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Abstract: We consider certain En-type root lattices embedded within the standard Lorentzian lattice
Zn+1 (3 ≤ n ≤ 8) and study their discrete geometry from the point of view of del Pezzo surface
geometry. The lattice Zn+1 decomposes as a disjoint union of affine hyperplanes which satisfy
a certain periodicity. We introduce the notions of line vectors, rational conic vectors, and rational
cubics vectors and their relations to E-polytopes. We also discuss the relation between these special
vectors and the combinatorics of the Gosset polytopes of type (n− 4)21.
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1. Introduction

Lattices and their related discrete geometry appear naturally in the study of algebraic surfaces.
In this context, the Picard group Pic(S) of a del Pezzo surface S is a typical example of Lorentzian
lattice, determining, in turn, a root lattice with Weyl group W of E-type [1–7]. Special divisor classes in
Pic S, such as lines, rulings and exceptional systems are of interest [5–7]. The convex hull of the set of
lines is a Gosset polytope and some special divisor classes correspond to the facets of these Gosset
polytopes [3,5]. Such divisor classes were studied in [6]. The present article builds on this work.

Consider the Lorentzian lattice Zn+1 (3 ≤ n ≤ 8) with signature (1, n), identified geometrically
with H2(S,Z) where S is a general del Pezzo surface of degree 9− n. This lattice carries a canonical
element Kn with length (Kn, Kn) = 9− n. The orthogonal sub-lattice K⊥n turns out to be a root lattice
of En-type, in the terminology of [3]. We study the affine lattice hyperplanes Λa

n consisting of lattice
elements D with (D, Kn) = a. We prove an identification between Λa

n and elements of the discriminant
group

(
K⊥n
)∨

/K⊥n . This fact is used to explain a periodicity appearing in the lattice structure on Λa
n.

Motivated by considerations in [6], we introduce the notions of lines, rational conic vectors and
rational cubics as elements in Zn+1 ⊗Q. These special elements form orbits under the action of the
Weyl group Wn and their lattice structures are and naturally related to the ones of certain En-polytopes,
such as the Gosset polytopes (n− 4)21, 2(n−4)1, 1(n−4)2. We compute the total numbers of these subsets
via theta series associated with root lattices and their duals.

We also consider lattice elements that can be written as sum of lines and study the configurations
of lines analog to the discrete geometry of the Gosset polytopes. As an application, we show that each
root d in K⊥n can be written as a difference of two distinct perpendicular lines.

In the next article, we will consider certain type of K3 surfaces related to del Pezzo surfaces via
the involutive automorphism. The lattice structures of the K3 surfaces are also Lorentzian ones with
Weyl action, and play key roles to understand the geometry of K3 surfaces. We expect the study of
E-polytopes of del Pezzo surfaces can be extended to the discrete geometry of K3 surfaces.

Symmetry 2018, 10, 443; doi:10.3390/sym10100443 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/2073-8994/10/10/443?type=check_update&version=1
http://dx.doi.org/10.3390/sym10100443
http://www.mdpi.com/journal/symmetry


Symmetry 2018, 10, 443 2 of 13

2. Root Lattices and Hyperplanes

Let Zn+1 be the Lorentzian lattice with rank n + 1 and standard basis { ei | 0 ≤ i ≤ n} satisfying

(e0, e0) = 1, (ei, ei) = −1 for i = 1, ..., n, (ei, ej) = 0 for i 6= j .

We denote by (, ) the lattice inner product. We shall refer to (v, v) as the length of the lattice
point v.

Motivated by the geometry of del Pezzo surfaces in algebraic geometry, we consider the following
specific integral vector

Kn := −3e0 + e1 + ... + en

which we shall refer to as the canonical vector. We also restrict the range of the parameter n to 3 ≤ n ≤ 8,
so that Kn has positive length (Kn, Kn) = 9− n.

Let K⊥n ⊂ Zn+1 be the orthogonal complement sub-lattice

K⊥n :=
{

D ∈ Zn+1
∣∣∣ (D, Kn) = 0

}
It follows that the restricted inner product ( . ) on K⊥n is negative definite and K⊥n is in fact a root

lattice (see [3,4]) with a root system given by:

Rn :=
{

D ∈ Zn+1 | (D, D) = −2, (D, Kn) = 0
}

.

