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Abstract
The goal of the present paper is two-fold. First, we present a classification of algebraic K3 surfaces polarized
by the lattice H ⊕ E8 ⊕ E7. Key ingredients for this classification are: a normal form for these lattice polarized
K3 surfaces, a coarse moduli space and an explicit description of the inverse period map in terms of Siegel
modular forms. Second, we give explicit formulas for a Hodge correspondence that relates these K3 surfaces
to principally polarized abelian surfaces. The Hodge correspondence in question underlies a geometric two-
isogeny of K3 surfaces, the details of which are described in [7].

1 Introduction

Let X be an algebraic K3 surface defined over the field of complex numbers. Denote by NS(X) the Néron-Severi
lattice of X. This is an even lattice of signature (1,pX − 1) where pX is the Picard rank. By definition (see [8]), a
lattice polarization on the surface X is given by a primitive lattice embedding

i : N ↪→ NS(X)

whose image contains a pseudo-ample class. Here N is a choice of even lattice of signature (1, r) with 0 ≤ r ≤ 19.
Two N-polarized K3 surfaces (X, i) and (X′, i′) are said to be isomorphic if there exists an analytic isomorphism
α : X→ X′ such that α∗ ◦ i′ = i, where α∗ is the appropriate cohomology morphism.

The present paper concerns the special class of K3 surfaces polarized by the even lattice of rank seventeen

N = H⊕ E8 ⊕ E7.

Here H stands for the standard hyperbolic lattice of rank two and E8, E7 are negative definite lattices associated
with the corresponding exceptional root systems. Surfaces in this class have Picard ranks taking four possible
values: 17, 18, 19 or 20.

This special class of algebraic K3 surfaces is of interest because of a remarkable Hodge-theoretic feature. Any
given N-polarized K3 surface (X, i) is associated uniquely with a well-defined principally polarized complex
abelian surface (A,Π). This feature appears due to the fact that both types of surfaces mentioned above are
classified, via appropriate versions of Torelli Theorem, by a Hodge structure of weight two on T⊗Q where T is
the rank-five lattice H⊕H⊕ (−2). This fact determines a bijective map:

(X, i) ↔ (A,Π) (1)

which is a Hodge correspondence. In fact, the map (1) can be regarded as a particular case of a more general
Hodge-theoretic construction due to Kuga and Satake [28]. In particular, map (1) realizes an analytic identifi-
cation between the moduli spaces of periods associated with the two types of surfaces, both of which could be
seen as the classical Siegel modular threefold F2 = Sp4(Z)\H2.

The correspondence given by (1) can be further refined. The set of all isomorphism classes of N-polarized
K3 surfaces divides naturally into two disjoint subclasses. The first subclass consists of those surfaces (X, i) for
which the lattice polarization i extends canonically to a polarization by the unimodular rank-eighteen lattice
M = H ⊕ E8 ⊕ E8. In terms of the Siegel modular threefold F2, this subclass is associated with the Humbert
surface usually denoted by H1. Under (1), the principally polarized abelian surface (A,Π) associated to a M-
polarized K3 surfaces (X, i) is of the form:

( E1 × E2, OE1×E2
( (E1 × {p2}) + ({p1} × E2) ) )
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where (E1, p1) and (E2, p2) are complex elliptic curves, uniquely determined up to permutation.
The second subclass is given by those N-polarized K3 surfaces (X, i) for which the lattice polarization cannot

be extended from N to M. These surfaces correspond in the Siegel threefold to the open region F2 \ H1. Their
associated principally polarized abelian surfaces (A,Π) are of the form:(

Jac(C), OJac(C)(Θ)
)

where C is a non-singular complex genus-two curve and Θ is the theta-divisor, the image of C under the Abel-
Jacobi embedding. The genus-two curve C is uniquely determined by the pair (X, i) and (1) provides an analytic
identification between F2 \ H1 and the moduli spaceM2 of complex genus-two curves.

The goal of the present paper is two-fold. First, we present a full classification theory for N-polarized K3
surfaces along the lines of the classical theory of elliptic curves defined over the field of complex numbers.
Second, we give explicit formulas for the correspondence (1) in terms of Siegel modular forms.

A key ingredient for the results of this paper is the introduction of a normal form associated to K3 surfaces
with N-polarizations. It will be instructive to first recall the classical Weierstrass normal form for complex elliptic
curves and to trace our results in parallel with that case.

Theorem 1.1. Let (g2, g3) be a pair of complex numbers. Denote by E(g2, g3) the curve in P2(x, y, z) cut out by the
degree-three homogeneous equation:

y2z − 4x3 + g2xz
2 + g3z

3 = 0 . (2)

(a) If ∆ := g3
2 − 27g2

3 is nonzero, then E(g2, g3) is an elliptic curve.
(b) Given any elliptic curve E, there exists (g2, g3) ∈ C2, with ∆ 6= 0, such that the curves E and E(g2, g3) are isomorphic

as elliptic curves.

Our first result in this paper is analogous to the above.

Theorem 1.2. Let (α, β, γ, δ) be a quadruple of complex numbers. Denote by X(α, β, γ, δ) the minimal resolution of the
surface in P3(x, y, z, w) cut out by the degree-four homogeneous equation:

y2zw − 4x3z + 3αxzw2 + βzw3 + γxz2w − 1

2
(δz2w2 + w4) = 0 . (3)

(a) If γ 6= 0 or δ 6= 0, then X(α, β, γ, δ) is a K3 surface endowed with a canonical N-polarization.
(b) Given any N-polarized K3 surface X, there exists (α, β, γ, δ) ∈ C4, with γ 6= 0 or δ 6= 0, such that surfaces X and

X(α, β, γ, δ) are isomorphic as N-polarized K3 surfaces.

The quartic (3) extends a two-parameter family of K3 surfaces given by Inose in [23]. In the context of (3), the
special case γ = 0 corresponds to the situation when the polarization extends to the lattice H⊕E8⊕E8, whereas
the N-polarizations of K3 surfaces X(α, β, γ, δ) with γ 6= 0 cannot be extended to H⊕ E8 ⊕ E8.

As it turns out, the normal forms (3) are also ideal objects for establishing a moduli space for isomorphism
classes of N-polarizations of K3 surfaces. Again let us first recall the classical case of Weierstrass elliptic curves.

Theorem 1.3. Two curves E(g2, g3) and E(g′2, g
′
3) are isomorphic as elliptic curves if and only if there exists t ∈ C∗ such

that:
( g′2, g

′
3 ) =

(
t2g2, t

3g3

)
.

The open variety:
ME =

{
[ g2, g3 ] ∈WP2(2, 3)

∣∣ ∆ 6= 0
}

forms a coarse moduli space for elliptic curves.

In the above context, the j-invariant

j(E) :=
g3

2

∆

identifiesME and C (the “j-line”). The period map to the classifying space of Hodge structures is the isomor-
phism of quasi-projective varieties:

per : ME → F1 = PSL2(Z)\H (4)

whose inverse is given by:
per−1 = [ 60E4, 140E6 ]

where E4,E6 : H→ C are the classical Eisenstein series of weights four and six, respectively.
In our N-polarized K3 surface setting, we have following analogous result:
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Theorem 1.4. Two K3 surfaces X(α1, β1, γ1, δ1) and X(α2, β2, γ2, δ2) are isomorphic as N-polarized K3 surfaces if and
only if there exists t ∈ C∗ such that:

( α2, β2, γ2, δ2 ) =
(
t2α1, t

3β1, t
5γ1, t

6δ1
)
.

The open variety:
MN

K3 =
{

[ α, β, γ, δ ] ∈WP3(2, 3, 5, 6)
∣∣ γ 6= 0 or δ 6= 0

}
forms a coarse moduli space for N-polarized K3 surfaces.

In the context of Theorem 1.4, the period map to the associated classifying space of Hodge structures appears as
a morphism of quasi-projective varieties:

per : MN
K3 → F2 = Sp4(Z)\H2. (5)

By the appropriate version of Global Torelli Theorem for lattice polarized K3 surfaces (see for instance [8]), one
knows that (5) is in fact an isomorphism. We prove that the inverse of (5) has a simple description in terms of
Siegel modular forms.

Theorem 1.5. The inverse period map per−1 : F2 →MN
K3 is given by:

per−1 =
[
E4, E6, 21235C10, 21236C12

]
where E4, E6 are genus-two Eisenstein series of weight four and six, and C10 and C12 are Igusa’s cusp forms of weight 10
and 12, respectively.

Theorems 1.2, 1.4 and 1.5 allow one to give an explicit description of the dual principally polarized abelian
surfaces associated by the Hodge-theoretic correspondence (1). In the case of K3 surfaces polarized by the
lattice H⊕ E8 ⊕ E8, explicit formulas were given previously by the authors [5] as well as Shioda [38].

Theorem 1.6. Under the duality correspondence (1), the principally polarized abelian surface A associated to X(α, β, 0, δ)
is given by

( E1 × E2, OE1×E2
(E1 + E2) )

where E1 and E2 are complex elliptic curves with j-invariants satisfying:

j(E1) + j(E2) =
α3 − β2

δ
+ 1, j(E1) · j(E2) =

α3

δ
.

In this paper, we use the formulas of Theorem 1.5 in order to explicitly identify the genus-two curves C cor-
responding to the remaining case, by computing the Igusa-Clebsch invariants [ A, B, C, D ] ∈ WP3(2, 4, 6, 10)
associated with these curves.

Theorem 1.7. Assume γ 6= 0. Under the duality correspondence (1), the principally polarized abelian surface A associated
to X(α, β, γ, δ) is given by (

Jac(C), OJac(C)(Θ)
)

where C is a smooth genus-two curve of Igusa-Clebsch invariants:

[ A, B, C, D ] =
[

233δ, 2232αγ2, 2332(4αδ + βγ)γ2, 22γ6
]
.

The present paper should be considered in connection with the companion paper [7]. This is because the proofs
of the theorems mentioned above do not involve period computations. They rather rely on a very specific
observation: the Hodge-theoretic correspondence (1) is a consequence of a purely geometric phenomenon - the
existence of a pair of dual geometric two-isogenies of K3 surfaces between the N-polarized surface X and the
Kummer surface Y associated to the abelian surface A corresponding to (X, i) under (1). The precise meaning of
this isogeny concept is explained in [7]. In short, the observation consists of the existence of two special Nikulin
involutions ΦX and ΦY , acting on the surfaces X and Y, respectively, which lead to degree-two rational maps
pX and pY. The involutions ΦX and ΦY are associated naturally with two particular elliptic fibrations ϕX and
ϕY on X and Y over a base rational curve B. The involutions are fiberwise two-isogenies in the sense that they
correspond to translations by sections of order-two within the smooth fibers of the fibrations ϕX and ϕY.

YΦY

&&

ϕY ��@
@@

@@
@@ pY

33W Z \ _ b d g XΦX

xx

ϕX����
��

��
�

pX

ss WZ\_bdg

B

(6)
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The above geometric phenomenon allows one to make the duality map explicit, without involving an analysis
of Hodge structures or period computations.

The present work focuses on the case of N-polarized K3 surfaces for which the lattice polarization does not
extend to a polarization by the lattice M = H⊕ E8 ⊕ E8. The case involving M-polarizations has been presented
in [6], work on which the present paper builds.

Various partial ingredients pertaining to this construction have been discussed by the authors and others in
earlier works. In his 1977 work [23], Inose presented a normal form for K3 surfaces and constructed the Nikulin
involution ΦY on the Kummer surface associated with the product of two elliptic curves. The construction of
ΦY in Inose’s context uses a different elliptic fibration with respect to which the Nikulin involution is not a
fiberwise isogeny. In paper [6], the authors constructed each piece of diagram (6) in the case of M-polarized
K3 surfaces, including explicit equations for both elliptic fibrations ϕX and ϕY. This case was also treated in
[38] by Shioda. One particular sub-family of M-polarized K3 surfaces, with generic Picard lattice enhanced to
H⊕ E8 ⊕ E8 ⊕ 〈−4〉 was considered by Van Geemen and Top in [12]. The Van Geemen-Top family corresponds,
in terms of the duality (1), to pairs of two-isogeneous elliptic curves.

An indication that the construction can be extended from M-polarized to N-polarized K3 surfaces was given
by Dolgachev in his appendix to the paper [9] by Galluzzi and Lombardo, where, based on an analysis of Fourier-
Mukai partners, they observe that K3 surfaces with Néron-Severi lattice exactly N are in correspondence with
Jacobians of genus two curves. The present paper has its origin in Dolgachev’s observation. The authors extend
the geometric arguments from [6] to the full N-polarized case by constructing in detail the two-isogenies between
the N-polarized K3 surfaces and their dual Kummer surfaces of principally polarized abelian surfaces. An
explicit computation based on parts of this construction was made by Kumar [29].

The authors would like to thank Jacob Lewis for many useful discussions related to this work, as well as the
referees for their valuable comments and suggestions on the manuscript. During the preparation of the paper,
the first author was partially supported by the Simons Foundation, through the grant no. 208258. The second
author acknowledges support from the Natural Sciences and Engineering Research Council of Canada.

2 A Four-Parameter Quartic Family

Definition 2.1. Consider (α, β, γ, δ) ∈ C4. Let Q(α, β, γ, δ) be the projective quartic surface in P3(x, y, z, w) given by:

y2zw − 4x3z + 3αxzw2 + βzw3 + γxz2w − 1

2
(δz2w2 + w4) = 0 . (7)

Denote by X(α, β, γ, δ) the non-singular complex surface obtained as the minimal resolution of Q(α, β, γ, δ).

The four-parameter quartic family Q(α, β, γ, δ) generalizes a special two-parameter family of K3 surfaces intro-
duced by Inose in [23].

Theorem 2.2. If γ 6= 0 or δ 6= 0, then X(α, β, γ, δ) is a K3 surface endowed with a canonical N-polarization.

Proof. The hypothesis γ 6= 0 or δ 6= 0 ensures that the singular locus of the quartic surface Q(α, β, γ, δ) consists
of a finite collection of rational double points. This fact implies, in turn, that X(α, β, γ, δ) is a K3 surface.

Let us present the N-polarization on X(α, β, γ, δ). Note that Q(α, β, γ, δ) has two special singular points

P1 = [0, 1, 0, 0], P2 = [0, 0, 1, 0].

