~ H(X, O%(—1)) for all 4. The latter van-
ishes for ¢ < 3 by the Grauert-Riemenscheneider vanishing theorem. This proves the exactness
on the left, for the rows. We also have that H3(), mOy) = H?(X,7) is an isomorphism.

Thus, by a diagram chase, INL,, follows if we prove the injectivity of the map
(10) H3(X,I") — H3(Y, m"Oy).
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2.1. Vanishing of a differential of a Leray spectral sequence. The Leray spectral sequence
for p: Y — X associated to the cohomology H*(Y, m"Oy) has EY? =~ HP(X,R?p,m"Oy). The
map in (10) is the edge homomorphism
ESY — HY (Y, m"Oy).
Hence the injectivity in (10) follows if we show that the differential
H'(X,R!p,m"0y) = B;' — E2° = H3(X,17)
vanishes. To do so, we shall first give a more explicit description of this differential.
From Lemma 1, we get a four term sequence
0—I" = 0% — p«(0y,) = R p(m"Oy) — 0
which we break up into two short exact sequences
0—I" - 0Oz — Oy, — 0
(11)
0 — Oy, — pa(Oy,) — Rl p(m"Oy) — 0
One checks now that the map
H'(X,R' p,m"0y) — H3(Y,,,Oy,) — H3(X,1")
obtained by composing the (co)boundary maps in the cohomology sequences associated to the
short exact sequences above is the differential d?:(l) : EQl’1 — Eg”o.

However, to compute the differential, we use a different factorisation which is obtained as
follows.

Consider the following nine diagram.

0 0 0
! ! !

0— Ox(=Y)@m"Oy — m"Oyx — m"Oy — 0
! ! !

0— Ox(-)Y)®0x — Ox — 0Oy —0
! ! !

0— Ox(-Y)®0x, — Ox, — Oy, —0
| l l
0 0 0

Applying the higher derived functor R p, to the nine diagram we get the following:
e It is easy to check that the leftmost vertical row gives
R p.(Ox (=) @ m"Ox) = p.(Ox(-Y) @ Ox,)
and by the Kunneth formula, there is a natural isomorphism of vector bundles
p+(Ox(=Y) ® Ox,) 2 H'(S, Os(~1)/m") @ Og(~1).

Thus
(12) R p.(Ox (=) @ m"Ox) = H(S,0g(~1)/m") @4 O(-1).
e The middle vertical sequence gives rise to a short exact sequence
(13) 0— Oz — H(S,05/m™") ®;, O5 — R p.m"Ox — 0

This sequence is split for any n > 1, through the natural map
HO(S, Og/m™) — H(S, Og/m) = k.
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Hence R! p,m"Oy is a locally free sheaf on X (in fact it is a free O ¢-module).
e The top horizontal sequence gives rise to a four term sequence

0 — Ogx(—n) — H(S,05(~1)/m") @ O5(—1) = R! p.m"Ox — R' p,m" 0y — 0.

Here, by the Kunneth formula, p.m”Ox = 0 for n > 0, while p,m"Oy =I" = O 5(—n),
as seen above; the second term is given by (12).
e The lower horizontal sequence gives rise to a three term sequence

0 — HO(S,05(—1)/m") ® Oz(—1) — H°(S, Og/m™) @ O5 — p.Oy, — 0.
e As we’ve seen before, the right vertical sequence gives rise to the four term sequence
0—7I" = O% — pu(0y,) = R p.(m"Oy) — 0
The four term sequence
0— Ogx(—n) — H(S,0g(—1)/m"™) ® Oz(-1) = R'p,m"Ox — R! p.m"0y — 0

may now be broken down into two short exact sequences

(14) 0— Og(—n) —>HO(S,(’)S(—1)/m")®(’)i(—1) — F, —0
and
(15) 0 — F, —» R'p,m"Ox — R p,m" 0Oy — 0.