The overall number of roots is as given below:

n 3 4 5 6 7 8
|Rn| 12 20 40 72 126 240

Total numbers of the roots of Rn

A set of simple roots in Rn is constructed as:

d0 = e0 − e1 − e2 − e3, di = ei − ei+1, 1 ≤ i ≤ n− 1,

with an associated Dynkin diagram of En-type (see [3,5,6]):

u u u u u
u

r r r
d1 d2 d3 d4 dn−1

d0

Dynkin diagram of En n≥3

We shall therefore refer to the list below as the extended list of En’s:

n 3 4 5 6 7 8
En A1×A2 A4 D5 E6 E7 E8

Again borrowing terminology from algebraic geometry, we shall refer to the product

deg(D) = (D,−Kn)

as the degree of a vector D. The length and degree of a vector D in Zn+1 satisfy the inequality

(D, D) (Kn, Kn) ≤ (D,−Kn)
2 = deg(D)2
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This follows from the Lemma below (the backwards Cauchy-Schwartz in Lorentzian setting).

Lemma 1. Let v in Zn+1 with positive length. Then any D in Zn+1 satisfies,

(D, D) (v, v) ≤ (D, v)2

The equality holds if and only if D and v are scalar multiple of each other.

Proof. Since v has positive length, every point of its orthogonal complement {v}⊥ ⊂ Zn+1 ⊗R has
non-positive length. Hence: (

D− (D, v)
(v, v)

v, D− (D, v)
(v, v)

v
)
≤ 0 .

The needed inequality follows.

Next, we introduce the fixed-degree hyperplanes Λr
n ⊂ Zn+1 defined as

Λr
n :=

{
D ∈ Zn+1

∣∣∣ (D,−Kn) = r
}

.

In particular, Λ0
n is the root lattice K⊥n .

Consider furthermore the subsets Mr
n of Zn+1 ⊗Q defined by

Mr
n :=

r
(Kn, Kn)

Kn + Λr
n .

Lemma 2. The following statements hold: (1) Mr
n is a subset of the dual lattice

(
K⊥n
)∨, (2) For any v ∈ Mr

n,
one has

Mr
n = v + K⊥n = { v + γ | γ ∈ K⊥n } .

Proof. (1) Note that, for each u in Λr
n, we have(

r
(Kn, Kn)

Kn + u, Kn

)
= 0 .

Hence, Mr
n is a subset in Λ0

n ⊗Q. Furthermore, for each w ∈ Λ0
n, we have(

r
(Kn, Kn)

Kn + u, w
)
= (v, w) ∈ Z

One concludes that Mr
n is a subset of the dual lattice

(
K⊥n
)∨

.
(2) Note that, for any two v1 and v2 in Mr

n, v1 − v2 ∈ K⊥n . Thus, for any choice v ∈ Mr
n, we get

Mr
n ⊂ v + K⊥n .

Conversely, for any γ in K⊥n , one verifies:(
v + γ− r

(Kn, Kn)
Kn, −Kn

)
= − (v, Kn) + 0 + r = r .

Moreover:

v + γ− r
(Kn, Kn)

Kn =

(
v− r

(Kn, Kn)
Kn

)
+ γ ∈ Zn+1 .

Hence, one has v + K⊥n ⊂ Mr
n. One concludes Mr

n = v + K⊥n .

We note that Lemma 2 above provides a canonical group morphism:

ϕ : Z→ D(K⊥n )
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which associates to any fixed-degree subset Λr
n a coset v + K⊥n . Here,

D(K⊥n ) =
(

K⊥n
)∨

/K⊥n

denotes the discriminant group of the negative-definite root lattice K⊥n , which is known to be a cyclic
group of order 9− n. One can easily see that the morphism ϕ is surjective.

Let us also note that the choice of v in Mr
n representing the coset may be selected in a canonical

way. Consider the basis of simple roots B = {di ∈ Rn | i = 1, ..., n} of K⊥n , as introduced earlier. Then:

[
(

K⊥n
)∨

: K⊥n ] = det(Gram) = (Kn, Kn) = 9− n

where Gram is the n× n symmetric matrix whose (i, j) entry is given by the pairing (di, dj) of the
corresponding simple roots. Consider, in addition, the following concept, as introduced, for instance,
in [8], Section 4:

Definition 1. The fundamental parallelepiped associated with B is, by definition:

Π(B) :=

{
n

∑
i=1

aidi

∣∣∣∣∣ ai ∈ [0, 1] for each i

}
⊂ K⊥n ⊗R ⊂

(
K⊥n
)∨
⊗R

It follows then (see Lemma 4.2 of [8]) that for each w ∈
(
K⊥n
)∨

one has a unique decomposition

w = uo + vo

where uo ∈ Π(B) ∩
(
K⊥n
)∨

and vo ∈ K⊥n . We then have the following:

Theorem 1. For each r ∈ Z, there exists a unique uo ∈ Π(B) ∩
(
K⊥n
)∨ such that Mr

n = uo + K⊥n .