For a generic choice of quadruple (α, β, γ, δ), the singular locus of Q(α, β, γ, δ) is precisely {P1,P2}. Under the
condition γ 6= 0 or δ 6= 0, both P1 and P2 are rational double point singularities. The point P1 is always a rational
double point of type A11. The type of the rational double point P2 is covered by two situations. If γ 6= 0 then P2

has type A5. When γ = 0, the singularity at P2 is of type E6.
The intersection locus of the quartic Q(α, β, γ, δ) with the plane of equation w = 0 consists of two distinct

lines, L1 and L2, defined by x = w = 0 and z = w = 0, respectively. In addition, when γ 6= 0 one has an
additional special curve on Q(α, β, γ, δ) obtained as the intersection of the plane of equation 2γx = δw with the
cubic surface

2γ3y2z + (−δ3 + 3αγ2δ + 2βγ3)zw2 − γ3w3 = 0 . (8)

This curve resolves to a rational curve in X(α, β, γ, δ) which we denote by c.
After resolving the singularities at P1 and P2 one obtains a special configuration of rational curves on

X(α, β, γ, δ). The dual diagram of this configuration, in the two cases in question, is presented below.
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a1•
a2•

a3•
a4•

a5•
a6•

a7•
a8•

a9•
a10•

a11•
L1•

b2•
b3•

b4•

L2•
b1•

c• b5•

Figure 1: Case γ 6= 0

a1•
a2•

a3•
a4•

a5•
a6•

a7•
a8•

a9•
a10•

a11•
L1•

e1•
e2•

e3•
e5•

e6•

L2•
e4•

Figure 2: Case γ = 0

Note that when γ 6= 0 one has the following E8 ⊕ E7 configuration.

a1•
a2•

a3•
a4•

a5•
a6•

a7•
a11•

L1•
b2•

b3•
b4•

L2•
b1•

b5•

When γ = 0, one has a similar E8 ⊕ E8 configuration of curves.

a1•
a2•

a3•
a4•

a5•
a6•

a7•
a11•

L1•
e1•

e2•
e3•

e5•
e6•

L2•
e4•

The remaining orthogonal hyperbolic lattice H is spanned by the two classes associated to divisors a9 and f
where:

f = a8 + 2a7 + 3a6 + 4a5 + 5a4 + 6a3 + 3L2 + 4a2 + 2a1 = a10 + 2a11 + 3L1 + 4b2 + 2b1 + 3b3 + 2b2 + b1 (9)

when γ 6= 0 and

f = a8 +2a7 +3a6 +4a5 +5a4 +6a3 +3L2 +4a2 +2a1 = a10 +2a11 +3L1 +4e1 +5e2 +6e3 +3e4 +2e5 +e6 (10)

when γ = 0.

Remark 2.3. The surfaces X(α, β, 0, 0) are rational surfaces. On the projective quartic surface Q(α, β, 0, 0) the singularity
at P2 is no longer a rational double point, but an elliptic singularity.

Let us briefly discuss the discriminant locus of the family of quartics Q(α, β, γ, δ). One particular discriminant
component, given by the vanishing of

D1(α, β, γ, δ) = γ (11)

was already mentioned during the proof of Theorem 2.2. This component corresponds (on its δ 6= 0 region) to
the situation when the N-polarization extends canonically to a lattice polarization by H⊕E8⊕E8. These surfaces
were discussed by the authors in [5]. In terms of the correspondence (1), surfaces X(α, β, 0, δ) correspond with
principally polarized abelian surfaces (A,Π) which are products of two elliptic curves.

A second important discriminant component corresponds to the situation when, in addition to the singular
points P1 and P2, extra singularities occur on the quartic surface Q(α, β, γ, δ). One can check that this situation
is determined by the vanishing of the polynomial:

D4(α, β, γ, δ) = −2536α6βγ3 + 2636α3β3γ3 − 2536β5γ3 − 2435α5γ4 + 243552α2β2γ4 + 2 · 3354αβγ5 +

5



+ 55γ6 − 2437α7γ2δ + 2537α4β2γ2δ − 2437αβ4γ2δ + 23355 · 19α3βγ3δ + 233552β3γ3δ +

+ 335311α2γ4δ + 233537α4γ2δ2 + 23355 · 7αβ2γ2δ2 − 233353βγ3δ2 + 2436α6δ3 − 2536α3β2δ3 +

+ 2436β4δ3 − 2636α2βγδ3 − 233552αγ2δ3 − 2536α3δ4 − 2536β2δ4 + 2436δ5 (12)

We shall see later (Remark 3.8), an interpretation of the polynomial (12) in terms of Segel modular forms. At
this point, we note that this discriminant locus corresponds to the case in which the N-polarization extends
canonically to a polarization by the lattice H ⊕ E8 ⊕ E7 ⊕ A1. In terms of the correspondence (1), surfaces
X(α, β, 0, δ) correspond with principally polarized abelian surfaces (A,Π) which admit an elliptic subgroup of
degree two, or equivalently, A is two-isogenous with a product of two elliptic curves.

The overlap of the two discriminant components from above consists of the quartic surfaces Q(α, β, 0, δ) with

α6 + β4 + δ2 − 2α3β2 − 2α3δ − 2β2δ = 0. (13)

The K3 surfaces X(α, β, γ, δ) associated with the above condition are precisely those for which the canonical
N-polarization extends to a polarization by H⊕ E8 ⊕ E8 ⊕A1.

2.1 Special Features on X(α, β, γ, δ)

Let us outline a few special properties of the four-parameter K3 family introduced above. These properties will
play an important role in subsequent considerations.

Note that the isomorphism class of X(α, β, γ, δ) does not change under a certain weighted scaling of the
parameters (α, β, γ, δ).

Proposition 2.4. Let (α, β, γ, δ) ∈ C4 with γ 6= 0 or δ 6= 0. For any t ∈ C∗, the two N-polarized K3 surfaces

X(α, β, γ, δ) and X(t2α, t3β, t5γ, t6δ)

are isomorphic.

Proof. Let q be a square root of t. The proposition then follows from the fact that the projective automorphism:

Φ: P3 −→ P3, [x, y, z, w] 7→ [ q8x, q9y, z, q6w ]

maps the quartic Q(α, β, γ, δ) to Q(t2α, t3β, t5γ, t6δ) while satisfying Φ(P1) = P1, Φ(P2) = P2.

The K3 family X(α, β, γ, δ) can therefore be regarded as being parametrized, up to an isomorphism, by the three-
dimensional open analytic space:

PN =
{

[ α, β, γ, δ ] ∈WP3(2, 3, 5, 6)
∣∣ γ 6= 0 or δ 6= 0

}
. (14)

One of the main results of this paper (to be justified by the subsequent sections) is that the space PN is a coarse
moduli space for N-polarized K3 surfaces.

We also note that K3 surfaces X(α, β, γ, δ) carry two special elliptic fibrations:

ϕs
X, ϕ

a
X : X(α, β, γ, δ)→ P1,

which we shall refer to as standard and alternate1. The two fibrations are associated with the pencils of planes
in P3 containing the lines L2 and L1, respectively. In explicit coordinates, one can see ϕs

X and ϕa
X as induced,

respectively, from the rational projections

pr1,pr2 : P3 99K P1, pr1([x, y, z, w]) = [z, w], pr2([x, y, z, w]) = [x,w].

P1

X(α,β,γ,δ) //

ϕs
X

00

ϕa
X

..

P3

pr2

&&M
MMM

pr1

88qqqq

P1

(15)

1The broader context of the elliptic fibrations ϕs
X, ϕa

X is discussed in Section 4.1.
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Using the above setting, one can easily write explicit Weierstrass forms for the elliptic fibrations ϕs
X, ϕa

X. For
instance:

v2 = u2 + fs(λ)u+ gs(λ)

with
fs(λ) = λ4(γλ+ 3α), gs(λ) = −λ5(δλ2 − 2βλ+ 1)

describes the standard elliptic fibration ϕs
X over the affine chart { [λ, 1] | λ ∈ C } of its base. A simple computation

determines the discriminant of this elliptic curve family as:

4f3
s (λ) + 27g2

s (λ) =

= λ10
(

4γ3λ5 + 3(16αγ2 + 9δ2)λ4 + 12(16α2γ − 9βδ)λ3 + 2(128α3 + 54β2 + 27δ)λ2 − 108βλ+ 27
)
.

For the alternate fibration ϕa
X, one can describe the fibers over the affine chart { [µ, 1] | µ ∈ C } of the base as:

v2 = u2 + fa(µ)u+ ga(µ)

with:
fa(µ) =

1

12

(
−64µ6 + 96αµ4 + 32βµ3 − 36α2µ2 − 6(4αβ + γ)µ− 4β2 + 3δ

)
ga(µ) =

1

108

(
4µ3 − 3αµ− β

) (
128µ6 − 192αµ4 − 64βµ3 + 72α2µ2 + 6(8αβ + 3γ)µ+ 8β2 − 9δ

)
.

The discriminant of this family is:
4f3

a (µ) + 27g2
a(µ) =

− 1

16
(2γµ− δ)2 (

16µ6 − 24αµ4 − 8βµ3 + 9α2µ2 + 2(3αβ + γ)µ+ β2 − δ
)

An analysis based on Tate’s algorithm [39], applied in the context of the above formulas, allows one to conclude
the following:

Proposition 2.5. Assume γ 6= 0 or δ 6= 0. The standard elliptic fibration ϕs
X : X(α, β, γ, δ)→ P1 carries a section, given

by the curve a9 from Figures 1 or 2. In addition, there are two special singular fibers over the base points [0, 1] and [1, 0].
The fiber ϕs

[0,1] has Kodaira type II∗ and is represented by the divisor

2a1 + 4a2 + 6a3 + 3L2 + 5a4 + 4a5 + 3a6 + 2a7 + a8.

If γ 6= 0, then the fiber ϕs
[1,0] has type III∗ and is represented by the divisor

b5 + 2b4 + 3b3 + 4b2 + 2b1 + 3L1 + 2a11 + a10

from Figure 1. If γ = 0, then the fiber ϕs
[1,0] has type II∗ and is represented by the divisor

2e6 + 4e5 + 6e3 + 3e4 + 5e2 + 4e1 + 3L1 + 2a11 + a10

from Figure 2.

Proposition 2.6. Assume γ 6= 0 or δ 6= 0. The alternate elliptic fibration ϕa
X : X(α, β, γ, δ) → P1 carries two disjoint

sections, given by the pairs of curves a1, b4 or a1, e6 from Figures 1 or 2, respectively. There is a special singular fiber over
the base point [1, 0]. If γ 6= 0, then the fiber ϕa

[1,0] has Kodaira type I∗10 and is represented by the divisor

a2 + L2 + 2 ( a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10 + a11 + L1 + b2 ) + b3 + b1

from Figure 1. In such a case, one also has a singular fiber over [δ, 2γ] given by the divisor:

c+ b5

of Figure 1. The fiber ϕa
[δ,2γ] has type I2 if

3αγ2δ + 2βγ3 − δ3 6= 0

and type III if
3αγ2δ + 2βγ3 − δ3 = 0.

If γ = 0, then the fiber ϕa
[1,0] has type I∗12 and is represented by the divisor

a2 + L2 + 2 ( a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10 + a11 + L1 + e1 + e2 + e3 ) + e5 + e4

from Figure 2.
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Note that the standard fibration ϕs
X offers an alternate way of defining the N-polarization on the K3 surface

X(α, β, γ, δ). It is known (see [5, 27, 37]) that a pseudo-ample N-polarization on a K3 surface is equivalent
geometrically with the existence of a jacobian elliptic fibration with two distinct special fibers of Kodaira types
II∗ and III∗ (or higher), respectively.

However, it is the alternate elliptic fibration ϕa
X, that will play the major role in the consideration of this

paper. Let us consider the case γ 6= 0. Then, the alternate fibration has two disjoint sections given by the curves
a1 and b4 and a singular fiber of type I∗10 occurs over the base point [1, 0] of ϕa

X. Consider the affine chart [µ, 1] as
in Proposition 2.6. The elliptic fiber of ϕa

X over [µ, 1] has then the cubic form:{
y2z −

(
4µ3 − 3αµ− β

)
zw2 + γµz2w − 1

2
(δz2w + w3) = 0

}
⊂ P2(y, z, w) , (16)

with two special points [1, 0, 0] and [0, 1, 0] associated with the two sections. The affine version of the cubic
equation in (16), in the base chart w = 1, is:

y2z = z2

(
1

2
δ − γµ

)
+ z

(
4µ3 − 3αµ− β

)
+

1

2
, (17)

and one can easily verify that this affine cubic curve carries a special involution:

(y, z) 7→
(
−y, 1

(δ − 2γµ)z

)
. (18)

The map (18) extends to an involution of (16) which exchanges the section points [1, 0, 0] and [0, 1, 0]. For the
smooth elliptic curves in (16), the point [0, 1, 0] can be seen as a point of order two in the elliptic curve group
with origin at [1, 0, 0]. The involution determined by (18) amounts then to a fiber-wise translation by [0, 1, 0].

Note that, after multiplying (17) by z
(

1
2δ − γλ

)2, one gets:[
yz

(
1

2
δ − γµ

)]2

=

[
z

(
1

2
δ − γµ

)]3

+

[
z

(
1

2
δ − γµ

)]2 (
4µ3 − 3αµ− β

)
+

[
z

(
1

2
δ − γµ

)]
1

2

(
1

2
δ − γµ

)
.

With the coordinate change:

y1 = yz

(
1

2
δ − γµ

)
, z1 = z

(
1

2
δ − γµ

)
,

one obtains:
y2

1 = z3
1 + P(µ) · z2

1 +Q(µ) · z1, (19)

where

P(µ) = 4µ3 − 3αµ− β, Q(µ) =
1

2

(
1

2
δ − γµ

)
.

One can recognize in (19) the classical equation for a jacobian elliptic fibration with a special section of order-two
(see, for instance, Section 4 of the work of Van Geemen and Sarti [11]). The involution of (18) can be described
in this new coordinate context as:

(z1, y1) 7→
(
Q(µ)

z1
, −Q(µ) · y1

z2
1

)
.