Thus, from the exactness of the rows and columns of the nine diagram, we see that the map
H'(X,R! p,m"0y) — H3(X,I")

factors via H2(X, ), and so for this map to be zero (equivalently for the injectivity of the map
in (10)), it suffices to show that the map on cohomology

(16) H*(X, 05 (—n)) — H(S, 0s(~1)/m") @ H}(X, Oz (-1)),

obtained from the sequence (14), is injective.

By Serre duality on the smooth projective 3-fold X , injectivity in equation (16) is equivalent
to the surjectivity of

(17) ¢y : HO(S, 0s(—1)/m")* @ H'(X, K¢ (1)) — H(X,K¢(n))
To understand this, we need to identify the sheaf map
(18) HY(S,05(~1)/m")* @ O (1) — Ox(n)

dual to the inclusion in the sequence (14). This is done by considering it as the restriction of
an analogous sheaf map on the ambient projective space P(V'), which in turn is identified using
lemma 2 below.

Remark 2. Note that from the sequence

the sheaf R! p,(m™©y) has homological dimension 1 on X (see Remark 1). We had also noted
that R'p,m"Oy is locally free, since (13) is split. From the sequence (15), we deduce that F,
is locally free on X; thus (14) is an exact sequence of locally free sheaves on X.
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2.2. An Invariance argument. In this section we shall exploit the geometry of our situation
to better describe the sheaf map in (14) which leads to the map (16) on cohomology.

Let P be the subgroup (a maximal parabolic) of PGL(V*) = Aut(P(V*)) which is the isotropy
group of the distinguished point s € S = P(V*).

The PGL(V*) action on P(V*) lifts to a GL(V*) action on Op(y+)(1) in a unique way so
that the induced action on global sections is the standard representation. If P C G~L(V*) is

the inverse image of P under the natural homomorphism GL(V*) — PGL(V*), then P acts on
Op(v+)(1), and so also on the fibre over the fixed point s for the P-action; the action on this

fibre defines a character of 75, which gives a splitting of the natural exact sequence

0—k*— ']f5 — P —=0.
Using this splitting, we have an induced action of P on Op(y+)(1), making it an equivariant
invertible sheaf on P(V*).

More concretely, this means that if we consider the exact sequence of vector spaces
(19) 0—-W"=>V">k—0
corresponding to the point s € P(V*), then the group P is identified with the matrix group
[ € GL(V*) | o(W*) € W* and (1y+ — 9)(V) € W™},

which defines actions on the sheaves Op(y+)(m) for all m; further, through the contragredient
representation of GL(V*) on V, it also acts naturally on the sheaves OP(V)(m) making these
P-equivariant sheaves on P(V').

We shall now use this extra structure of P-action on S = P(V*) and P(V') to understand the
sheaf map (the inclusion in (14)
Oz (—n) = R'p(Ox(-Y) @ m"Ox) = H(S, Og(—1)/m") ® O5(—1)
(and thus also its dual sheaf map).

First, from the construction of this sheaf map using the nine-diagram in the preceeding section,
it is obtained by restriction from an analogous map

(20) Op(vry(—n) 25 H(S, Og(—1)/m™) @ Opry(~1).

The target vector bundle for the map ¢,, above should be interpreted as R! p, (Op(v)xp(v*) (-W)®
g*m"™) where W is the incidence locus in the product variety P(V') x P(V*) such that WNX =),
and

p:P(V)xP(V*) - P(V), ¢:P(V)xP(V*) = P(V*) =5
are the projections. The sheaves Op(y)(—n), Opy(—1) are thought of as 7}, and Ty, respec-
tively, where H = P(W) C P(V) is the hyperplane corresponding to s € S = P(V*), and Zp is
its ideal sheaf.

Now this “universal” map of sheaves ¢, is clearly P-equivariant, since the corresponding nine-
diagram of sheaves on P(V') x P(V*) is a diagram of P-sheaves and P-equivariant morphisms.
In fact, the “universal” version of (14) is an exact sequence of locally free P-equivariant sheaves
on P(V).