Proof. We know that each element w in Mr
n has a unique decomposition

w = uo + vo

with uo ∈ Π(B) ∩
(
K⊥n
)∨

and vo ∈ K⊥n . In fact, the element uo is independent of the choice of w.
Indeed, let w and w′ be two elements in Mr

n with decompositions:

w = uo + vo, w′ = u′o + v′o

as above. Then w− w′ ∈ K⊥n and

w− w′ = (uo − u′o) + (vo − v′o) .

By the uniqueness of the decomposition, it follows that uo − u′o = 0. Hence uo = u′o.

Remark 1. Note that the above provides then a one-to-one correspondence between Π(B) ∩
(
K⊥n
)∨ and the

classes of the discriminant group D(K⊥n ) ' Z/(9− n)Z. In particular:∣∣∣∣ Π(B) ∩
(

K⊥n
)∨∣∣∣∣ = |D(K⊥n )| = det(Gram) = 9− n.

The above considerations, in connection with Theorem 1, uncover to the following periodic
feature of the lattice hyperplanes Λr

n.
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Corollary 1. Let r1, r2 ∈ Z with r1 ≡ r2 (mod 9− n). Then Mr1
n = Mr2

n . In particular, one has a canonical
one-to-one (translation) correspondence between Λr1

n and Λr2
n .

We may conclude therefore that the disjoint union

Zn+1 =
⋃

r∈Z
Λr

n

carries a periodicity modulo 9− n. For instance, for each n between 3 and 8, the hyperplane Λ9−n
n is

the translation of the root lattice K⊥n by the lattice point −Kn.

3. Fundamental Lattice Vectors

As already mentioned in the previous section, the action of the Weyl group Wn preserves the
length and degree of a vector D in Zn+1. Therefore, Wn acts on each given subset consisting of integral
vectors in Zn+1 with fixed length and degree.

Following up again on ideas from algebraic geometry, we shall refer to the quantity:

1
2
[ (D, D)− deg(D) ] + 1 =

1
2
[ (D, D) + (D, Kn) ] + 1

as the arithmetic genus of the integral vector D. In particular, by a slight abuse of terminology, we shall
refer to integral vectors D satisfying

deg(D) = (D, D) + 2

as rational. In what follows, we shall study the sets of rational vectors of low positive degrees: 1, 2 and 3.
Certain relations connecting these objects to the theory of semiregular polytopes (as studied in [3,5–7])
will be discussed.

Note that the set of the rational vectors D with deg D = 0 is precisely Rn—the set of roots in K⊥n .

3.1. Lines

We shall refer to vectors l ∈ Zn+1 satisfying deg(l) = 1 and (l, l) = −1 as lines. The set of all lines:

Ln :=
{

l ∈ Zn+1 | (l, l) = (l, Kn) = −1
}

.

is finite and lies within the hyperplane Λ1
n. As discussed in the previous section, one has:

Λ1
n =

(
1

n− 9

)
Kn + M1

n

where M1
n is a K⊥n -coset in

(
K⊥n
)∨

. One obtains:

Ln =

{(
1

n− 9

)
Kn + γ | γ ∈ M1

n with (γ, γ) = −10− n
9− n

}
.

One can determine then the size of the set Ln via the standard arguments of Conway-Slone [9].
The relevant quantity is the coefficient of degree

1 +
1

(Kn, Kn)
=

10− n
9− n

in theta series associated with the dual lattice
(
K⊥n
)∨

of the root lattice K⊥n (which is of En-type).
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For instance, the lines in L7 appear as:

−1
2

K7 + γ

where γ ∈ M1
7 with

(γ, γ) =
3
2

.