One obtains the following result:

Proposition 2.7. Let (α, β, γ, δ) ∈ C4 with γ 6= 0 or δ 6= 0. The birational projective involution:

Ψ: P3 99K P3, Ψ ([x, y, z, w]) = [ xz(δw − 2γx), −yz(δw − 2γx), w3, zw(δw − 2γx) ] (20)

restricts to a birational involution of the quartic surface Q(α, β, γ, δ). Moreover Ψ lift to a non-trivial involution ΦX of the
N-polarized K3 surface X(α, β, γ, δ).

X(α,β,γ,δ)
ΦX //

��

X(α,β,γ,δ)

��
P3

Ψ //______ P3

(21)

The involution ΦX exchanges the two disjoint sections of the alternate fibration ϕa and, on the smooth fibers of this fibration,
amounts to a fiber-wise translation by a section of order two.

Using the terminology of Definition 1.1 in [7], ΦX : X(α, β, γ, δ)→ X(α, β, γ, δ) is a Van Geemen-Sarti involution.
In the context of the dual diagrams of Figures 1 and 2, the involution ΦX acts as a horizontal left-right flip.
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3 Hodge Theory and Siegel Modular Forms

A coarse moduli space for the isomorphism classes of N-polarized K3 surfaces can be constructed by gluing
together spaces of local deformations. We refer the reader to [1, 8] for a detailed description of the method. The
moduli spaceMN

K3 so obtained is a quasi-projective analytic space of complex dimension three. Hodge theory,
by the period map and the appropriate version of the Global Torelli Theorem provides one with an effective
method of analyzing the structure of this space.

3.1 The Period Isomorphism

Recall that, up to an overall isometry, there exists a unique primitive embedding of N into the K3 lattice

L = H⊕H⊕H⊕ E8 ⊕ E8.

Fix such a lattice embedding and denote by T the orthogonal complement of its image. The classical period
domain associated to the lattice T is then:

Ω = { ω ∈ P1 (T⊗ C) | (ω, ω) = 0, (ω, ω̄) > 0 }.

One also has the following group isomorphism:

{ σ ∈ O(L) | σ(γ) = γ for every γ ∈ N } '−→ O(T).

Via the classical Hodge decomposition, one associates to each N-polarized K3 surface (X, i) a well-defined point
in the classifying space of N-polarized Hodge structures

O(T)\Ω.

Moreover, by the Global Torelli Theorem [8] for lattice polarized K3 surfaces, one has that the period map so
constructed:

per : MN
K3 −→ O(T)\Ω (22)

is an isomorphism of analytic spaces.
Let us analyze in detail the period domain Ω. Note that the rank-five lattice T is naturally isomorphic to the

orthogonal direct sum H⊕H⊕ (−2). We select an integral basis {p1, p2, q1, q2, r} for T with intersection matrix:
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 −2

 .

Since p1, p2, q1, q2 are all isotropic vectors, their intersection pairing with any given period line in Ω is non-zero.
The Hodge-Riemann bilinear relations imply then that every period in Ω can be uniquely realized in this basis
as:

ω(τ, u, z) = ( τ, 1, u, z2 − τu, z )

with τ, u, z ∈ C satisfying τ2u2 > z2
2 . The 2-indices represent the fact that the imaginary part has been taken.

The period domain Ω has two connected components Ωo and Ωo which get interchanged by the complex
conjugation. Moreover, the map

κ =

(
τ z
z u

)
→ ω(τ, u, z) (23)

provides an analytic identification between the classical Siegel upper-half space of degree two:

H2 =

{
κ =

(
τ z
z u

)
| τ2u2 > z2

2 , τ2 > 0

}
(24)

and the connected component Ωo. The action of the discrete group O(T) admits a nice reinterpretion under this
identification. Note that the real orthogonal group O(T,R) has four connected components and the kernel of
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its action on Ω is given by ±id. Let O+(T,R) be the (index-two) subgroup of O(T,R) that fixes the connected
component of Ωo. This group can also be seen as:

O+(T,R) = {±id} · SO+(T,R)

where SO+(T,R) is the subgroup of O+(T,R) corresponding to isometries of positive spinor-norm. Finally, set
O+(T) = O+(T,R) ∩ O(T). One has then the following isomorphism of groups:

Sp4(Z)/{±I4} −→ O+(T)/{±id} ' SO+(T). (25)

The details of (25) are given in [16] (see Lemma 1.1 therein). Under (25) and in connection with the classical
action of the group Γ2 = Sp4(Z) on H2 , the identification (23) becomes equivariant. The following sequence of
isomorphisms holds:

Γ2\H2 ' O+(T)\Ωo ' O(T)\Ω .

One obtains:

Proposition 3.1. The period isomorphism (22) identifies the moduli spaceMN
K3 with the standard Siegel modular threefold

F2 = Γ2\H2 . (26)

As it is well-known (see, for instance, Chapter 8 of [2]), complex abelian surfaces (A,Π) endowed with principal
polarizations are also classified by Hodge structures of weight two associated with the lattice T. Moreover,
via an appropriate version of Global Torelli Theorem, one has that the corresponding period map establishes
an analytic identification between the coarse moduli space A2 of isomorphism classes of principally polarized
complex abelian surfaces and the Siegel modular threefold F2. In connection with the above considerations, one
obtains then the following result:

Proposition 3.2. There exists a Hodge theoretic correspondence:

(A,Π) ←→ (X, i) (27)

associating bijectively to every N-polarized K3 surface (X, i) a unique principally polarized abelian surface (A,Π). The
correspondence (27) underlies an analytic identification

A2
∼= MN

K3. (28)

between the corresponding coarse moduli spaces.

One can further refine the correspondence (27). Recall (see, for instance, Chapter 4 of [15]) that a principal
polarization Π on a complex abelian surface A can be of two types:

(i) Π = OA(E1 + E2) where E1 and E2 are smooth complex elliptic curves. In this case, the abelian surface A
splits canonically as a cartesian product E1 × E2.

(ii) Π = OA(C) where C is a smooth complex genus-two curve. In this case one can identify A canonically with
the Jacobian variety Jac(C), with the divisor C being given by the image of the Abel-Jacobi map.

Case (i) corresponds with the situation when the abelian surface A admits an H-polarization. Under (27), one
obtains then that the polarization N-polarization i of the corresponding K3 surface X can be extended to a
polarization by the rank-eighteen lattice H ⊕ E8 ⊕ E8. the case (ii) corresponds with the situation when the
principal polarization given by Π cannot be extended to an H-polarization of A. Therefore, via (27) one obtains
N-polarized K3 surfaces (X, i) for which the polarization i cannot be extended to a H⊕ E8 ⊕ E8-polarization.

The considerations of this section lead then to the following conclusion. The bijective correspondence (27)
breaks into two parts. first, one has a bijective correspondence:

( E1, E2) ←→ (X, i) (29)

between un-ordered pairs of complex elliptic curves and H⊕E8⊕E8-polarized K3 surfaces (X, i). Secondly, one
has a bijective correspondence:

C ←→ (X, i) (30)

between smooth complex genus-two curves C and N-polarized K3 surfaces (X, i) with the property that polar-
ization i does not extend to a H⊕ E8 ⊕ E8 polarization.

The correspondence (29) was the central topic of the previous work [5] of the authors. The present paper
gives an explicit description for (30)
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3.2 Siegel Modular Forms in Genus Two

An effective way to understand the geometry of F2 is to use the Siegel modular forms of genus two. Let us
enumerate here the main such forms that will be relevant to the present paper. For detailed references, we refer
the reader to the classical papers of Igusa [20, 21, 22] and Hammond [17] as well as the more recent monographs
of Van der Geer [14] and Klingen [25].

The simplest Siegel modular forms of genus two are those derived from Eisenstein series. These are modular
forms of even weight and are defined through the classical series:

E2t(κ) =
∑

(C,D)

det(Cκ+ D)−2t, t > 1. (31)

The group Γ1 = SL(2,Z) acts by simultaneous left-multiplication on the pairs (C,D) of symmetric 2× 2 integral
matrices, and the sum in (31) is taken over the orbits of this action. The Eisenstein forms E2t are also integral, in
the sense that their Fourier coefficients are integers.

A second special class of Siegel modular forms of degree two are the Siegel cusp forms, which lie in the kernel
of the Siegel operator. The most important cusp forms are C10, C12 and C35, of weights 10, 12 and 35, respectively.
One has2:

C10 = −43867 · 2−12 · 3−5 · 5−2 · 7−1 · 53−1 ( E4E6 − E10 ) (32)

C12 = 131 · 593 · 2−13 · 3−7 · 5−3 · 7−2 · 337−1
(

32 · 72E3
4 + 2 · 53E2

6 − 691E12

)
(33)

while C35 satisfies a polynomial equation C2
35 = P(E4, E6, C10, C12) where P is a specific polynomial with all

monomials of weighted degree 70. The exact form of P(E4, E6, C10, C12) can be found in [21, page 849].
The structure of the ring of Siegel modular forms of genus two is given by Igusa’s Theorem:

Theorem 3.3. (Igusa [22]) The graded ring A(Γ2,C) of Siegel modular forms of degree two is generated by E4, E6, C10,
C12 and C35 and is isomorphic to:

C [E4, E6, C10, C12, C35] /
(
C2

35 = P(E4, E6, C10, C12)
)
.

Note that, by Igusa’s work [20], the cusp forms C10, C12 and C35 can also be introduced in terms of theta constants
of even characteristics as follows:

C10(κ) = −2−14 ·
∏

m even

θm(κ)2 (34)

C12(κ) = 2−17 · 3−1 ·
∑

(m1m2m3m4m5m6)

( θm1(κ)θm2(κ)θm3(κ)θm4(κ)θm5(κ)θm6(κ) )
4 (35)

C35(κ) = −i · 2−39 · 5−3 ·

( ∏
m even

θm(κ)

)
·

 ∑
(m1m2m3)
asyzygous

±(θm1
(κ)θm2

(κ)θm3
(κ))20

 (36)

The products in (34) and (36) are taken over the ten even characteristics. The sum in (35) is taken over the
complements of the fifteen syzygous (Göpel) quadruples of even characteristics. The sum in (36) is taken over
the sixty asyzygous triples of even characteristics. According to Igusa’s terminology, a triple of even character-
istics is called syzygous if the sum of the three characteristics is even. Otherwise, the triple is called asyzygous.
A set of even characteristics is called syzygous (respectively asyzygous) if all triples of the set are syzygous
(respectively asyzygous).

The factors:
C5(κ) = 2−7 ·

∏
m even

θm(κ) (37)

C30(κ) = −i · 2−32 · 5−3 ·

 ∑
(m1m2m3)
asyzygous

±(θm1
(κ)θm2

(κ)θm3
(κ))20

 . (38)

are not Siegel modular forms in the traditional sense, as they carry non-trivial characters Γ2 → Z/2Z. The forms
C5, C30 however satisfy the relations:

C2
5 = −C10, C5C30 = C35.

2Note that in Igusa’s original notation [20, 21, 22], the modular forms E4, E6, C10, C12, C35 appear as ψ4, ψ6, χ10, χ12 and χ35.

11



When computing with modular forms in practice, one can employ standard methods of [31, 32, 19] that reduce
expressions involving the ten theta constants with even characteristics to four fundamental theta constants (as
given in Section 5.2). Using Igusa’s formulas in Section 4 of [19] and Section 3 of [22], one obtains explicit (and
far from complicated) expressions:

E4 = 24P8 (39)

E6 = 26P12

C10 = − 22Q20

C12 = 24 · 3−1Q24

where P8, P12, Q20 and Q24 are homogeneous polynomials in the fundamental theta constants a, b, c, d. The
precise formulas for P8, P12, Q20 and Q24, are given in Appendix 6.1.

3.3 The Singular Locus of F2

The Siegel modular threefold F2 = Γ2\H2 is non-compact and highly singular. The singular locus of F2 consists
of the images under the projection

H2 → Γ2\H2 (40)

of the points in H2 whose associated periods ω(τ, u, z) are orthogonal to roots3 of the rank-five lattice T. As T
is isomorphic to the orthogonal direct sum H ⊕ H ⊕ A1, the set of roots of T forms two distinct orbits under
the natural action of O(T). The two orbits are distinguished by the lattice type of the orthogonal complement
{r}⊥ ⊂ T of a particular root r. For roots r in one orbit, the orthogonal complements {r}⊥ are isomorphic to
H⊕H. For roots r belonging to the second orbit, {r}⊥ are isomorphic to H⊕ (2)⊕ (−2). These facts can be shown
either directly, or deduced from more general results such as the ones in [34].

The singular locus of F2 has therefore two connected components, which turn out to be the two Humbert
surfacesH1 andH4. These surfaces are the images under the projection (40) of the two divisors in H2 associated
to z = 0 and τ = u, respectively. As analytic spaces, both these loci are Hilbert modular surfaces (see for
instance Chapter IX of [13]). The Humbert surfacesH1,H4 are the vanishing locus of the cusp forms C5 and C30,
respectively. The formal sumH1 +H4 is then the vanishing divisor of the Siegel cusp form C35.

We note that, under the period isomorphism of Proposition 3.1, the Humbert surface H1 correspond to N-
polarized K3 surfaces (X, i) for which the lattice polarizations i extends to a H ⊕ E8 ⊕ E8-polarization. The
associated principally polarized abelian surfaces under (27) are products of two elliptic curves.

The complement ofH1 in F2 correponds to periods associated to smooth genus-two curves, which are nicely
classified by the Igusa-Clebsch invariants.

Remark 3.4. Via the periods of the polarized Jacobian varieties Jac(C), one gets a natural identification between the
open subset F2 \ H1 and the moduli space M2 of isomorphism classes of non-singular complex genus-two curves. The
Igusa-Clebsch invariants [3, 4, 19]

[ A, B, C, D ] ∈WP(2, 4, 6, 10) (41)

classify the isomorphism class of a genus-two curve, as well as realize explicit coordinates on F2 \ H1. The invariants can
be defined [21], in terms of Siegel modular forms of genus two, as:

[ A, B, C, D ] =

[
233
C12

C10
, 22E4, 25 E4C12

C10
+ 233−1E6, 214C10

]
. (42)

The above expression makes sense, as for period classes [κ] ∈ F2 \ H1, one has C10(κ) 6= 0.
In particular, the Igusa-Clebsch invariants realize an explicit identification between F2 \ H1, the moduli spaceM2 of

genus-two curves and the open variety:

{ [ A, B, C, D ] ∈WP(2, 4, 6, 10) | D 6= 0 } . (43)

We also note that the periods in the Humbert surface H4 are given by N-polarized K3 surfaces (X, i) for which
the lattice polarizations i extends to a H⊕E8 ⊕E7 ⊕A1-polarization. In terms of (27), the locusH4 corresponds
to principally polarized abelian surfaces (A,Π) that are two-isogenous with a product of two elliptic curves.