The map ¢, may be equivalently viewed as a sheaf map
Opy(—n+1) = H°(S, 0s(—1)/m™) @ Opyy,
and so its Op(y)-dual ¢, is a sheaf map

¢y : H(S, O5(—1) /m"™)* @k Oprry — Op(yy(n — 1).
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Since F,, = coker ¢, is locally free, we see that ¢ is surjective.
Lemma 2. There is a P-equivariant isomorphism
HY(S, 05(—1)/m™)* = s~ 1(V)
under which ¢,, is transported to the evaluation map
S H(V) @k Opgyy — Opgry(n —1).
Proof. The lemma is obvious when n = 1. When n = 2, the facts that H°(S, Og(—1)/m?) has

the same dimension as V = H°(P(V), Opy(1)), and that no proper subspace of V' generates
Op(v)(1) on projective space, imply that there is an isomorphism

H(S,0s(=1)/m?)* 2V = H(B(V), Op(y)(1)).

Since the P-action on V' is the one induced from the P-structure of Op(y-)(1), this vector space
isomorphism must be P-equivariant.

The exact sequences (14) for n and n — 1 fit into a commutative diagram

0
n—1
HO(S, V950 @ Opyy (~1)
!
n 0(g Os(=1)
0_>OIP(V)(_TL+1) - HY(S, = )®OIP(V)(_1) — F, —0
! ! !

0 — Opay(-—n+2) 25 HUS, D) @ Opy(~1)  — Fuy — 0

!

0

where the rows, as well as the column, are exact sequences of locally free sheaves on P(V').

Taking duals, and twisting by Op(y)(—1), we see that the twisted duals of the two rows are
exact, as is the twisted dual of the middle column. The twisted dual of the left vertical inclusion
Opvy(=n + 1) — Opyy(—n + 2) of sheaves is the (P-equivariant) inclusion Op(yy(n — 2) —
Op(vy(n — 1) whose cokernel is O (n — 1), where H = P(W) C P(V) is the chosen hyperplane
(recall that in the definition of ¢, Op(y)(—n) is considered as the n-th power of the ideal sheaf

Thus, if H = ker F,, — F,,_1, we obtain a diagram with exact rows and columns

0 0
1 l l

0 — FY_4(=1) = H(S, %)* ® Opyy — Opry(n—2) =0
! ! 1

0— F(-1) — H(S, =)y 00 — Oppy(n—1) =0
! ! i

0— HY(=1) — H(S, ™95y Opyy — Op(n—1) — 0
i il l
0 0 0

Taking global sections, we see that by induction on n, the lemma is reduced to the statement
that the surjective map
m"10g(~1)

mTL

HY(S, )" @ Opyy = Op(n —1)
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induces an isomorphism on global sections (it is already P-equivariant by construction). But in
fact this map on global sections is a P-equivariant map

(Sn—lw*)* N Sn—IW

The map is not zero, since the image generates Oy (n — 1) as a sheaf. But S"~1(W) is an
irreducible P-representation (the representation factors through the quotient P — GL(W), and
ST(W) is an irreducible GL(W)-module for any r > 0, since we are working in characteristic 0 —
see for example [6], Theorem 6.3(4) combined with formula (6.1)). So this P-equivariant linear
map must be surjective, and hence an isomorphism. O

Remark 3. We note that the induced perfect GL(W*)-equivariant pairing S" 'W*®S"1W — k
is perhaps a non-zero constant multiple of the “standard” one; for example, for n = 2, one
computes that it is the negative of the standard pairing W* @ W — k. The “standard” pairing
is the one obtained from the natural identification

Sy = HY(S, Og(n — 1)) = HY(S, Og(n — 1) /m™);
we are howvever pairing with H°(S, Og(—1)/m"), which is a “different” P-module (though, after
the fact, isomorphic to H°(S, Og(n — 1)/m™)).
By Serre duality, injectivity in equation (16) is equivalent to the surjectivity of
¢y + HO(S, Os(~=1)/m")* @ H(X, K g(1)) — H(X, K ¢(n))

In fact, if one uses the isomorphism obtained from lemma 2, we see that this dual map factors
as follows.