The coefficient of degree 3/2 in the theta series of the dual lattice of E7 is 56 (see [5,9]) and hence,
|L7| = 56. Similar arguments led one to the following list:

n 3 4 5 6 7 8
|Ln| 6 10 16 27 56 240

Total numbers of the lines

We note that the above |Ln| list matches with a combinatorial count of a different nature—the
number of vertices of Gosset polytopes (n− 4)21. These are certain n-dimensional (n = 3, 4, 5, 6, 7, 8)
semiregular polytopes discovered by Gosset [10,11]. The Coxeter groups of (n− 4)21 are known to be
of En-type, with associated Coxeter-Dynkin diagram given as follows.

u u u u uh
u

r r r
−1 0 1 n− 4

Coxeter-Dynkin diagram of n21 n 6=3

Note that the vertex figure of (n− 4)21 is (n− 5)21. For n 6= 3, the facets of the (n− 4)21-polytope
consist of regular simplexes αn−1 and crosspolytopes βn−1, but all the lower dimensional subpolytopes
are regular simplexes. Coxeter referred to 421, 321 and 221 as Gosset polytopes but the Gosset polytope
list may be expanded according to our En list. Note that the Gosset polytope (−1)21 has an isosceles
(non-equilateral) triangle as the vertex figure (see [5]).

Connecting with the Conway-Slone theta arguments, one observes (see [5]) that the subset Ln

is acted upon transitively by the Weyl group Wn. Via the Weyl action, one constructs then a Gosset
polytope (n− 4)21 in Λ1

n as a convex hull of Ln in Λ1
n ⊗Q. One obtains:

Theorem 2 (Theorem 4.2 in [5]). The lines of Ln correspond bijectively to the vertices of a Gosset polytope
(n− 4)21 in Λ1

n ⊗Q.

Remark 2. Note, for instance, that, by Corollary 1, Λ1
8 is a translation of the root lattice Λ0

8 = K⊥8 . The lines
in L8 in Λ1

8 are then bijectively matched to the set of roots R8 in Λ0
8. The root polytope (convex hull of R8 in

K⊥8 ⊗Q) is then the Gosset polytope 421.

3.2. Rational Conic Vectors

We shall refer to rational vectors a ∈ Zn+1 with deg(a) = 2 as rational conics. In the context of Del
Pezzo surfaces in algebraic geometry, these lattice vectors are associated with rulings. We shall denote
their set here by:

Conn :=
{

a ∈ Zn+1 | (a, a) = 0, (a, Kn) = −2
}

.

Conn are finite sets. As with the previous discussion, |Conn| may be read via the Conway-Sloane
argument ([5,9]), from the degree 4/(9− n) coefficient of the appropriate theta series of the dual E∨n
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lattice. For example, if we consider n = 8, the root lattice K⊥8 is E8 and hence self-dual. The appropriate
theta series is then:

ΘK⊥8
=

∞

∑
m=0

Nmqm, Nm = 240σ3(
m
2
)

where σr(m) = ∑d|m dr. The elements in Con8 correspond to the lattice points of self-pairing 4/(9−
8) = 4 and hence |Conn| is the coefficient of q4, namely 240(1 + 23) = 2160. In a similar manner,
one computes all |Conn| for 3 ≤ n ≤ 8 as follows:

n 3 4 5 6 7 8
|Conn| 3 5 10 27 126 2160

Total numbers of the rational conics

The rational conic vectors form a single orbit under the action of the Weyl group Wn. They also
correspond to the (n− 1)-crosspolytopes of the Gosset polytope (n− 4)21, which form one of the two
possible types of facets on (n− 4)21. We refer the reader to [5] for the details.

We also note that for each conic vector a can be written as a formal sum:

a = la
1 + la

2.

where la
1, la

2 are two lines satisfying (la
1, la

2) = 1. In terms of the crosspolytope interpretation, the two
lines la

1, la
2 correspond to two antipodal vertices of the (n− 1)-crosspolytope associated with the conic

vector a. Since there are precisely (n− 1) pairs of antipodal vertices in a given (n− 1)-crosspolytope,
it follows that, for each conic vector a, one concludes (see [5]) that there are precisely (n− 1) pairs of
lines la

1, la
2 as above.