3A root of T is an element r ∈ T such that (r, r) = −2.
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3.4 The Main Theorem

The main theorem of this paper asserts the following:

Theorem 3.5. Let X(α, β, γ, δ) be the four-parameter family of N-polarized K3 surfaces introduced in Section 2. For
γ 6= 0 or δ 6= 0, let κ ∈ H2 be a period point associated with X(α, β, γ, δ). Then, one has the following identity involving
weighted projective points in WP(2, 3, 5, 6):

[ α, β, γ, δ ] =
[
E4, E6, 21235C10, 21236C12

]
. (44)

The computation leading to the above result is based on a special geometric two-isogeny of K3 surfaces, the
details of which are presented in the companion paper [7]. An outline of this transformation is provided here in
Section 4. The proof of Theorem 3.5 is given in Section 5.

In the light of Theorem 3.5 and based on the classical considerations of Igusa [19, 21], one obtains that the
period map:

per : PN → F2

is an isomorphism and (44) gives an explicit description of its inverse map. In particular, one obtains:

Corollary 3.6. The open analytic space:

PN =
{

[ α, β, γ, δ ] ∈WP3(2, 3, 5, 6)
∣∣ γ 6= 0 or δ 6= 0

}
(45)

forms a coarse moduli space for isomorphism classes of N-polarized K3 surfaces.

We note that for γ = 0, case in which the K3 surface X(α, β, 0, δ) carries a canonical H⊕E8 ⊕E8-polarization, an
identity equivalent with (44) has been established by the authors in [5]. In this work we shall therefore focus on
the γ 6= 0 case.

For γ 6= 0, Theorem 3.5 in connection with Remark 3.4, provides an explicit formula, in terms of Igusa-
Clebsch invariants, for the geometric transformation underlying the Hodge theoretic correspondence (30).

Corollary 3.7. Let X(α, β, γ, δ) be a N-polarized K3 surface with γ 6= 0. Then, the genus-two curve C associated to
X(α, β, γ, δ) by the correspondence (30) has Igusa-Clebsch invariants given by:

[ A, B, C, D ] =
[

233δ, 2232αγ2, 2332(4αδ + βγ)γ2, 22γ6
]
.

The formula given by the above corollary can be seen to agree with the computation done by Kumar [29].

Remark 3.8. As a special remark, note that, under the formulas in (44), one obtains the expected period interpretation for
the discriminants (11) and (12) of the quartic family X(α, β, γ, δ). Up to scaling by a constant, one has:

D1(α, β, γ, δ) · D4(α, β, γ, δ) = P(E4, E6, C10, C12) = C2
35 ,

where P is Igusa’s weighted-degree 70 homogeneous polynomial (Theorem 3.3).

4 A Geometric Two-Isogeny of K3 Surfaces

This section outlines a purely geometric transformation upon which the main computation of this paper is based.
For details regarding the transformation, as well as proofs, we refer the reader to the companion paper [7].
Various parts of the construction have also been discussed by Dolgachev (the Appendix Section of [9]) and
Kumar [29].

4.1 Elliptic Fibrations on N-polarized K3 Surfaces

Let (X, i) be a N-polarized K3 surface. Assume also that the lattice polarization i cannot be extended to a polar-
ization by the rank-eighteen lattice H⊕E8⊕E8. We are therefore in the case associated, under the Hodge theoretic
correspondence (1), to principally polarized abelian surfaces obtained as Jacobians of genus-two curves.

By standard results on jacobian elliptic fibrations (see Kodaira’s classical work [26], as well as [5, 27, 37]), the
lattice polarization i determines a canonical elliptic fibration

ϕs
X : X→ P1
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with a section Ss and two singular fibers of Kodaira types II∗ and III∗, respectively. We shall refer to ϕs
X as the

standard elliptic fibration of X. In the context of ϕs
X, one has the following dual configuration of rational curves

on the K3 surface X.

a1•
a2•

a3•
a5•

a6•
a7•

a8•
a9• Ss

•
b8•

b7•
b6•

b4•
b3•

b2•
b1•

a4•
b5•

(46)

The fiber Fs of the elliptic fibration ϕs
X is represented by the line bundle:

OX (2a1 + 4a2 + 6a3 + 3a4 + 5a5 + 4a6 + 3a7 + 2a8 + a9) = OX (b1 + 2b2 + 3b3 + 4b4 + 2b5 + 3b6 + 2b7 + b8) .

The N-polarization of X appears in this context as:

〈Fs,Ss〉 ⊕ 〈a1, a2, · · · a8〉 ⊕ 〈b1, b2, · · · b7〉.

A second alternate elliptic fibration ϕa
X : X → P1 is obtained via the same classical arguments. This alternate

elliptic pencil is associated with the line bundle:

OX ( a2 + a4 + 2(a3 + a5 + a6 + a7 + a8 + Ss + b8 + b7 + b6 + b4) + b3 + b5 ) .

The alternate elliptic fibration ϕa
X has two disjoint sections

Sa
1 = a1, Sa

2 = b2.

Moreover, the assumption that the polarization i does not extend to a lattice polarization by H⊕E8⊕E8 implies
that the rational curve b1 is generically part of an I2 type singular fiber. This implies the generic existence of
an additional rational curve c, such that b1 + c belongs to the elliptic fibration ϕa

X. In the context of the explicit
X(α, β, γ, δ) surfaces, the curve c is described by equation (8). The diagram (46) completes to the following
nineteen-curve diagram on X.

a1•
a2•

a3•
a5•

a6•
a7•

a8•
a9• Ss

•
b8•

b7•
b6•

b4•
b3•

b2•

a4•
b5•

c• b1•

(47)

4.2 The Nikulin Construction

As proved in [7], the section b2 has order two, as a member of the Mordell-Weil group MW(ϕa
X, a1). Translations

by b2 in the smooth fibers of the elliptic fibration ϕa
X extend then to a canonical Van Geemen-Sarti4 involution

ΦX : X→ X . (48)

The involution ΦX acts on the curves of diagram (47) as a horizontal left-right flip. In particular, ΦX establishes
a Shioda-Inose structure [24, 30], as it exchanges the two E8-configurations:

〈a1, a2, a3, a4.a5, a6, a7, a8〉, 〈b2, b3, b4, b5, b6, b7,Ss〉 .

At this point one performs the Nikulin construction. Take the quotient of X by the involution ΦX which produces
a singular surface with eight rational double points of type A1. Then take the minimal resolution of this quotient,
hence obtaining a new K3 surface Y. The construction exhibits a rational two-to-one map

pΦX : X 99K Y. (49)

Moreover, as explained in [7], the surface Y inherits an elliptic fibration

ϕY : Y → P1 (50)
4For details regarding this concept, we refer the reader to Definition 1.1 of [7].
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which is induced from the alternate fibration on X. The elliptic fibration ϕY carries a singular fiber of Kodaira
type I∗5 and two disjoint sections S̃1, S̃2. As before, the section S̃2 determines an element of order two in the
Mordell-Weil group MW(ϕY, S̃1) and fiber-wise translations by S̃2 extend to a dual Van Geemen-Sarti involution

ΦY : Y → Y. (51)

The Nikulin construction associated to ΦY recovers back the K3 surface X as well as its alternate fibration. Hence,
surfaces X and Y are naturally related by a geometric two-isogeny of K3 surfaces.

YΦY

&&

ϕY   @
@@

@@
@@ pΦY

33X Z ] _ a d f XΦX

xx

ϕa
X~~~~

~~
~~

~

pΦX

ss XZ]_adf

P1

(52)

A key observation at this point is that the K3 surface Y carries a canonical Kummer structure. Let us summarize
this fact. The Nikulin construction associated to the involution ΦX induces a natural push-forward morphism at
the cohomology level:

(pΦX)∗ : H2(X,Z)→ H2(Y,Z). (53)

Denote by Ui, with 1 ≤ i ≤ 8, the exceptional rational curves on Y obtained from resolving the singularities
associated with the eight fixed points of involution ΦX. The curves U1,U2, · · ·U8 form the even-eight configura-
tion associated with the rational two-to-one map (49). The rank-eight latticeN defined as the minimal primitive
sublattice of H2(X,Z) containing U1,U2, · · ·U8 is a Nikulin lattice. One has:

〈 (pΦX
)∗(x), y 〉Y = 0,

for any x ∈ H2(X,Z) and y ∈ N .
Set then G as the rank-seventeen sublattice of NS(Y) given by the orthogonal direct product

(pΦX)∗(i(N)) ⊕ N .

Denote by i(N)⊥ and G⊥ the orthogonal complements in H2(X,Z) and H2(Y,Z), respectively. In this context,
the Nikulin construction (see for instance Morrison’s arguments in Section 3 of [30]), allows one to obtain the
following lemma:

Lemma 4.1.
(a) The restriction of (53) induces a Hodge isometry

(pΦX
)∗ : i(N)⊥(2)

'−→ G⊥ . (54)

(b) Let K be the rank-sixteen Kummer lattice5. One has a canonical primitive lattice embedding:

K ⊕ (4) ↪→ G. (55)

By Nikulin’s criterion (see [36]), the lattice embedding (55) determines a canonical Kummer structure on Y, that
is Y is a Kummer surface associated to a principally polarized abelian surface (A,Π) and the sixteen exceptional
curves determining the Kummer structure are explicitly determined. Let π : A 99K Y be the rational two-to-
one map associated to this Kummer structure. By restricting the map π∗ to the orthogonal complement of the
principal polarization Π in H2(A,Z), one obtains a classical Hodge isometry:

π∗ : 〈Π〉⊥(2)
'−→ P⊥ . (56)

Connecting (54) and (56), one obtains an isometry of Hodge structures:

(π∗)
−1 ◦ (pΦX)∗ : i(N)⊥

'−→ 〈Π〉⊥ . (57)

Both lattices 〈Π〉⊥ and i(N)⊥ are isometric to H⊕H⊕(−2). Hence, via the considerations of Section 3, one obtains
that (A,Π) is the abelian surface associated to (X, i) by the Hodge-theoretic correspondence (1). In particular
(A,Π) is isomorphic, as principally polarized abelian surface, to(

Jac(C), OJac(C)(Θ)
)

with C a well-defined complex non-singular genus-two curve.
5As defined in [30] or [36]
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4.3 Elliptic Fibrations in the Context of the Kummer Structure

As it turns out, the elliptic fibrationϕY, as well as the Van Geemen-Sarti involution ΦY can be explicitly described
from classical features of the Kummer surface Y = Km(Jac(C)). In order to present this description, we shall
first need to establish some notations.

4.3.1 Classical Facts on Km(C)

Let C be a complex non-singular genus-two curve. Assume a choice of labeling, a1, a2, · · · a6, for the six ramifi-
cation points of the canonical hyperelliptic structure. The Jacobian surface Jac(C) parametrizes the degree-zero
line bundles on C. It comes equipped with a natural abelian group structure and contains sixteen two-torsion
points that form a subgroup

Jac(C)2 ' (Z/2Z)
4
.

The two-torsion points can be described as follows. Denote by p∅ the neutral element of Jac(C), i.e. the point
associated to the trivial line bundle of C. The fifteen points of order two are then given by pij representing the
line bundles

OC (ai + aj − 2a1) , 1 ≤ i < j ≤ 6.

The abelian group law on Jac(C)2 can be seen as

pU + pV = pW

where U, V and W are subsets of {1, 2, · · · , 6}, containing either zero or two elements, and:

W =



U if V = ∅
V if U = ∅
∅ if U = V

(U ∪V) \ (U ∩V) if |U ∩V| = 1

{1, 2, · · · , 6} \ (U ∪V) if U 6= ∅, V 6= ∅ and U ∩V = ∅

. (58)

The choice of labeling of the ramification points of C defines a level-two structure on Jac(C).
Consider the Abel-Jacobi embedding associated to the Weierstrass point a0, i.e:

C ↪→ Jac(C), x OC (x− a1)

and denote by Θ∅ the image of C under this map. This is an irreducible curve on Jac(C), canonically isomorphic
to C and containing the six two-torsion points: p∅, p12, p13, p14, p15, p16. Let then Θij be the image of Θ∅ under
the translation by the order-two point pij . Each of the resulting sixteen Theta divisors Θ∅, Θij contains exactly
six of the sixteen two-torsion points. For instance Θ1j , for 2 ≤ j ≤ 6, contains

p1j , p2j , · · · pj−1j , p∅, pjj+1, · · · pj6,

while Θij , for 2 ≤ i < j ≤ 6, contains:
p1i, p1j , pij , pkl, pkm, plm

where {k, l,m} = {1, 2, · · · 6} \ {0, i, j}. Each two-torsion point lies on precisely six of the sixteen Theta divisors.
The sixteen two-torsion points together with the sixteen Theta divisors on Jac(C) yield, via the Kummer

construction, a classical configuration of thirty-two smooth rational curves on Km(C) - the (16; 6) configuration.
Sixteen of the curves, denoted E∅, Eij are the exceptional curves associated to the two-torsion points p∅, pij of
Jac(C), respectively. The remaining sixteen rational curves, denoted ∆∅, ∆ij are the proper transforms of the
images of the Theta divisors Θ∅, Θij , respectively. Following the classical terminology, we shall refer to these
latter sixteen curves as tropes.

On the Jacobian surface Jac(C), one has h0(Jac(C), 2Θ∅) = 4 and the linear system |2Θ∅| is base point free.
The associated morphism:

ϕ|2Θ∅| : Jac(C)→ P3

is generically two-to-one and its image

S(C) = ϕ|2Θ∅| (Jac(C)) ⊂ P3
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is a quartic surface. One has a canonical identification

S(C) = Jac(C)/{±id}

and the images of the sixteen two-torsion points of Jac(C) are singularities on S(C): rational double points of
type A1. By convention, we shall also label these sixteen singularities as p∅, pij . The minimal resolution of S(C)
is then isomorphic to the Kummer surfaces Km(C).

