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Abstract
We construct non-geometric string compactifications by using the F-theory dual of the
heterotic string compactified on a two-torus with twoWilson line parameters, together
with a close connection between modular forms and the equations for certain K3
surfaces ofPicard rank16.Weconstruct explicitWeierstrassmodels for all inequivalent
Jacobian elliptic fibrations supported on this family of K3 surfaces and express their
parameters in terms of modular forms generalizing Siegel modular forms. In this way,
we find a complete list of all dual non-geometric compactifications obtained by the
partialHiggsing of the heterotic string gauge algebra using twoWilson line parameters.

Keywords F-theory · String duality · K3 surfaces · Jacobian elliptic fibrations

Mathematics Subject Classification 14J28 · 14J81 · 81T30

1 Introduction

In a standard compactification of the type IIB string theory, the axio-dilaton field
τ is constant and no D7-branes are present. Vafa’s idea in proposing F-theory [51]
was to simultaneously allow a variable axio-dilaton field τ and D7-brane sources,
defining at a new class of models in which the string coupling is never weak. These
compactifications of the type IIB string in which the axio-dilaton field varies over a
base are referred to asF-theory models. They depend on the following key ingredients:
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an SL2(Z) symmetry of the physical theory, a complex scalar field τ with positive
imaginary part on which SL2(Z) acts by fractional linear transformations, and D7-
branes serving as the source for themulti-valuedness of τ . In this way, F-theorymodels
correspond geometrically to torus fibrations over some compact base manifold.

A well-known duality in string theory asserts that compactifying M-theory on a
torus T2 with complex structure parameter τ and area A is dual to the type IIB string
compactified on a circle of radius A−3/4 with axio-dilaton field τ [1,50,54]. This gives
a connection between F-theory models and geometric compactifications of M-theory:
After compactifying anF-theorymodel further on S1 without breaking supersymmetry,
one obtains amodel that is dual toM-theory compactified on the total space of the torus
fibration. The geometric M-theory model preserves supersymmetry exactly when the
total space of the family is a Calabi–Yau manifold. In this way, we recover the familiar
condition for supersymmetric F-theory models in eight dimensions or D = 8: The
total space of the fibration has to be a K3 surface.

In this article, we will focus on F-theory models associated with eight-dimensional
compactifications that correspond to genus-one fibrations with a section, or Jacobian
elliptic fibrations, on algebraicK3 surfaces.As pointed out byWitten [55], this subclass
ofmodels is in fact physically easier to treat since the existence of a section also implies
the absence of NS–NS and R–R fluxes in F-theory. Geometrically, the restriction to
Jacobian elliptic fibrations facilitates model building with various non-Abelian gauge
symmetries using the Tate algorithm [22,26,36] where insertions of seven-branes in
an F-theory model correspond to singular fibers in theM-theory model. Through work
of Kodaira [25] and Néron [42], all possible singular fibers in one-parameter families
of elliptic curves have been classified. The catalog and its physical interpretation are
by now well known; see [31]. As we shall see, our investigation of F-theory/heterotic
string duality will be greatly aided by the existence of a fibration with section: It will
allow us to utilize the mathematical classification of elliptic fibrations with section
obtained by the authors in [10] and construct the dual non-geometric heterotic vacua
in D = 8 with two Wilson line parameters.