Let us also recall the following result:

Lemma 3 (Ref. [5] Lemma 5.6). Let a and l be a rational conic vector and a line in Zn+1, respectively. Then,
one has: (1) The line l corresponds to a vertex of the (n − 1)-crosspolytope associated with a if and only if
(l, a) = 0. (2) Assume a = la

1 + la
2 where la

1 and la
2 are lines. Then the line l corresponds to a vertex of the

(n− 1)-crosspolytope associated with a if and only if (l, la
1) = (l, la

2) = 0.

We also note that Conn is bijectively related to the set of vertices of the polytope 2(n−4)1.
The polytopes 2(n−4)1 (n = 3, 4, 5, 6, 7, 8) are n-dimensional semiregular polytopes whose Coxeter
groups are En, constructed as follows:

u u u u uh
u

r r r
−1 0 1 n− 4

Coxeter-Dynkin diagram of 2(n−4)1 n 6=3
.

The vertex figure of 2(n−4)1 is an (n− 1)-demicube. Moreover, assuming n 6= 3, the facets of
2(n−4)1 are regular either simplexes α(n−1) or semiregular polytopes of type 2(n−5)1. It follows then
(see [7]) that the convex hull of Conn in the hyperplane Λ2

n ⊗Q is 2(n−4)1.

Remark 3. Note that, by Corollary 1 in the n = 7 context, the hyperplane Λ2
7 is in an one-to-one correspondence

with to root lattice Λ0
7 = K⊥7 . Under this mapping, the set of rational conics Con7 in Λ2

7 corresponds (via
a 7→ a + K7) to the set of roots R7. The root polytope (convex hull of R7 in K⊥7 ⊗Q) is then 231, as more
generally stated earlier.
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3.3. Rational Cubic Vectors

We shall refer to rational vectors b in Zn+1 with deg b = 3 as rational cubic vectors. The set of all
such rational cubics

Cubn :=
{

b ∈ Zn+1 | (b, b) = 1, (b, Kn) = −3
}

is a finite sets and its cardinal |Cubn|may again be determined via the Conway-Sloane procedure [5,9]
by finding the coefficient of degree

−1 +
9

(Kn, Kn)
=

9
9− n

in the theta series of dual E∨n lattice. One obtains:

n 3 4 5 6 7 8
|Cubn| 2 5 15 72 576 17520

Total numbers of the rational cubics

The following Lemma of [5] establishes a combinatorial relationship between rational cubic
vectors and configurations of n mutually orthogonal lines.

Lemma 4 (Ref. [5] Theorem 5.3). Let b be a rational cubic vector in Zn+1. One has: (1) If 3 ≤ n ≤ 7,
then 3b + Kn can be written as a sum of n lines l1, l2, · · · ln with (li, lj) = 0 for i 6= j. Conversely, for each
configuration l1, l2, · · · ln of mutually orthogonal lines,

l1 + ... + ln − Kn

3

is a rational cubic vector in Zn+1. (2) Let n = 8. Given any choice of eight mutually orthogonal lines l1, ..., l8,
one has that:

l1 + ... + l8 − K8

3
is a rational cubic vector. (3) Let n = 8. The vector 3b + K8 is a sum of eight mutually orthogonal lines if and
only if (b + 3K8)/2 is not integral (i.e., not a root in K⊥8 ).

Based on the above, we see that for 3 ≤ n ≤ 7, the set Cubn forms an orbit of the Weyl group
action. Moreover, elements of Cubn (n 6= 8) correspond bijectively to (n− 1)-simplexes in the Gosset
polytope (n− 4)21. The case n = 8 is special. Now Cub8 partitions into two W8-orbits. One orbit is in
bijective correspondence with the root set in R8. The other orbit corresponds to the set of 7-simplexes
in the Gosset polytope 421. One has:

|Cub8| = 17520 = 240 + 17280 = |R8|+ |{7-simplexes in 421}| .

Let us also note that, for 3 ≤ n ≤ 7, the elements of Cubn are in bijective correspondence with
the vertices of the 1(n−4)2 polytope. These n-dimensional polytopes are convex and semiregular.
Their symmetry groups are the Coxeter groups En, and can be constructed as in the following diagram:

u u u u u
hu

r r r
−1 0 1 n− 4

Coxeter-Dynkin diagram of 1(n−4)2 n 6=3
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Note that the vertex figure of 1(n−4)2 is a birectified n-simplex. For n 6= 3, the facets of 1(n−4)2 are
either semiregular polytopes 1(n−5)2 or (n− 1)-demicubes.