Jac(C)

ϕ|2Θ∅| %%JJJJJJJJJJ
//___ Km(C)

σ

��
P3

(59)

In this context, the sixteen curves G∅, Gij are resulting from resolving the sixteen singular points of S(C). The
tropes ∆∅, ∆ij are conics resulting from intersecting the quartic surface S(C) with sixteen special planes of P3.
The linear system of hyperplane sections associated to the morphism σ : Km(C) → P3 of diagram (59) is given
by

|2∆∅ + G∅ +
∑

2≤t≤6

G1t| = |2∆1j + G∅ +
∑

1≤t≤6

t 6=j

G1t| = |2∆ij + G1i + G1j + Gij + Gkl + Gkm + Glm|.

Let pr: P3 99K P2 be the projection from the point p∅. The images through this projection of the six planes
associated with the tropes ∆∅, ∆1j , 2 ≤ j ≤ 6 form a configuration of six distinct lines in P2:

L = { L1, L2, L3, · · · L6 }. (60)

The six lines are tangent to a common smooth conic and meet at fifteen distinct points qij = pr(pij), 1 ≤ i < j ≤ 6.
After blowing up the points qij , one obtains a rational surface R with fifteen exceptional curves Eij . Denote by
L′i with 1 ≤ i ≤ 6, the rational curves on R obtained as proper transforms of the six lines Li. Then, one has a
double cover morphism

π : Km(C)→ R (61)

with branched locus given by the six disjoint curves L′i, 1 ≤ i ≤ 6.

Jac(C)

ϕ|2Θ∅| %%JJJJJJJJJJ
//___ Km(C)

σ

��

π // R

ρ

��
P3

pr //____ P2

(62)

The deck transformation β : Km(C)→ Km(C) associated with the double cover (61) is a non-symplectic involu-
tion with fixed locus given by the union of six curves ∆∅, ∆1j , 2 ≤ j ≤ 6.

4.4 Two Elliptic Fibrations on Y

There are two elliptic fibrations on the Kummer surface Y= Km(C) that play an important role in our discussion.
The first one is the elliptic fibration ϕY : Y → P1 of (50). The geometric features of this fibration are discussed in
detail in Chapter 3 of [7]. Let us outline here the main properties. The elliptic pencil ϕY is associated with the
line bundle:

OY ( ∆34 + β(∆34) + 2 (G34 + ∆13 + G23 + ∆12 + G12 + ∆∅) + G15 + G16 ) . (63)

The fibration carries therefore a singular fiber of Kodaira type I∗5

∆34•

EE
EE

E
G15•

}}
}}

G34•

yy
yy

y
∆13•

G23•
∆12•

G12•
∆∅
•

@@
@@

β(∆34)
•

G16•

(64)
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In the generic situation, there are six additional singular fibers of type I2 and one of type I1. The tropes ∆15 and
∆16 are disjoint sections in ϕY, whereas ∆14 is a bi-section.

∆34•

EE
EE

E
G15•

}}
}}

∆15•

∆14•
G34•

yy
yy

y
∆13•

G23•
∆12•

G12•
∆∅
•

@@
@@

β(∆34)
•

G16•
∆16•

(65)

As an element of the Mordell-Weil group MW(ϕY,∆15), the section ∆16 has order two. Hence, fiber-wise trans-
lations by ∆16 extend to define the Van Geemen-Sarti involution ΦY : Y → Y of (51).

A simple computation shows that, in the context of diagram (62), the I∗5 divisor in (63) is the pull-back under
the double cover π : Y → R of:

5ρ∗(h)− 3E13 − 2 (E14 + E25 + E26)− (E24 + E35 + E36 + E56) (66)

where is the hyperplane class in P2. The fibers of ϕY are therefore coming from a pencil of projective quintic
curves in P2, with a triple point at q13, three double points at q14, q25, q26 and also passing through the four points
q24, q35, q36, q56. The divisor (66) determines a ruling

ϕR : R→ P1. (67)

The generic fiber of this ruling is a rational curve with four distinct special points: the intersection with L′5,
L′6 (sections) and L′4 (bi-section). The associated elliptic fiber of ϕY is the double cover of this rational curve
branched at the four special points. The elliptic fibration ϕY factors through the ruling (67).

ϕY : Y
π−→ R

ϕR−→ P1

The second elliptic fibration on we consider on the K3 surface Y is associated, in a manner similar with the
above description, with the pencil of conic curves in P2 passing through q13, q14, q25, q26. The line bundle:

OR ( 2ρ∗(h)− E13 − E14 − E25 − E26 ) (68)

determines a ruling
ψR : R→ P1 (69)

whose pull-back through the double cover π : Y → R gives an elliptic fibration ψY : Y → P1. The elliptic fibration
ψY carries two special singular fibers of Kodaira types I3 and I∗2.

∆34•

EE
EE

E
G23

BB
BB

B
G15•

}}
}}

G56•

yyyyy

EE
EE

E
G34•

yy
yy

y
∆12•

G12•
∆∅
•

@@
@@

β(∆34)
• G24

|||||
G16•

(70)

In the generic situation, ψY has six additional fibers of type I2.
In the next section, we shall use the two elliptic fibrations ϕY and ψY in the context of the following property.

Proposition 4.2. The product morphism ϕY × ψY factors through the double cover map:

ϕY × ψY : Y
π−→ R

ϕR×ψR−→ P1 × P1 .

Moreover ϕR × ψR : R→ P1 × P1 is a birational morphism.

5 An Explicit Computation: Proof of Theorem 3.5

We shall prove the identity in Theorem 3.5 by explicitly describing the details of the geometric two-isogeny
transformation outlined in Section 4. We give explicit formulas for the elliptic fibration ϕY on the Kummer
surface Y = Km(C) from the points of view of the two contexts involved: the appearance of ϕY from the four-
parameter N-polarized K3 family X(α, β, γ, δ) (with γ 6= 0 ) via the Nikulin construction and the set-up of ϕY

in the context of the Kummer construction as described in Section 4.4. The first description will depend on the
quadruple parameter (α, β, γ, δ), while in the latter context, we give a formula for ϕY in terms of Siegel modular
forms. Identity (44) will follow from the matching of the explicit formulas on the two sides.
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5.1 The Fibration ϕY via the Nikulin Construction

Recall from Section 2.1 that, in the context of the K3 surface X(α, β, γ, δ), the alternate fibration ϕa
X can be de-

scribed by the affine equation:
y2

1 = z3
1 + PX(µ) · z2

1 +QX(µ) · z1, (71)

where

PX(µ) = 4µ3 − 3αµ− β, QX(µ) =
1

2

(
1

2
δ − γµ

)
.

The Van Geemen-Sarti involution ΦX is described by Proposition 2.7 and, in the context of the affine coordinates
(z1, y1) of (71), acts as:

(z1, y1) 7→
(
QX(µ)

z1
, −QX(µ) · y1

z2
1

)
.

Then, as explained, for instance, by Van Geemen and Sarti in Section 4 of [11], one can write an affine form for
the elliptic fibration ϕY as follows:

y2
2 = z3

2 + PY(µ) · z2
2 +QY(µ) · z2, (72)

where the affine coordinates (z2, y2) are:

z2 =
y2

1

z2
1

, y2 =

(
QX(µ)− z2

1

)
y1

z2
1

and
PY(µ) = −2PX(µ) = −8µ3 + 6αµ+ 2β (73)

QY(µ) = P2
X(µ)− 4QX(µ) = 16µ6 − 24αµ4 − 8βµ3 + 9α2µ2 + 2(3αβ + γ)µ+ β2 − δ . (74)

5.2 The Fibration ϕY via the Kummer Construction

The maps of diagram (62) can be described explicitly in terms of genus-two theta functions. Let κ ∈ H2 be
a point of the Siegel upper half-space defined in (24). Furthermore, assume that κ is associated with a set of
periods for the polarized Hodge structure of Jac(C). By classical results (see [31, 32]), there are then sixteen theta
functions

θm(κ, ·) : C2 → C,

with characteristics m = (u, v), u, v ∈ {0, 1/2} × {0, 1/2}. The theta functions θm(κ, ·) descend to sections in line
bundles over the Jacobian surface Jac(C) determining the sixteen Theta divisors6 Θ∅, Θij .

Among the possible sixteen characteristics m = (u, v), ten are even and six are odd. The ten even theta func-
tions are related by six independent Riemann theta relations. Our computation will be based on the following
four fundamental theta functions

θm1(κ, ·), θm2(κ, ·), θm3(κ, ·), θm4(κ, ·) (75)

with:
m1 = ((0, 0), (0, 0)) , m2 = ((0, 0), (1/2, 1/2))

m3 = ((0, 0), (1/2, 0)) , m4 = ((0, 0), (0, 1/2)) .

In this context, one can describe the morphism ϕ|2Θ∅| of diagram (62) as:

C2

��

Ξ

''OOOOOOOOOOOOOOO

Jac(C)
ϕ|2Θ∅|

// P3

(76)

where Ξ: C2 → P3 is defined as

Ξ(Z) = [ θm1
(κ, 2Z), θm1

(κ, 2Z), θm3
(κ, 2Z), θm4

(κ, 2Z) ] .

6One can arrange that θm(κ, ·) ∈ H0(Jac(C),Θ∅) for m = ((0, 0), (0, 0)) and for the level-two structure induced by characteristics to
match (58).
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Via Frobenius identities, one obtains then an explicit description for the quartic surface:

SC = ϕ|2Θ∅| (Jac(C)) ⊂ P3(x, y, z, w).

This is the classical equation of Hudson [18, 15]:

x4 + y4 + z4 + w4 + 2Dxyzw + A(x2w2 + y2z2) + B(y2w2 + x2z2) + C(x2y2 + z2w2) = 0. (77)

The coefficients A, B, C, D of the Hudson quartic are rational functions in the four fundamental theta constants :

a = θm1
(κ, 0), b = θm2

(κ, 0), c = θm3
(κ, 0), d = θm4

(κ, 0),

and appear as follows:

A =
b4 + c4 − a4 − d4

a2d2 − b2c2
, B =

c4 + a4 − b4 − d4

b2d2 − c2a2
, C =

a4 + b4 − c4 − d4

c2d2 − a2b2
, (78)

D =
abcd(d2 + a2 − b2 − c2)(d2 + b2 − c2 − a2)(d2 + c2 − a2 − b2)(a2 + b2 + c2 + d2)

(a2d2 − b2c2)(b2d2 − c2a2)(c2d2 − a2b2)
.

Note that, as function of κ ∈ H2, the homogeneous polynomial

(ad− bc)(ad+ bc)(ac− bd)(ac+ bd)(ab− cd)(ab+ cd)(a2 + d2 − b2 − c2)(a2 + c2 − b2 − d2) (79)

(a2 + b2 − c2 − d2)(a2 + b2 + c2 + d2)

represents C10 scaled by a non-zero constant. The zero-divisor of C10 is the Humbert surface H1, and hence the
denominators in (78) are all non-zero.

In the Hudson quartic setting, the sixteen singularities p∅, pij of SC are as follows:

• p∅ = [a, b, c, d]

• p12 = [c, d, a, b]

• p13 = [a,−b,−c, d]

• p14 = [−b, a, d,−c]
• p15 = [c, d,−a,−b]
• p16 = [−b,−a, d, c]
• p23 = [−c, d, a,−b]
• p24 = [d,−c,−b, a]

• p25 = [−a,−b, c, d]

• p26 = [d, c,−b,−a]

• p34 = [b, a, d, c]

• p35 = [−c, d,−a, b]
• p36 = [b,−a, d,−c]
• p45 = [d,−c, b,−a]

• p46 = [−a, b,−c, d]

• p56 = [d, c, b, a]

The sixteen tropes ∆∅, ∆ij correspond to the following sixteen hyperplanes:

• ∆∅ : dx− cy + bz − aw = 0,

• ∆12 : bx− ay + dz − cw = 0,

• ∆13 : dx+ cy − bz + aw = 0,

• ∆14 : cx+ dy − az − bw = 0,

• ∆15 : −bx+ ay + dz − cw = 0,

• ∆16 : −cx+ dy + az − bw = 0,

• ∆23 : −bx− ay + dz + cw = 0,
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• ∆24 : −ax− by + cz + dw = 0,

• ∆25 : dx− cy − bz + aw = 0,

• ∆26 : ax− by − cz + dw = 0,

• ∆34 : −cx+ dy − az + bw = 0,

• ∆35 : bx+ ay + dz + cw = 0,

• ∆36 : cx+ dy + az + bw = 0,

• ∆45 : ax+ by + cz + dw = 0,

• ∆46 : dx+ cy + bz + aw = 0,

• ∆56 : −ax+ by − cz + dw = 0,

The rational projection pr: P3 99K P2 of diagram (62) has then the explicit form:

pr ( [x, y, z, w]) = [ −bx+ ay − dz + cw, cx− dy − az + bw, dx+ cy − bz − aw ] .