Our construction of F-theory models relies on the concrete relationship between
modular forms on the moduli space of certain K3 surfaces of Picard rank 16 and the
equations of those K3 surfaces which have also been studied in [9,10,19,32]. The
K3 surfaces in question have a large collection of algebraic curve classes on them,
generating a lattice known as H ⊕ E7(−1) ⊕ E7(−1). The presence of these classes
restricts the form of moduli space, which turns out to be a space admitting modular
forms. The K3 surfaces turn out to be closely related to the family of double sextic
surfaces, i.e., K3 surfaces obtained as double cover of the projective plane branched
on a reducible sextic. The modular forms are therefore generalizations of the Siegel
modular forms of genus two and can be constructed explicitly using the exceptional
analytic equivalence between the bounded symmetric domains of type I V4 and of
type I2,2. In fact, generators for the ring of modular forms were constructed by two
of the authors in [9]. In this article, we construct explicit Weierstrass model for all
inequivalent Jacobian elliptic fibrations supported on the family of K3 surfaces with
H ⊕ E7(−1) ⊕ E7(−1) lattice polarization and express their parameters in terms of
such modular forms.
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This article is structured as follows: In Sect. 2, we introduce the fundamental math-
ematical object that is later used to describe (the dual of) the non-geometric heterotic
string vacua in D = 8 with two Wilson lines, namely the family of K3 surfaces
with canonical H ⊕ E7(−1) ⊕ E7(−1) polarization. We will show that this family
admits exactly four inequivalent Jacobian elliptic fibrations. For each fibration, we
will construct a Weierstrass model whose parameters are modular forms generaliz-
ing well-known Siegel modular forms. In Sect. 3, we present possible confluences of
the singular fibers that can occur in the four Jacobian elliptic fibrations. Establishing
these confluences turns out to be critical for matching the backgrounds in D = 8 with
the backgrounds dual to the heterotic string with an unbroken gauge algebra e8 ⊕ e8
or so(32) as we turn off the Wilson line parameters. In Sect. 4, we classify all non-
geometric heterotic models obtained by the partial Higgsing (using two Wilson lines)
of the heterotic gauge algebra g = e8⊕e8 or g = so(32) for the associated low-energy
effective eight-dimensional supergravity theory, dual to the K3 surfaces from Sect. 2.
There we find a surprise: As opposed to the Higgsing of the heterotic gauge algebra
using only oneWilson line, the Higgsing with twoWilson lines produces two different
branches for each type of heterotic string. We conclude the paper with a discussion of
this surprise and its implications.

2 A special family of K3 surfaces

Let X be a smooth complex algebraic K3 surface. The group of divisors (modulo
algebraic equivalence) is called the Nerón–Severi lattice of X , denoted by NS(X ). It
is well known that NS(X ) is an even lattice of signature (1, pX ), where pX is the
Picard rank of X with 1 ≤ pX ≤ 20. Following [15,43–46], for a fixed even lattice
N for signature (1, r), with 0 ≤ r ≤ 19, we say that X is polarized by the lattice
N, if ı : N → NS(X ) is a primitive embedding of lattice for which ı(N) contains
a pseudo-ample divisor class. We call (X , ı) an N-polarized K3 surface. Two N-
polarized K3 surfaces (X , ı) and (X ′, ı ′) are said to be isomorphic, if there exists an
analytic isomorphism α : X → X ′ such that α∗ ◦ ı ′ = ı where α∗ is the appropriate
morphism at cohomology level.

This article aims to describe certain backgrounds for the heterotic string using a
special class of such objects, namely K3 surfaces, which are polarized by the rank-
sixteen lattice

N = H ⊕ E7(−1) ⊕ E7(−1), (2.1)

where H is the standard hyperbolic lattice of rank two (hyperbolic plane), and E7(−1)
is the negative definite even lattice associated with the E7 root system. K3 surfaces of
this type are explicitly constructible: Let (α, β, γ, δ, ε, ζ ) ∈ C

6 be a set of parame-
ters, and consider the projective quartic surface Q(α, β, γ, δ, ε, ζ ) in P

3(X,Y,Z,W)

defined by the homogeneous equation:

Y2ZW − 4X3Z + 3αXZW2 + βZW3 + γXZ2W

−1

2

(
δZ2W2 + ζW4

)
+ εXW3 = 0 . (2.2)
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The family in Eq. (2.2) was first introduced by Clingher and Doran in [12] as a
generalization of the Inose quartic in [21]. Assuming that (γ, δ) 	= (0, 0) and (ε, ζ ) 	=
(0, 0), it was proved in [9] that the surfaceX (α, β, γ, δ, ε, ζ ) obtained as the minimal
resolution of (2.2) is a K3 surface endowed with a canonical N polarization. All N-
polarized K3 surfaces, up to isomorphism, are in fact realized in this way. Moreover,
one can tell precisely when two members of the above family are isomorphic. Let G
be the subgroup of Aut(C6) generated by the set of transformations given below:

(α, β, γ, δ, ε, ζ ) −→ (t2α, t3β, t5γ, t6δ, t−1ε, ζ ), with t ∈ C
∗

(α, β, γ, δ, ε, ζ ) −→ (α, β, ε, ζ, γ, δ) . (2.3)

It then follows that two K3 surfaces in the above family are isomorphic if and only if
their six-parameter coefficient sets belong to the same orbit of C

6 under G; see [9] .

2.1 Jacobian elliptic fibrations onX

Recall that a Jacobian elliptic fibration onX is a pair (π, σ ) consisting of a proper map
of analytic spaces π : X → P

1, whose generic fiber is a smooth genus-one curve, and
a section σ : P

1 → X in the elliptic fibration π . If σ ′ is another section of the Jacobian
fibration (π, σ ), then there exists an automorphism of X that preserves π and maps
σ to σ ′. By identifying the set of sections of π and the group of automorphisms of X
preserving π , the set of all sections form a group, known as the Mordell–Weil group
of the Jacobian elliptic fibration, denoted by MW(π, σ ).

Classifying Jacobian elliptic fibrations on X corresponds to classifying primitive
lattice embeddings H ↪→ NS(X ) since isomorphism classes of Jacobian elliptic fibra-
tions on X are in one-to-one correspondence with isomorphism classes of primitive
lattice embeddings H ↪→ NS(X ) [11, Lemma 3.8]. A lattice theoretic analysis by
the authors revealed that there are exactly four such (non-isomorphic) primitive lat-
tice embeddings [10, Prop. 2.3]. Consequently, it was shown that an N-polarized K3
surface carries four Jacobian elliptic fibrations, up to automorphisms [10, Thm. 3.6].
In Sects. 2.1.1–2.1.4, we will briefly review the construction of Weierstrass models
for these fibrations obtained in [10, Thm. 3.6]. We use the Kodaira classification of
singular fibers to describe the four Jacobian elliptic fibrations [25], which we call the
standard, alternate, base-fiber-dual, and maximal fibration.

2.1.1 The standard fibration

Substituting

X = uvx , Y = y , Z = 4u4v2z , W = 4u3v3z , (2.4)

in Eq. (2.2), yields the Jacobian elliptic fibration πstd : X → P
1 with fiber X[u:v],

given by the Weierstrass equation

X[u:v] : y2z = x3 + f (u, v) xz2 + g(u, v) z3 , (2.5)
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equipped with the section σstd : [x : y : z] = [0 : 1 : 0], and with a discriminant

�(u, v) = 4 f 3 + 27g2 = 64 u9v9 p(u, v) , (2.6)

where

f (u, v) = −4u3v3
(
γ u2 + 3αuv + εv2

)
,

g(u, v) = 8u5v5
(
δu2 − 2βuv + ζv2

)
, (2.7)

and p(u, v) = 4γ 3u6 + · · · + 4ε3v6 is an irreducible homogeneous polynomial of
degree six.

Equation (2.5) defines a Jacobian elliptic fibrationwith six singular fibers ofKodaira
type I1, two singular fibers ofKodaira type I I I ∗ (ADE type E7), and a trivialMordell–
Weil group of sections MW(πstd, σstd) = {I}.