We also note that, assuming n 6= 8, the convex hull of Cubn in Λ3
n ⊗Q is 1(n−4)2. We refer the

reader to [7], for the details.
A particular situation worth mentioning is also the case of rational cubics of n = 6. In this case,

via Corollary 1, Λ3
6 is in bijective correspondence (v 7→ v + K6) with the root lattice Λ0

6 = K⊥6 . Under
this correspondence, Cub6 maps to the set of roots R6. As predicted above, the root polytope (convex
hull of R6 in K⊥6 ⊗Q) is 122.

4. Line Configurations

In this section, we study lattice vectors D in Zn+1 that can be written as formal sums of lines:

D = l1 + ... + lk where l1, ..., lk ∈ Ln

As noted in earlier works [5–7,12] by the second author, if one pre-sets the lattice pairings between
the lines l1, ..., lk, the set of possible D′s and the set of possible line configurations carry deep and
interesting symmetries involving the Weyl groups Wn and the discrete subpolytope geometry of Gosset
polytopes (n− 4)21.

4.1. Lattice Pairings of Lines

Let us collect a few facts pertaining to lattice pairings associated with line vectors. These will be
applied to a study of root configurations in the next section. Note that certain aspects of these facts
concerning the geometry of del Pezzo surfaces may be found in [5,6].

We begin by noting that, given two lines l1 and l2 in Zn+1, one has:

−1 ≤ (l1, l2) ≤
2

(Kn, Kn)
+ 1 =

11− n
9− n

This follows via applying Lemma 1 successively to vectors l1 + l2 and l1− l2, respectively. We also
observe that one can have (l1, l2) = −1 if and only if l1 = l2, as in this situation l1 − l2 is a vector in K⊥n
of null self-pairing.

The case of (l1, l2) = 0 has interesting combinatorial interpretations. In this situation, the lines l1,
l2 correspond to a pair of vertices joined by an edge in the Gosset polytope (n− 4)21. This fact may be
seen via considerations in Theorem 2. Following this line of thought, we shall refer such an unordered
pair {l1, l2} as an edge. The set of all edges:

An := {{l1, l2} | l1, l2 ∈ Ln , (l1, l2) = 0} .

has then a cardinal given as follows:

n 3 4 5 6 7 8
|An| 9 30 80 216 756 6720

Total numbers of the edges in Gosset polytopes (n−4)21

Moreover, as discussed in [5], for any edge {l1, l2} the lattice vector l1 + l2 gives the edge
barycenter and the barycenter set

Ãn := {l1 + l2 | l1, l2 ∈ Ln, (l1, l2) = 0}

is in one-to-one correspondence with An. The elements in Ãn are lattice vectors D in Zn+1 satisfying

(D, D) = −2 and (D, Kn) = −2,
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and, in fact, one can argue (see [5]) that these are the only vectors satisfying this pair of conditions.

Ãn =
{

D ∈ Zn+1 | (D, D) = −2, (D, Kn) = −2
}

The set Ãn also forms a full orbit under the Weyl group Wn action ([5]).
As a side note, let us also mention that in fact, if one considers lattice vector D in Zn+1 satisfying

(D, D) = −3, (D, Kn) = −3 ,

it can be proved (see [5]) that there exists a unique triple of lines la, lb and lc satisfying:

D = la + lb + lc, (la, lb) = (la, lc) = (lb, lc) = 0 .

The above are some typical examples of lattice vectors associated with configurations of lines.
These cases are particularly nice as the associated configurations of lines turn out to be unique.
In general, this feature is not to be expected.

4.2. Line Hierarchy and the Gosset Polytope (n− 4)21

Let l be a line in Ln. As discussed earlier, l corresponds to a vertex of the Gosset polytope (n− 4)21.
For k ∈ Z, we define then:

Bn
k (l) =:

{
l′ ∈ Ln

∣∣ (l′, l) = k
}

.