By a slight abuse of notation, we shall use homogeneous coordinates [x, y, z] on the target space of the projection.
In these coordinates, the six lines Ln, with 1 ≤ n ≤ 6 forming the branch locus (60) can be described through the
equations Ln(x, y, z) = 0 where :

• L1(x, y, z) = 2(ac+ bd)x+ 2(ab− cd)y − (a2 − b2 − c2 + d2)z

• L2(x, y, z) = x

• L3(x, y, z) = z

• L4(x, y, z) = 2(ad− bc)x+ (a2 − b2 + c2 − d2)y + 2(ab+ cd)z

• L5(x, y, z) = (−a2 − b2 + c2 + d2)x+ 2(ad+ bc)y − 2(ac− bd)z

• L6(x, y, z) = y

The fifteen intersection points qij of the six-line configuration are:

• q12 = [ 0, −a2 + b2 + c2 − d2, −2ab+ 2cd ]

• q13 = [ −2ab+ 2cd, 2ac+ 2bd, 0 ]

• q14 = [ a2 + b2 − c2 − d2, −2bc− 2ad, 2ac− 2bd ]

• q15 = [ −2bc+ 2ad, a2 − b2 + c2 − d2, 2ab+ 2cd ]

• q16 = [ −a2 + b2 + c2 − d2, 0, −2ac− 2bd ]

• q23 = [ 0, −a2 − b2 − c2 − d2, 0 ]

• q24 = [ 0, 2ab+ 2cd, −a2 + b2 − c2 + d2 ]

• q25 = [ 0, −2ac+ 2bd, −2bc− 2ad ]

• q26 = [ 0, 0, a2 + b2 + c2 + d2 ]

• q34 = [ a2 − b2 + c2 − d2, 2bc− 2ad, 0 ]

• q35 = [ 2bc+ 2ad, a2 + b2 − c2 − d2, 0 ]

• q36 = [ −a2 − b2 − c2 − d2, 0, 0 ]

• q45 = [ −2ac− 2bd, −2ab+ 2cd, a2 − b2 − c2 + d2 ]

• q46 = [ 2ab+ 2cd, 0, 2bc− 2ad ]

• q56 = [ 2ac− 2bd, 0, −a2 − b2 + c2 + d2 ]

5.3 The Quintic Pencil ϕR

As explained in Section 4.4, in order to describe explicitly the elliptic fibration ϕY : Y → P1 of (50), one needs to
understand the ruling ϕR : R→ P1 of (67). This ruling is associated with the pencil of quintic curves in P2, with
a triple point at q13, three double points at q14, q25, q26 and passing through the four points q24, q35, q36, q56.

This pencil can be described explicitly. Note that a first such quintic curve is given by:

L1 + L2 + L3 + C (80)
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where C is the unique conic passing through q13, q14, q25, q26, q56. The pull-back of the divisor (80) determines
the I∗5 fiber of the elliptic fibration ϕY, as described in (64). The conic C is given by the following polynomial:

C(x, y, z) = c200x
2 + c020y

2 + c002z
2 + c110xy + c101xz + c011yz (81)

with coefficients set as follows:

c200 = −2(ad− bc)(bc+ ad)(ac+ bd)(a2 + b2 − c2 − d2)

c020 = −(bc+ ad)(ab− cd)(a2 + b2 − c2 − d2)(a2 − b2 + c2 − d2)

c002 = 0

c110 = −(bc+ ad)(a2 + b2 − c2 − d2)(a3c− 3ab2c+ ac3 + 3a2bd− b3d+ 3bc2d− 3acd2 − bd3)

c101 = −4(ad− bc)(bc+ ad)(ac− bd)(ac+ bd)

c011 = (ac− bd)(ab− cd)(a2 + b2 − c2 − d2)(a2 − b2 + c2 − d2) .

We have therefore a description for the divisor (80) as the zero-locus a special quintic:

QIN1(x, y, z) = L1(x, y, z) · L2(x, y, z) · L3(x, y, z) · C(x, y, z). (82)

In order to select a second quintic polynomial with the required properties, we choose to impose the extra
condition that the quintic curve passes through q45. In the generic situation, the pull-back of the strict transform
of this quintic curve determines a singular fiber of Kodaira type I2 on the elliptic fibration ϕY. A polynomial
describing this curve can be given as follows:

QIN2(x, y, z) = k500x
5 + k050y

5 + k005z
5 + k410x

4y + k401x
4z + k140xy

4 + k041y
4z + k104xz

4 + k014yz
4+

+ k320x
3y2 + k302x

3z2 + k230x
2y3 + k032y

3z2 + k203x
2z3 + k023y

2z3 + k311x
3yz + k131xy

3z+

+ k113xyz
3 + k122xy

2z2 + k212x
2yz2 + k221x

2y2z .

The coefficients kijk are homogeneous degree-sixteen polynomials the fundamental theta constants a, b, c, d.
Their precise form is given in Appendix 6.2.

The full pencil of quintic curves can be then described by:

QINt1,t2(x, y, z) = t1 ·QIN1(x, y, z) + t2 ·QIN2(x, y, z), (t1, t2) ∈ C2 . (83)

5.4 The Conic Pencil ψR

As explained earlier, the quintic pencil in Section 5.3 determines a ruling ϕR on the rational surface R obtained
by blowing up the fifteen points qij on P2. The proper transforms L′5, L′6 are sections in this ruling, while L′4
is a bi-section. On each smooth fiber of ϕR, these sections/bi-section determine four distinct points and the
associated elliptic fiber of ϕY is the double cover of the rational curve branched at these four special points.

Our strategy shall be to describe explicitly the location of the four branch points via a parametrization of the
ruling. In order to accomplish this task, we shall use the second ruling ψR : R→ P1, the ruling associated to the
pencil of projective conics passing through the four points q13, q14, q25, q26. This pencil can be written explicitly
as:

Cs1,s2(x, y, z) = s1 · C(x, y, z) + s2 · L1(x, y, z) · L2(x, y, z), (s1, s2) ∈ C2 . (84)

As explained in Section 4.4, the intersection between generic fibers of the rulings ϕR and ψR, respectively, consist
of exactly one point and one obtains a birational morphism ϕR × ψR : R→ P1 × P1.

R

ρ

��

ϕR×ψR

((PPPPPPPPPPPPPP

P2 //______ P1 × P1

(85)
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5.5 Explicit Description of the Elliptic Fibration ϕY

Let t ∈ C. Consider then the quintic curve:

QINt,1(x, y, z) = t(a2 + b2 + c2 + d2) ·QIN1(x, y, z) + QIN2(x, y, z) = 0. (86)

From the point of view of this work, one has four important points on the curve (86). These points are given by
the residual intersections with the lines L5, L6, and L4, respectively. The images of these four points through the
rational map:

C(x, y, z)

L1(x, y, z) · L2(x, y, z)
(87)

can be described as follows. The image through (87) of the intersection with L5 is:

A(t) =
1

4
(A0 +A1t) (88)

where:

A0 = a6 − 3a4b2 + 3a4c2 − 3a4d2 − 8a3bcd+ 3a2b4 + 2a2b2c2 − 2a2b2d2 + 3a2c4 + 2a2c2d2 + 3a2d4 + 8ab3cd−
− 8abc3d+ 8abcd3 − b6 + 3b4c2 − 3b4d2 − 3b2c4 − 2b2c2d2 − 3b2d4 + c6 − 3c4d2 + 3c2d4 − d6 ,

A1 = a2 − b2 + c2 − d2 .

The image through (87) of the intersection with L6 is:

B(t) =
1

4
(B0 +B1t) (89)

where:

B0 = − 8(ad− bc)(ac+ bd)(ab− cd) ,

B1 = a2 − b2 + c2 − d2 .

Finally, the two points of intersection with L4, map under (87), to the two roots of the quadratic equation:

C(t) · u2 +Du+ E = 0 , (90)

where C(t) = C0 + C1t and:

C1 = a2 − b2 + c2 − d2 ,

C0 = a6 + a4b2 − a4c2 + a4d2 − 8a3bcd− a2b4 − 10a2b2c2 + 10a2b2d2 − a2c4 − 10a2c2d2 − a2d4 + 8ab3cd−
− 8abc3d+ 8abcd3 − b6 − b4c2 + b4d2 + b2c4 + 10b2c2d2 + b2d4 + c6 + c4d2 − c2d4 − d6 ,

D = − 4(b2c2a8 − b2d2a8 + c2d2a8 − b2c4a6 − b2d4a6 + c2d4a6 + b4c2a6 − b4d2a6 − c4d2a6 + 6b2c2d2a6−
− b2c6a4 + b2d6a4 − c2d6a4 − 6b4c4a4 − 6b4d4a4 − 6c4d4a4 + 2b2c2d4a4 − b6c2a4 + b6d2a4 − c6d2a4−
− 2b2c4d2a4 + 2b4c2d2a4 + b2c8a2 + b2d8a2 − c2d8a2 + b4c6a2 − b4d6a2 − c4d6a2 + 6b2c2d6a2−
− b6c4a2 − b6d4a2 + c6d4a2 + 2b2c4d4a2 − 2b4c2d4a2 − b8c2a2 + b8d2a2 + c8d2a2 + 6b2c6d2a2+

+ 2b4c4d2a2 + 6b6c2d2a2 + b2c2d8 + b2c4d6 − b4c2d6 − b2c6d4 − 6b4c4d4 − b6c2d4 − b2c8d2−
− b4c6d2 + b6c4d2 + b8c2d2) ,

E = − 4(ad− bc)(ad+ bc)(ac− bd)(ac+ bd)(ab− cd)(ab+ cd)(a2 + b2 − c2 − d2)(a2 − b2 − c2 + d2)

(a2 + b2 + c2 + d2) .

One obtains then an explicit affine expression for the elliptic fibration ϕY as:

v2 = ( u−A(t) ) ( u−B(t) )
(
C(t) · u2 +Du+ E

)
(91)

23



5.6 Adjustments to Formula (91)

Next, we shall perform a series of transformations on the formula in expression (91) with the goal of making a
comparison with (72). First, we operate a change in the affine coordinates (u, v) setting

u1 = 16
(
C(t)A(t)2 +DA(t) + E

)
· u−B(t)

u−A(t)

v1 = 64
(
C(t)A(t)2 +DA(t) + E

)
· (A(t)−B(t)) · v

(u−A(t))2
.

Intuitively, this operation amounts to sending A(t) to infinity and B(t) to zero. One obtains:

v2
1 = u3

1 +M(t)u2
1 +N(t)u1 (92)

where:

M(t) = − ( 2C(t)A(t)B(t) +DA(t) +DB(t) + 2E ) ,

N(t) =
(
C(t)A(t)2 +DA(t) + E

) (
C(t)B(t)2 +DB(t) + E

)
.

An explicit evaluation of the above expressions gives:

M(t) = − 2
(
a2 − b2 + c2 − d2

)3 (
t3 +M2t

2 +M1t+M0

)
,

N(t) =
(
a2 − b2 + c2 − d2

)6
t(t+N1)(t+N2)(t+N3)(t+N4)(t+N5) ,

with coefficients as follows:

M0 = − 8(a9bcd− 4a6b2c2d2 − 2a5b5cd− 2a5bc5d− 2a5bcd5 + 4a4b4c4 + 4a4b4d4 + 4a4c4d4 + 8a3b3c3d3−
− 4a2b6c2d2 − 4a2b2c6d2 − 4a2b2c2d6 + ab9cd− 2ab5c5d− 2ab5cd5 + abc9d− 2abc5d5 + abcd9 + 4b4c4d4)

M1 = a8 − 32a5bcd− 2a4b4 − 2a4c4 − 2a4d4 + 136a2b2c2d2 − 32ab5cd− 32abc5d− 32abcd5 + b8 − 2b4c4−
− 2b4d4 + c8 − 2c4d4 + d8

M2 = 2(a4 + b4 + c4 + d4 − 12abcd)

N1 = − 16abcd

N2 = (a− b− c− d)(a+ b+ c− d)(a+ b− c+ d)(a− b+ c+ d)

N3 = (a2 − 2ab+ b2 + c2 − 2cd+ d2)(a2 + 2ab+ b2 + c2 + 2cd+ d2)

N4 = (a2 + b2 − 2ac+ c2 − 2bd+ d2)(a2 + b2 + 2ac+ c2 + 2bd+ d2)

N5 = (a2 + b2 − 2bc+ c2 − 2ad+ d2)(a2 + b2 + 2bc+ c2 + 2ad+ d2)

Next, we perform a change in affine coordinates, by setting u2 = q2u1, v2 = q3v1, where q ∈ C∗ is chosen such
q2 = 2533(a2 − b2 + c2 − d2)−3. Note that a2 − b2 + c2 − d2 6= 0, as the expression is a factor in (79). We also
choose to reparametrize the quintic pencil with a new parameter ε = 6t + 2M2. In this context, formula (92)
clears miraculously:

v2
2 = u3

2 + M̃(ε) · u2
2 + Ñ(ε) · u2 (93)

with:

M̃(ε) = − 8
(
ε3 − 122P8ε− 16P12

)
Ñ(ε) = 16

(
ε6 − 24P8ε

4 − 32P12ε
3 + 144P 2

8 ε
2 + 384P20ε+ 256P24

)
,

where the terms P2, P8, P12, P20, P24 are homogeneous polynomials in the fundamental theta constants a, b, c, d.
The precise form of P2, P8, P12, P20, P24 is given in the appendix Section 6.1.

5.7 Matching of the Two Interpretations

Comparing (72) and (93), one obtains that the two affine forms describe isomorphic elliptic fibration if and only
if the following identities hold, up to a common weighted scaling of type (2, 3, 5, 6):

α = 24P8

β = 26P12

γ = 210 · 3 · (P20 − P8P12)

δ = 212
(
P 2

12 − P24

)
.
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Via identities (96) and (97) the above provides the following matching of weighted points in WP(2, 3, 5, 6):

[ α, β, γ, δ ] =
[

24P8, 26P12, −21435Q20, 21635Q24

]
. (94)

After taking into account formulas (39), identity (94) becomes:

[ α, β, γ, δ ] =
[
E4, E6, 21235C10, 21236C12

]
. (95)

This completes the proof of Theorem 3.5.

6 Appendix

During the computation presented in this paper, a few special polynomials played an important role. We include
their precise form in this appendix section. The homogeneous polynomials of this section have as parameters
the four fundamental theta constants a, b, c, d of Section 5.2. The polynomials presented below are available in
electronic Mathematica format at http://www.arch.umsl.edu/˜clingher/siegel-paper/Mathematica/.