(21) HO(P(V), Opqr)(n — 1)) @ HO(X, K¢ (1)) L HY(X, Kg(n))

restriction .
l multiplication

HO(X,04(n — 1)) ® H(X,K¢(1))

2.3. Global generation of the twisted canonical bundle.
Lemma 3. The map in (16) is injective for n >> 0, if the sheaf f. Kg ®@Opn (1) is generated
by global sections.
Proof. Let £ be defined by the exact sequence
0—&— H'PY, £, Kg @0pn (1)) ® Opy — f. Kz ®0pn (1) — 0

The surjectivity on the right is because of our global generation hypothesis.

Now tensor the above sequence with Opn (n—1) for n >> 0. By the Serre vanishing theorem,
HY (PN, £(n — 1)) vanishes for n >> 0 and hence we get
is surjective. Thus we are done. ([
Remark 4. Note that the condition above is verified if X = X, Ox(1) is very ample, |V] is
the corresponding complete linear system, and Kx (1) is globally generated. This is true for

instance if X = P3, and Ox (1) = Ops(d) with d > 4. In this case, we recover the classical
Noether-Lefschetz theorem i.e. Pic(Y) 2 Z for a very general hypersurface of degree at least 4.
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Remark 5. It is possible that the hypothesis that f.(K)(1) is generated by global sections is
not quite necessary. This is due to the following: what one needs to actually prove for the
condition FNL to hold is that the map

H%(X,Z/I") — HX(Y,mOy/m"Oy) @ HX(Y,, O} )

is injective. This map is certainly injective if the map into the first factor is injective. But a
priori, the latter is a stronger statement. Furthermore, one requires the injectivity of the latter

map only when restricted to image Pic(Y') i.e. only at the level of the Neron-Severi group.

3. THE GLOBAL NOETHER-LEFSCHETZ THEOREM

If X is a smooth proper 3-fold over k (with k algebraically closed of characteristic 0), and |V/|
a base-point free linear system on X, given by a big line bundle, then we know that for an open
set of divisors Y of the linear system, the map Pic(X) — Pic(Y) induces an isomorphism on
Picard varieties, and thus has finitely generated kernel and cokernel, which are invariant under
base change to a larger algebraically closed field.

The pair (X,Y) will be said to satisfy the Noether-Lefschetz condition if the kernel and
cokernel are spanned by classes of exceptional divisors for the morphisms induced by |V|. This
is equivalent to saying that if (X,Y’) are the corresponding normal projective varieties obtained
by Stein factorization of the morphism given by [V, then the map on divisor class groups
Cl(X) — CI(Y) is an isomorphism.

As mentioned in the introduction, we say that Y is a “very general” member of the linear
system if either (i) Y corresponds to the geometric generic member of the linear system, over
the algebraic closure of the function field of the parametrizing projective space, or (ii) k is un-
countable, and Y is a divisor in the linear system lying outside a countable union of subvarieties
of the parameter space, thought of as a projective space over k. We now explain how these
conditions are related (this is a standard argument, which we reproduce here).

In fact, if £ is uncountable, we can find a countable algebraically closed subfield kg, a projective
ko-variety Xg, and a linear system |Vj| on Xy, so that the original given data are obtained by
base change to k from kg. Now consider the parameter projective space |V| = |Vp| X, k, which
contains a countable family of divisors: those obtained by base-change from divisors in |Vp|. Any
(closed) point ¢ € |V| which lies outside this countable union must map, under the projection
|[V| — |Vbl, to the generic point of [Vy|. If Ko = ko(|Vp]) is the function field of the parameter
variety |V, and Yg, C Xk, = Xo Xg, Ko the generic member of the linear system, then we
have an inclusion Ky < k(t), and an identification

KSZYKO XKOk(t)CXKO XKOk(t)ZXo Xkok:X

(where we may identify k(t) with k). On the other hand, we have also K = k(|V]), the function
field of V' over k, and the corresponding pair (X, Yx). Again this may be viewed as obtained
from (Xk,, Yk,) by a base change (with respect to the natural inclusion Ky — K).

Thus, it is equivalent to say that any of the 3 pairs (X, Y}), (Xfov YFO)v (X%, Yi) satisfy the
Noether-Lefschetz condition (where the overbar denotes algebraic closure).