We have the following cases:
(1) k = −1. Then as observed earlier:

Bn
−1 (l) = {l}

(2) k = 0. The elements of Bn
0 (l) correspond then to the edges of (n− 4)21 originating at l. This is

called the vertex figure and can be identified with vertices of a Gosset polytope (n − 5)21. Hence,
one obtains an interesting correspondence between the sets Bn

0 (l) and Ln−1. In particular:

n 3 4 5 6 7 8∣∣Bn
0 (l)

∣∣ 3 6 10 16 27 56

(3) k = 1. Note that for l′ ∈ Bn
1 (l), one has that l + l′ ∈ Conn. Similarly, any l′ ∈ Bn

1 (l) may be
obtained by subtracting l from a rational conic vector. We obtain therefore a bijective identification
between elements of Bn

1 (l) and the set of rational conic vectors Conn. In particular, in the light of
previous considerations, every element of l′ ∈ Bn

1 (l) corresponds to a (n− 1)-crosspolytope containing
l as a vertex. The two vertices corresponding to l and l′ are antipodal in the (n− 1)-crosspolytope.
We obtain a list for

∣∣Bn
1 (l)

∣∣ as follows.

n 3 4 5 6 7 8∣∣Bn
1 (l)

∣∣ 2 3 5 10 27 126

(4) k = 2. This case only appears when n = 7 or 8. For n = 7, one obtains:

B7
2 (l) = {−K7 − l} ,

whereas, for n = 8:
B8

2 (l) =
{
−2K8 − l′

∣∣ l′ ∈ Bn
0 (l)

}
.

In particular, one has
∣∣B8

2 (l)
∣∣ = 56.
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(5) k = 3 The set Bn
3 (l) is non-empty only when n = 8. In this situation:

B8
3 (l) = {−2K8 + l}

4.3. Roots as Configurations of Orthogonal Lines

In this section, we show that the roots in Rn can be seen as a difference of orthogonal lines.

Theorem 3. Let d ∈ Rn be a root. Then, there exists a unique (ordered) pair of two lines l1, l2 ∈ Ln such that:

d = l1 − l2, (l1, l2) = 0 .

Proof. Consider the set
En := { l1 − l2 | l1, l2 ∈ Ln, (l1, l2) = 0 }

One clearly has En ⊂ Rn.
The two sets Rn and En are finite. In what follows, we shall count the elements in En and show

that |Rn| = |En|. This fact then implies En = Rn and hence the statement of the Theorem follows.
Note that each edge {l1, l2} ∈ An produces two elements in En. However, there could potentially

be multiple pairs of orthogonal lines returning the same root as difference. From the point of view
of the Gosset polytopes (n− 4)21 geometry, two parallel edges produce the same root, up to a sign.
Below, we perform a count of all the possible edges parallel to a given fixed edge.

The case n = 3 can be treated via straightforward verification. We have |L3| = 6 with:

L3 = {e1, e2, e3, e0 − e1 − e2, e0 − e1 − e3, e0 − e2 − e3}

which partitions into two triples of mutually orthogonal lines:

{e1, e2, e3} and {e0 − e1 − e2, e0 − e1 − e3, e0 − e2 − e3} .

The orthogonal differences produce then all the twelve roots in R3.
For 4 ≤ n ≤ 8, we shall use a previous observation (see Section 4.1)—the Weyl group Wn acts

transitively on the set of edges of the polytope (n − 4)21. We shall then choose {en, en−1} as the
fixed edge.

Consider 4 ≤ n ≤ 6. In this situation, the pairing between lines is at most one. Any edge
{l1, l2} parallel to {en, en−1} defines then a rational conic vector m = en + l2 = en−1 + l1 in (n− 4)21

which, in turn, corresponds to a (n− 1)-crosspolytope for (n− 4)21 with en, en−1 antipodal vertices.
The rational conic vector m conversely determines the parallel edge {l1, l2}. By Lemma 3 the set of
rational conic vectors containing the edge {en, en−1} is then in bijective correspondence to the set of
lines l ∈ Ln satisfying (l, en) = 1 and (l, en−1) = 0. The relevant number for us to compute is then the
number of elements in Bn

1 (en) ∩ Bn
0 (en−1). In each case we then obtain:

(1) n = 4. We have
∣∣B4

1 (e4) ∩ B4
0 (e3)

∣∣ = 2. Thus:

|E4| = 2× |A4|
1 +

∣∣B4
1 (e4) ∩ B4

0 (e3)
∣∣ = 2× 30

3
= 20 = |R4|

(2) n = 5. We have
∣∣B5

1 (e5) ∩ B5
0 (e4)

∣∣ = 3. Therefore,

|E5| = 2× |A5|
1 +

∣∣B5
1 (e5) ∩ B5

0 (e4)
∣∣ = 2× 80

4
= 40 = |R5|
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(3) n = 6. We have
∣∣B6

1 (e6) ∩ B6
0 (e5)

∣∣ = 5. Hence:

|E6| = 2× |A6|
1 +

∣∣B6
1 (e6) ∩ B6

0 (e5)
∣∣ = 2× 216

6
= 72 = |R6|

The remaining situations are n = 7 and 8. In these cases, the lattice pairing between lines could
reach 2 and 3. Hence, there will more parallel edges to {en, en−1} besides those associated with vertices
in the common (n− 1)-crosspolytopes.