6.1 Special Polynomials : P2, P8, P12, P20, P24, Q20, Q24

P2 = a2 + b2 + c2 + d2

P8 = a8 + 14a4b4 + 14a4c4 + 14a4d4 + 168a2b2c2d2 + b8 + 14b4c4 + 14b4d4 + c8 + 14c4d4 + d8

P12 = a12 − 33a8b4 − 33a8c4 − 33a8d4 + 792a6b2c2d2 − 33a4b8 + 330a4b4c4 + 330a4b4d4 − 33a4c8+

+ 330a4c4d4 − 33a4d8 + 792a2b6c2d2 + 792a2b2c6d2 + 792a2b2c2d6 + b12 − 33b8c4 − 33b8d4 − 33b4c8+

+ 330b4c4d4 − 33b4d8 + c12 − 33c8d4 − 33c4d8 + d12

P20 = a20 − 19b4a16 − 19c4a16 − 19d4a16 − 336b2c2d2a14 − 494b8a12 − 494c8a12 − 494d8a12 + 716b4c4a12+

+ 716b4d4a12 + 716c4d4a12 + 7632b2c2d6a10 + 7632b2c6d2a10 + 7632b6c2d2a10 − 494b12a8 − 494c12a8−
− 494d12a8 + 1038b4c8a8 + 1038b4d8a8 + 1038c4d8a8 + 1038b8c4a8 + 1038b8d4a8 + 1038c8d4a8+

+ 129012b4c4d4a8 + 7632b2c2d10a6 + 106848b2c6d6a6 + 106848b6c2d6a6 + 7632b2c10d2a6+

+ 106848b6c6d2a6 + 7632b10c2d2a6 − 19b16a4 − 19c16a4 − 19d16a4 + 716b4c12a4 + 716b4d12a4+

+ 716c4d12a4 + 1038b8c8a4 + 1038b8d8a4 + 1038c8d8a4 + 129012b4c4d8a4 + 716b12c4a4 + 716b12d4a4+

+ 716c12d4a4 + 129012b4c8d4a4 + 129012b8c4d4a4 − 336b2c2d14a2 + 7632b2c6d10a2 + 7632b6c2d10a2+

+ 7632b2c10d6a2 + 106848b6c6d6a2 + 7632b10c2d6a2 − 336b2c14d2a2 + 7632b6c10d2a2 + 7632b10c6d2a2−
− 336b14c2d2a2 + b20 + c20 + d20 − 19b4c16 − 19b4d16 − 19c4d16 − 494b8c12 − 494b8d12 − 494c8d12+

+ 716b4c4d12 − 494b12c8 − 494b12d8 − 494c12d8 + 1038b4c8d8 + 1038b8c4d8 − 19b16c4 − 19b16d4−
− 19c16d4 + 716b4c12d4 + 1038b8c8d4 + 716b12c4d4

Q20 = (bc− ad)(ad+ bc)(bd− ac)(ac+ bd)(ab− cd)(ab+ cd)(a2 + b2 − c2 − d2)(−a2 + b2 + c2 − d2)

(−a2 + b2 − c2 + d2)(a2 + b2 + c2 + d2)

P24 = (a4 − 12abcd+ b4 + c4 + d4)(a4 + 12abcd+ b4 + c4 + d4)

(a4 − 6a2b2 − 6a2c2 − 6a2d2 + b4 − 6b2c2 − 6b2d2 + c4 − 6c2d2 + d4)

(a4 − 6a2b2 + 6a2c2 + 6a2d2 + b4 + 6b2c2 + 6b2d2 + c4 − 6c2d2 + d4)

(a4 + 6a2b2 − 6a2c2 + 6a2d2 + b4 + 6b2c2 − 6b2d2 + c4 + 6c2d2 + d4)

(a4 + 6a2b2 + 6a2c2 − 6a2d2 + b4 − 6b2c2 + 6b2d2 + c4 + 6c2d2 + d4)
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Q24 = b2c2d2a18 + 2b4c4a16 + 2b4d4a16 + 2c4d4a16 − 12b2c2d6a14 − 12b2c6d2a14 − 12b6c2d2a14 − 2b4c8a12−
− 2b4d8a12 − 2c4d8a12 − 2b8c4a12 − 2b8d4a12 − 2c8d4a12 + 76b4c4d4a12 + 22b2c2d10a10 − 52b2c6d6a10−
− 52b6c2d6a10 + 22b2c10d2a10 − 52b6c6d2a10 + 22b10c2d2a10 − 2b4c12a8 − 2b4d12a8 − 2c4d12a8+

+ 36b8c8a8 + 36b8d8a8 + 36c8d8a8 + 36b4c4d8a8 − 2b12c4a8 − 2b12d4a8 − 2c12d4a8 + 36b4c8d4a8+

+ 36b8c4d4a8 − 12b2c2d14a6 − 52b2c6d10a6 − 52b6c2d10a6 − 52b2c10d6a6 − 8b6c6d6a6 − 52b10c2d6a6−
− 12b2c14d2a6 − 52b6c10d2a6 − 52b10c6d2a6 − 12b14c2d2a6 + 2b4c16a4 + 2b4d16a4 + 2c4d16a4 − 2b8c12a4−
− 2b8d12a4 − 2c8d12a4 + 76b4c4d12a4 − 2b12c8a4 − 2b12d8a4 − 2c12d8a4 + 36b4c8d8a4 + 36b8c4d8a4+

+ 2b16c4a4 + 2b16d4a4 + 2c16d4a4 + 76b4c12d4a4 + 36b8c8d4a4 + 76b12c4d4a4 + b2c2d18a2 − 12b2c6d14a2−
− 12b6c2d14a2 + 22b2c10d10a2 − 52b6c6d10a2 + 22b10c2d10a2 − 12b2c14d6a2 − 52b6c10d6a2 − 52b10c6d6a2−
− 12b14c2d6a2 + b2c18d2a2 − 12b6c14d2a2 + 22b10c10d2a2 − 12b14c6d2a2 + b18c2d2a2 + 2b4c4d16−
− 2b4c8d12 − 2b8c4d12 − 2b4c12d8 + 36b8c8d8 − 2b12c4d8 + 2b4c16d4 − 2b8c12d4 − 2b12c8d4 + 2b16c4d4

The above polynomials satisfy the following relations:

P20 − P8 · P12 = −2434Q20 (96)

P 2
12 − P24 = 24 · 35 ·Q24 (97)

6.2 Coefficients of the Quintic QIN2(x, y, z)

k500 = = 0

k050 = − 8(bc+ ad)2(ab− cd)3(a2 + b2 − c2 − d2)(−a2 + b2 − c2 + d2)2

k005 = 0

k410 = 4(bc+ ad)(ac+ bd)3(a2 + b2 − c2 − d2)2(−a2 + b2 − c2 + d2)2

k401 = 16(bc− ad)3(bc+ ad)(ac+ bd)2(a2 + b2 − c2 − d2)(a2 + b2 + c2 + d2)

k140 = 4(bc+ ad)(ab− cd)2(a2 + b2 − c2 − d2)(−a2 + b2 − c2 + d2)2(a3b+ ab3 − 7abc2 − 7a2cd−
− 7b2cd+ c3d− 7abd2 + cd3)

k041 = − 16(bc+ ad)(ab− cd)3(a2 + b2 − c2 − d2)(−a2 + b2 − c2 + d2)(a3c− 2ab2c+ ac3 − 2a2bd+

+ b3d− 2bc2d− 2acd2 + bd3)

k104 = 0

k014 = 0

k320 = 4(bc+ ad)(ac+ bd)2(a2 + b2 − c2 − d2)(−a2 + b2 − c2 + d2)2(3a3b+ 3ab3 − 5abc2 − 5a2cd−
− 5b2cd+ 3c3d− 5abd2 + 3cd3)

k302 = − 16(−bc+ ad)2(bc+ ad)(ac+ bd)2(a2 + b2 + c2 + d2)(a3b+ ab3 − 3abc2 + 3a2cd+ 3b2cd−
− c3d− 3abd2 − cd3)

k230 = 12(bc+ ad)(ac+ bd)(ab− cd)(a2 + b2 − c2 − d2)(−a2 + b2 − c2 + d2)2(a3b+ ab3 − 3abc2−
− 3a2cd− 3b2cd+ c3d− 3abd2 + cd3)

k032 = − 8(−ac+ bd)(ab− cd)3(a2 + b2 − c2 − d2)(−a2 + b2 − c2 + d2)(a3c− 5ab2c+ ac3 − 5a2bd+

+ b3d− 5bc2d− 5acd2 + bd3)

k203 = − 32(−bc+ ad)2(bc+ ad)(ac− bd)(ac+ bd)2(ab+ cd)(a2 + b2 + c2 + d2)

k023 = 16(−ac+ bd)2(ab− cd)3(ab+ cd)(a2 + b2 − c2 − d2)(−a2 + b2 − c2 + d2)
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k311 = 4(ac+ bd)(−2a11bc2 + a9b3c2 + 4a7b5c2 − 2a5b7c2 − 2a3b9c2 + ab11c2 + a9bc4 − 6a7b3c4+

+ 12a5b5c4 + 30a3b7c4 + 11ab9c4 + 4a7bc6 + 4a5b3c6 − 24a3b5c6 − 4ab7c6 − 2a5bc8 + 14a3b3c8−
− 12ab5c8 − 2a3bc10 + 3ab3c10 + abc12 − a12cd+ 3a8b4cd− 3a4b8cd+ b12cd+ 2a10c3d+ 3a8b2c3d−
− 12a6b4c3d− 22a4b6c3d− 6a2b8c3d+ 3b10c3d+ 2a8c5d+ 14a6b2c5d− 14a4b4c5d− 38a2b6c5d−
− 12b8c5d− 4a6c7d+ 4a4b2c7d+ 32a2b4c7d− 4b6c7d− a4c9d− 6a2b2c9d+ 11b4c9d+ 2a2c11d+

+ b2c11d− a11bd2 + 2a9b3d2 + 2a7b5d2 − 4a5b7d2 − a3b9d2 + 2ab11d2 + 6a9bc2d2 − 4a7b3c2d2+

+ 4a3b7c2d2 − 6ab9c2d2 − 4a7bc4d2 + 44a5b3c4d2 + 20a3b5c4d2 + 32ab7c4d2 − 14a5bc6d2+

+ 4a3b3c6d2 − 38ab5c6d2 − 3a3bc8d2 − 6ab3c8d2 − 3a10cd3 + 6a8b2cd3 + 22a6b4cd3 + 12a4b6cd3−
− 3a2b8cd3 − 2b10cd3 − 14a8c3d3 − 4a6b2c3d3 + 4a2b6c3d3 + 14b8c3d3 − 4a6c5d3 − 44a4b2c5d3+

+ 20a2b4c5d3 − 24b6c5d3 + 6a4c7d3 + 4a2b2c7d3 + 30b4c7d3 − a2c9d3 − 2b2c9d3 − 11a9bd4−
− 30a7b3d4 − 12a5b5d4 + 6a3b7d4 − ab9d4 − 32a7bc2d4 − 20a5b3c2d4 − 44a3b5c2d4 + 4ab7c2d4+

+ 14a5bc4d4 − 14ab5c4d4 + 12a3bc6d4 − 22ab3c6d4 − 3abc8d4 + 12a8cd5 + 38a6b2cd5 + 14a4b4cd5−
− 14a2b6cd5 − 2b8cd5 + 24a6c3d5 − 20a4b2c3d5 + 44a2b4c3d5 + 4b6c3d5 − 12a4c5d5 + 12b4c5d5−
− 4a2c7d5 − 2b2c7d5 + 4a7bd6 + 24a5b3d6 − 4a3b5d6 − 4ab7d6 + 38a5bc2d6 − 4a3b3c2d6 + 14ab5c2d6+

+ 22a3bc4d6 − 12ab3c4d6 + 4a6cd7 − 32a4b2cd7 − 4a2b4cd7 + 4b6cd7 − 30a4c3d7 − 4a2b2c3d7−
− 6b4c3d7 + 2a2c5d7 + 4b2c5d7 + 12a5bd8 − 14a3b3d8 + 2ab5d8 + 6a3bc2d8 + 3ab3c2d8 + 3abc4d8−
− 11a4cd9 + 6a2b2cd9 + b4cd9 + 2a2c3d9 + b2c3d9 − 3a3bd10 + 2ab3d10 − a2cd11 − 2b2cd11 − abd12)

k131 = 4(ab− cd)2(−2a10bc+ a8b3c+ 4a6b5c− 2a4b7c− 2a2b9c+ b11c+ 9a8bc3 − 22a6b3c3 − 4a4b5c3+

+ 30a2b7c3 + 3b9c3 + 12a6bc5 + 20a4b3c5 − 64a2b5c5 − 4b7c5 − 10a4bc7 + 46a2b3c7 − 4b5c7−
− 10a2bc9 + 3b3c9 + bc11 − a11d+ 2a9b2d+ 2a7b4d− 4a5b6d− a3b8d+ 2ab10d+ 10a9c2d−
− 22a7b2c2d− 6a5b4c2d+ 30a3b6c2d+ 4ab8c2d+ 10a7c4d+ 18a5b2c4d− 66a3b4c4d− 6ab6c4d−
− 12a5c6d+ 46a3b2c6d− 6ab4c6d− 9a3c8d+ 4ab2c8d+ 2ac10d− 4a8bcd2 − 30a6b3cd2 + 6a4b5cd2+

+ 22a2b7cd2 − 10b9cd2 − 46a6bc3d2 + 18a4b3c3d2 − 26a2b5c3d2 + 46b7c3d2 − 18a4bc5d2−
− 26a2b3c5d2 − 64b5c5d2 + 22a2bc7d2 + 30b3c7d2 − 2bc9d2 − 3a9d3 − 30a7b2d3 + 4a5b4d3+

+ 22a3b6d3 − 9ab8d3 − 46a7c2d3 + 26a5b2c2d3 − 18a3b4c2d3 + 46ab6c2d3 − 20a5c4d3 − 18a3b2c4d3−
− 66ab4c4d3 + 22a3c6d3 + 30ab2c6d3 − ac8d3 + 6a6bcd4 + 66a4b3cd4 − 18a2b5cd4 − 10b7cd4+

+ 66a4bc3d4 + 18a2b3c3d4 + 20b5c3d4 + 6a2bc5d4 − 4b3c5d4 − 2bc7d4 + 4a7d5 + 64a5b2d5−
− 20a3b4d5 − 12ab6d5 + 64a5c2d5 + 26a3b2c2d5 + 18ab4c2d5 + 4a3c4d5 − 6ab2c4d5 − 4ac6d5+