In other words, if we prove a Noether-Lefschetz theorem for the geometric generic member
of our linear system (where we make no further hypothesis on k), then in the case when k is

uncountable, it follows also for a “very general member” Y; of the linear system, in the other
sense.

Theorem 4. Let X be a smooth projective 3-fold over k and V. C H°(X,Ox(1)) be a big,
base-point free linear system on X. Further assume that the condition FNL holds for the pair
(X, |V]). Then (X3, Y5) satisfy the Noether-Lefschetz condition, where Y5 is the geometric
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generic member of the linear system, defined over K, the algebraic closure of the function field
K of |V].

Proof. We argue as in [10]. It suffices to prove that coker Pic(X3) — Pic(Y%) is generated by
exceptional divisors for the morphism Yz — IP’% induced by our linear system, base changed to

K (in the case when the line bundle Ox (1) is ample, this amounts to saying that Pic(X3) —
Pic(Y7) is surjective, which is what is considered in [10]).

Let a € Pic(Y3) be any line bundle. Then we can find a finite subextension L of K in its
algebraic closure K, and a line bundle «, € Pic(Y7) so that « is the base change under L — K
of ar. By increasing L if necessary, we may assume all the irreducible exceptional divisors
for Y7z — ]P’% are base changes of geometrically irreducible curves on Yr; let (Ey)p, -+, (E,)L
denote these curves.

Let U be a smooth k-variety with function field L, with a morphism f : U — |V| inducing
Spec L — Spec K on generic points. We have a pull-back family of divisors Yy — U obtained
from the original family Y — |V| (we regard Yy as a divisor on X Xy, U, so that for any point
t € U, we get an induced divisor (V)i € X Xy k(t)). Replacing U by a non-empty open
subscheme, we may assume without loss of generality that )Yy is non-singular, f is étale, and
there is a line bundle ay € Pic(Yy) which restricts to oy, on the generic fiber Y7, of Yy — U.
Let (E1)y, ..., (Ey)y denote the Zariski closures in Yy of the curves (E;)r on the generic fiber
Yy, — Spec L of Yy — U. Then, further shrinking U if necessary, we may assume the (E;)y are
irreducible divisors on Yy, each smooth over U with geometrically irreducible fibers.

If t € U is a closed point, s = f(t) € |V|, then the smooth surfaces (Vy); C X and Yy = Ys C
X coincide. Let (E1)g, -, (Ey); denote the divisors on (Vy): = Y, obtained by restriction of
the divisors (E;)y. Shrinking U if necessary, we see may assume that the irreducible exceptional
divisors for the morphism Y; — P{CV (obtained by restriction from g : X — }P’]kv ) are the curves
(E;)¢ (the labelling depends on the choice of ¢ lying over the point s, though the collection of
all the curves (F;); depends only on Yj).

Since f is étale, the formal completions ()/);)t of Yy along (YVy): = Ys, and Y, of Y along Y,
are also naturally identified. Hence, by the FNL property, the restriction to Y of the formal line
bundle @y must be isomorphic to a line bundle in the group generated by the image of Pic(X)
and the exceptional divisors.

Thus, after changing oy by tensoring it with a line bundle pulled back from X, and then by
another given by a linear combination of the divisors (F;)y, we can arrange that o restricts
to the trivial bundle on the closed fiber (YVy7); of the smooth projective family of surfaces Yy —
U. This modified ay then must have numerically trivial restriction to any geometric fiber of
Yy — U: this follows from the general property of preservation of intersection numbers under
specialization, but can be seen here easily from the Hodge index theorem, for example.

In particular, our original line bundle «, upto tensoring by a line bundle pulled back from X,
and one given by an exceptional divisor, is a numerically trivial line bundle; hence some nonzero
integer multiple of « is algebraically equialent to 0, and thus a divisible element in the group
Pic(Y%). However, from Theorem 3, the cokernel of the map

Pic(X%) — Pic(Yy)

is a finitely generated, torsion free abelian group. Hence a must have trivial image in the
cokernel, which is what we wanted to prove.

O
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