(4) n = 7. In this case we have
∣∣B7

1 (e7) ∩ B7
0 (e6)

∣∣ = 10 and
∣∣B7

2 (e7) ∩ B7
1 (e6)

∣∣ = 1. We also
note that:

B7
2 (e7) ∩ B7

1 (e6) = {−K7 − e7}

with the corresponding edge {−K7 − e7,−K7 − e6}. Therefore:

|E7| = 2× |A7|
1 +

∣∣B7
1 (e7) ∩ B7

0 (e6)
∣∣+ ∣∣B7

2 (e7) ∩ B7
1 (e6)

∣∣ =
= 2× 756

12
= 126 = |R7|

(5) n = 8. We have:∣∣∣B8
1 (e8) ∩ B8

0 (e7)
∣∣∣ = 27,

∣∣∣B8
2 (e8) ∩ B8

1 (e7)
∣∣∣ = 27,

∣∣∣B8
3 (e8) ∩ B8

2 (e7)
∣∣∣ = 1 .

Moreover, note that the sets B8
1 (e8) ∩ B8

0 (e7) and B8
2 (e8) ∩ B8

1 (e7) are bijectively related via the
map l 7−→ − (2K8 + l). In addition, we have B8

3 (e8) ∩ B8
2 (e7) = {−2K8 − e8}. We compute:

|E8| = 2× |A8|
1 +

∣∣B8
1 (e8) ∩ B8

0 (e7)
∣∣+ ∣∣B8

2 (e8) ∩ B8
1 (e7)

∣∣+ ∣∣B8
3 (e8) ∩ B8

2 (e7)
∣∣

= 2× 6720
56

= 240 = |R8| .

This completes the proof of the Theorem.

Remark 4. Note that, in case n = 7, the involution G : L7 7→ L7 with G(l) := −K7 − l is known in
the literature as the Gieser transform. Similarly, in the case n = 8, the involution B : L8 7→ L8 given by
B(l) = −2K8 − l is known as the Bertini transform. These isometries act naturally on the Gosset polytopes
321 and 421 respectively ([5]).

Let us also include the following application of Theorem 3:

Corollary 2. Let l ∈ Ln be a line. There exists then an ordered set of mutually perpendicular lines {l1, ..., ln}
containing l and a rational cubic b such that

d0 = b− l1 − l2 − l3, di = li − li+1, 1 ≤ i ≤ n− 1,

forms a set of simple roots for the lattice K⊥n (which has En-type).

Proof. Let l ∈ Ln. it is easy to see there are ordered perpendicular lines containing l. We denote one of
them as l1, ..., ln(= l). By applying Lemma 3 we find a rational cubic b as

b =
l1 + ... + ln − Kn

3
.
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Then b satisfies b · li = 0 for each i, and (b− l1 − l2 − l3) · (li − li+1) = 0 for each i 6= 3. Thus we
conclude

d0 = b− l1 − l2 − l3, di = li − li+1, 1 ≤ i ≤ n− 1,

are simple roots of En root. This gives the Corollary.

Remark 5. In the geometry of del Pezzo Surfaces, the lines discussed here play key roles in the cohomology of
blow-up and blow-down transformations. For a fixed line l ∈ Ln the “blow-down” of Ln via l can be viewed as
l⊥ ∩ Ln, set that can be naturally identified with Ln−1. Since elements of Ln is corresponded to the vertices of
Gosset polytope (n− 4)21, the identification

l⊥ ∩ Ln = Ln−1

is equivalent to the fact that the vertex figure of the Gosset polytope (n − 4)21 gives the Gosset polytope
(n− 5)21. This interesting interplay between the Del Pezzo surface geometry and the combinatorics of the
associated Gosset polytopes will be discussed in a subsequent work.
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