+ 6a4bcd6 − 46a2b3cd6 + 12b5cd6 − 30a2bc3d6 − 22b3c3d6 + 4bc5d6 + 4a5d7 − 46a3b2d7 + 10ab4d7−
− 30a3c2d7 − 22ab2c2d7 + 2ac4d7 − 4a2bcd8 + 9b3cd8 + bc3d8 − 3a3d9 + 10ab2d9 + 2ac2d9−
− 2bcd10 − ad11)

k113 = (ac− bd)(ab− cd)(a12 − 2a10b2 − a8b4 + 4a6b6 − a4b8 − 2a2b10 + b12 − 2a10c2 + 10a8b2c2 + 12a6b4c2−
− 12a4b6c2 − 10a2b8c2 + 2b10c2 − a8c4 + 12a6b2c4 + 74a4b4c4 + 12a2b6c4 − b8c4 + 4a6c6 − 12a4b2c6+

+ 12a2b4c6 − 4b6c6 − a4c8 − 10a2b2c8 − b4c8 − 2a2c10 + 2b2c10 + c12 − 8a9bcd+ 16a5b5cd− 8ab9cd+

+ 16a5bc5d+ 16ab5c5d− 8abc9d+ 2a10d2 − 10a8b2d2 − 12a6b4d2 + 12a4b6d2 + 10a2b8d2 − 2b10d2−
− 10a8c2d2 − 72a6b2c2d2 − 28a4b4c2d2 − 72a2b6c2d2 − 10b8c2d2 − 12a6c4d2 − 28a4b2c4d2+

+ 28a2b4c4d2 + 12b6c4d2 + 12a4c6d2 − 72a2b2c6d2 + 12b4c6d2 + 10a2c8d2 − 10b2c8d2 − 2c10d2−
− 64a3b3c3d3 − a8d4 + 12a6b2d4 + 74a4b4d4 + 12a2b6d4 − b8d4 + 12a6c2d4 + 28a4b2c2d4−
− 28a2b4c2d4 − 12b6c2d4 + 74a4c4d4 − 28a2b2c4d4 + 74b4c4d4 + 12a2c6d4 − 12b2c6d4 − c8d4+

+ 16a5bcd5 + 16ab5cd5 + 16abc5d5 − 4a6d6 + 12a4b2d6 − 12a2b4d6 + 4b6d6 + 12a4c2d6 − 72a2b2c2d6+

+ 12b4c2d6 − 12a2c4d6 + 12b2c4d6 + 4c6d6 − a4d8 − 10a2b2d8 − b4d8 − 10a2c2d8 + 10b2c2d8 − c4d8−
− 8abcd9 + 2a2d10 − 2b2d10 − 2c2d10 + d12)

27



k221 = 8(ab− cd)(2a11bc2 − a9b3c2 − 4a7b5c2 + 2a5b7c2 + 2a3b9c2 − ab11c2 − 3a9bc4 + 10a7b3c4−
− 4a5b5c4 − 22a3b7c4 − 5ab9c4 − 6a7bc6 − 8a5b3c6 + 34a3b5c6 + 4ab7c6 + 4a5bc8 − 22a3b3c8+

+ 6ab5c8 + 4a3bc10 − 3ab3c10 − abc12 + a12cd− 3a8b4cd+ 3a4b8cd− b12cd− 4a10c3d+ a8b2c3d+

+ 8a6b4c3d− 6a4b6c3d− 12a2b8c3d− 3b10c3d− 4a8c5d− 18a6b2c5d+ 18a4b4c5d+ 38a2b6c5d+

+ 6b8c5d+ 6a6c7d− 12a4b2c7d− 26a2b4c7d+ 4b6c7d+ 3a4c9d+ 6a2b2c9d− 5b4c9d− 2a2c11d−
− b2c11d+ a11bd2 − 2a9b3d2 − 2a7b5d2 + 4a5b7d2 + a3b9d2 − 2ab11d2 − 6a9bc2d2 + 16a7b3c2d2−
− 16a3b7c2d2 + 6ab9c2d2 + 12a7bc4d2 − 34a5b3c4d2 + 24a3b5c4d2 − 26ab7c4d2 + 18a5bc6d2−
− 8a3b3c6d2 + 38ab5c6d2 − a3bc8d2 − 12ab3c8d2 + 3a10cd3 + 12a8b2cd3 + 6a6b4cd3 − 8a4b6cd3−
− a2b8cd3 + 4b10cd3 + 22a8c3d3 + 8a6b2c3d3 − 8a2b6c3d3 − 22b8c3d3 + 8a6c5d3 + 34a4b2c5d3+

+ 24a2b4c5d3 + 34b6c5d3 − 10a4c7d3 − 16a2b2c7d3 − 22b4c7d3 + a2c9d3 + 2b2c9d3 + 5a9bd4+

+ 22a7b3d4 + 4a5b5d4 − 10a3b7d4 + 3ab9d4 + 26a7bc2d4 − 24a5b3c2d4 + 34a3b5c2d4 − 12ab7c2d4−
− 18a5bc4d4 + 18ab5c4d4 − 8a3bc6d4 − 6ab3c6d4 + 3abc8d4 − 6a8cd5 − 38a6b2cd5 − 18a4b4cd5+

+ 18a2b6cd5 + 4b8cd5 − 34a6c3d5 − 24a4b2c3d5 − 34a2b4c3d5 − 8b6c3d5 + 4a4c5d5 − 4b4c5d5+

+ 4a2c7d5 + 2b2c7d5 − 4a7bd6 − 34a5b3d6 + 8a3b5d6 + 6ab7d6 − 38a5bc2d6 + 8a3b3c2d6 − 18ab5c2d6+

+ 6a3bc4d6 + 8ab3c4d6 − 4a6cd7 + 26a4b2cd7 + 12a2b4cd7 − 6b6cd7 + 22a4c3d7 + 16a2b2c3d7+

+ 10b4c3d7 − 2a2c5d7 − 4b2c5d7 − 6a5bd8 + 22a3b3d8 − 4ab5d8 + 12a3bc2d8 + ab3c2d8 − 3abc4d8+

+ 5a4cd9 − 6a2b2cd9 − 3b4cd9 − 2a2c3d9 − b2c3d9 + 3a3bd10 − 4ab3d10 + a2cd11 + 2b2cd11 + abd12)

k212 = (ac+ bd)(5a12bc− 6a10b3c− 9a8b5c+ 12a6b7c+ 3a4b9c− 6a2b11c+ b13c− 6a10bc3 + 18a8b3c3−
− 20a6b5c3 − 84a4b7c3 − 38a2b9c3 + 2b11c3 − 9a8bc5 − 4a6b3c5 + 178a4b5c5 + 60a2b7c5 − b9c5+

+ 12a6bc7 − 52a4b3c7 + 76a2b5c7 − 4b7c7 + 3a4bc9 − 22a2b3c9 − b5c9 − 6a2bc11 + 2b3c11 + bc13+

+ a13d− 6a11b2d+ 3a9b4d+ 12a7b6d− 9a5b8d− 6a3b10d+ 5ab12d− 6a11c2d− 6a9b2c2d+

+ 12a7b4c2d+ 60a5b6c2d+ 58a3b8c2d+ 10ab10c2d+ 3a9c4d− 4a7b2c4d+ 10a5b4c4d−
− 132a3b6c4d− 37ab8c4d+ 12a7c6d+ 28a5b2c6d− 148a3b4c6d− 84ab6c6d− 9a5c8d+ 42a3b2c8d−
− 37ab4c8d− 6a3c10d+ 10ab2c10d+ 5ac12d+ 10a10bcd2 + 58a8b3cd2 + 60a6b5cd2 + 12a4b7cd2−
− 6a2b9cd2 − 6b11cd2 + 42a8bc3d2 − 56a6b3c3d2 + 60a4b5c3d2 − 88a2b7c3d2 − 22b9c3d2 + 28a6bc5d2+

+ 60a4b3c5d2 + 476a2b5c5d2 + 76b7c5d2 − 4a4bc7d2 − 88a2b3c7d2 + 60b5c7d2 − 6a2bc9d2 − 38b3c9d2−
− 6bc11d2 + 2a11d3 − 38a9b2d3 − 84a7b4d3 − 20a5b6d3 + 18a3b8d3 − 6ab10d3 − 22a9c2d3−
− 88a7b2c2d3 + 60a5b4c2d3 − 56a3b6c2d3 + 42ab8c2d3 − 52a7c4d3 + 60a5b2c4d3 − 340a3b4c4d3−
− 148ab6c4d3 − 4a5c6d3 − 56a3b2c6d3 − 132ab4c6d3 + 18a3c8d3 + 58ab2c8d3 − 6ac10d3 − 37a8bcd4−
− 132a6b3cd4 + 10a4b5cd4 − 4a2b7cd4 + 3b9cd4 − 148a6bc3d4 − 340a4b3c3d4 + 60a2b5c3d4 − 52b7c3d4+

+ 10a4bc5d4 + 60a2b3c5d4 + 178b5c5d4 + 12a2bc7d4 − 84b3c7d4 + 3bc9d4 − a9d5 + 60a7b2d5+

+ 178a5b4d5 − 4a3b6d5 − 9ab8d5 + 76a7c2d5 + 476a5b2c2d5 + 60a3b4c2d5 + 28ab6c2d5 + 178a5c4d5+

+ 60a3b2c4d5 + 10ab4c4d5 − 20a3c6d5 + 60ab2c6d5 − 9ac8d5 − 84a6bcd6 − 148a4b3cd6 + 28a2b5cd6+

+ 12b7cd6 − 132a4bc3d6 − 56a2b3c3d6 − 4b5c3d6 + 60a2bc5d6 − 20b3c5d6 + 12bc7d6 − 4a7d7+

+ 76a5b2d7 − 52a3b4d7 + 12ab6d7 + 60a5c2d7 − 88a3b2c2d74ab4c2d7 − 84a3c4d7 + 12ab2c4d7+

+ 12ac6d7 − 37a4bcd8 + 42a2b3cd8 − 9b5cd8 + 58a2bc3d8 + 18b3c3d8 − 9bc5d8 − a5d9 − 22a3b2d9+

+ 3ab4d9 − 38a3c2d9 − 6ab2c2d9 + 3ac4d9 + 10a2bcd10 − 6b3cd10 − 6bc3d10 + 2a3d11−
− 6ab2d11 − 6ac2d11 + 5bcd12 + ad13)
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k122 = (ab− cd)(5a12bc− 6a10b3c− 9a8b5c+ 12a6b7c+ 3a4b9c− 6a2b11c+ b13c− 14a10bc3 + 58a8b3c3+

+ 4a6b5c3 − 92a4b7c3 − 22a2b9c3 + 2b11c3 − 17a8bc5 − 20a6b3c5 + 234a4b5c5 + 28a2b7c5 − b9c5+

+ 20a6bc7 − 108a4b3c7 + 28a2b5c7 − 4b7c7 + 11a4bc9 − 22a2b3c9 − b5c9 − 6a2bc11 + 2b3c11 + bc13+

+ a13d− 6a11b2d+ 3a9b4d+ 12a7b6d− 9a5b8d− 6a3b10d+ 5ab12d− 6a11c2d+ 34a9b2c2d−
− 12a7b4c2d− 12a5b6c2d+ 50a3b8c2d+ 10ab10c2d+ 11a9c4d− 4a7b2c4d+ 146a5b4c4d− 52a3b6c4d−
− 5ab8c4d+ 20a7c6d+ 4a5b2c6d− 36a3b4c6d− 20ab6c6d− 17a5c8d+ 58a3b2c8d− 5ab4c8d−
− 14a3c10d+ 10ab2c10d+ 5ac12d+ 10a10bcd2 + 50a8b3cd2 − 12a6b5cd2 − 12a4b7cd2 + 34a2b9cd2−
− 6b11cd2 + 58a8bc3d2 − 120a6b3c3d2 + 12a4b5c3d2 − 248a2b7c3d2 − 22b9c3d2 + 4a6bc5d2−
− 12a4b3c5d2 + 332a2b5c5d2 + 28b7c5d2 − 4a4bc7d2 − 248a2b3c7d2 + 28b5c7d2 + 34a2bc9d2−
− 22b3c9d2 − 6bc11d2 + 2a11d3 − 22a9b2d3 − 92a7b4d3 + 4a5b6d3 + 58a3b8d3 − 14ab10d3−
− 22a9c2d3 − 248a7b2c2d3 + 12a5b4c2d3 − 120a3b6c2d3 + 58ab8c2d3 − 108a7c4d3 − 12a5b2c4d3−
− 100a3b4c4d3 − 36ab6c4d3 − 20a5c6d3 − 120a3b2c6d3 − 52ab4c6d3 + 58a3c8d3 + 50ab2c8d3−
− 6ac10d3 − 5a8bcd4 − 52a6b3cd4 + 146a4b5cd4 − 4a2b7cd4 + 11b9cd4 − 36a6bc3d4 − 100a4b3c3d4−
− 12a2b5c3d4 − 108b7c3d4 + 146a4bc5d4 + 12a2b3c5d4 + 234b5c5d4 − 12a2bc7d4 − 92b3c7d4 + 3bc9d4−
− a9d5 + 28a7b2d5 + 234a5b4d5 − 20a3b6d5 − 17ab8d5 + 28a7c2d5 + 332a5b2c2d5 − 12a3b4c2d5+

+ 4ab6c2d5 + 234a5c4d5 + 12a3b2c4d5 + 146ab4c4d5 + 4a3c6d5 − 12ab2c6d5 − 9ac8d5 − 20a6bcd6−
− 36a4b3cd6 + 4a2b5cd6 + 20b7cd6 − 52a4bc3d6 − 120a2b3c3d6 − 20b5c3d6 − 12a2bc5d6 + 4b3c5d6+

+ 12bc7d6 − 4a7d7 + 28a5b2d7 − 108a3b4d7 + 20ab6d7 + 28a5c2d7 − 248a3b2c2d7 − 4ab4c2d7−
− 92a3c4d7 − 12ab2c4d7 + 12ac6d7 − 5a4bcd8 + 58a2b3cd8 − 17b5cd8 + 50a2bc3d8 + 58b3c3d8−
− 9bc5d8 − a5d9 − 22a3b2d9 + 11ab4d9 − 22a3c2d9 + 34ab2c2d9 + 3ac4d9 + 10a2bcd10 − 14b3cd10−
− 6bc3d10 + 2a3d11 − 6ab2d11 − 6ac2d11 + 5bcd12 + ad13)
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[32] D. Mumford, Tata Lectures on Theta II. Progress in Mathematics, vol. 43, Birkhäuser, 1984.
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