2.1.2 The alternate fibration

Substituting

X = 2uvx , Y = y , Z = 4v5(−2εu + ζv)z , W = 2v2x , (2.8)

into Eq. (2.2), determines the Jacobian elliptic fibration πalt : X → P
1 with fiber

X[u:v], given by the equation

X[u:v] : y2z = x
(
x2 + A(u, v) xz + B(u, v) z2

)
, (2.9)

equipped with the section σalt : [x : y : z] = [0 : 1 : 0], the two-torsion section
[x : y : z] = [0 : 0 : 1], and with a discriminant

�(u, v) = B(u, v)2
(
A(u, v)2 − 4B(u, v)

)
, (2.10)

where

A(u, v) = 4v(4u3 − 3αuv2 − βv3) , B(u, v) = 4v6(2γ u − δv)(2εu − ζv).

(2.11)

Equation (2.9) defines a Jacobian elliptic fibration with six singular fibers of
Kodaira type I1, two singular fibers of Kodaira type I2 (ADE type A1), and a sin-
gular fiber of Kodaira type I ∗

8 (ADE type D12), and a Mordell–Weil group of sections
MW(πalt, σalt) = Z/2Z.
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2.1.3 The base-fiber-dual fibration

Substituting

X = 3uv(x + 6γ εuv3z) , Y = y ,

Z = 6v2(εx − 6γ ε2uv3z − 18ζu2v2z) , W = 108u3v3z ,
(2.12)

into Eq. (2.2) determines a Jacobian elliptic fibration πbfd : X → P
1 with fiberX[u:v],

given by the equation

X[u:v] : y2z = x3 + F(u, v) xz2 + G(u, v) z3 , (2.13)

admitting the section σbfd : [x : y : z] = [0 : 1 : 0], and with a discriminant

�(u, v) = 4F3 + 27G2 = −26312u8v10P(u, v) , (2.14)

where

F(u, v) = − 108 u2v4
(
9αu2 − 3(γ ζ + δε)uv + γ 2ε2v2

)
,

G(u, v) = − 216u3v5
(
27u4 + 54βu3v + 27(αγ ε + δζ )u2v2

− 9γ ε(γ ζ + δε)uv3 + 2γ 3ε3v4
)

,

(2.15)

and P(u, v) = γ 2ε2(γ ζ − δε)2v6 + O(u) is an irreducible homogeneous polynomial
of degree six.

Equation (2.13) defines a Jacobian elliptic fibration with six singular fibers of
Kodaira type I1, one singular fibre of Kodaira type I ∗

2 (ADE type D6), and a sin-
gular fiber of Kodaira type I I ∗ (ADE type E8), and a Mordell–Weil group of sections
MW(πbfd, σbfd) = {I}.

2.1.4 The maximal fibration

The maximal fibration is induced by intersecting the quartic Q(α, β, γ, δ, ε, ζ ) with
the pencil of quadric surfaces

C3(u, v) = v
(
2γ 2δεζXZ + (6αγ δεζ + 4βγ δε2 + 4βγ 2εζ + 2δ2ζ 2)XW − γ δ2εζZW

+2γ δεζY2 − (8βγ 2ε2 + 4δ2εζ + 4γ δζ 2)X2
)

+ u(2γX − δW)(2εX − ζW) = 0 ,

(2.16)

with [u : v] ∈ P
1. Making the substitutions

X = δζv
(
(2βγ εv − u)x − 2γ δ5εζ 5v5z

)
, Y = y , W = 2δ2ζ 2v2x ,

(2.17)

123



The duality between F-theory and the heterotic string… 3087

and Z = Z(x, y, z, u, v), obtained by solving Eq. (2.16) for Z, determines a Jacobian
elliptic fibration πmax : X → P

1 with fiber X[u:v], given by the equation

X[u:v] : y2z = x3 + a(u, v) x2z + b(u, v) xz2 + c(u, v) z3 , (2.18)

admitting the section σmax : [x : y : z] = [0 : 1 : 0], and with the discriminant

�(u, v) = b2
(
a2 − 4b

) − 2ac
(
2a2 − 9b

) − 27c2 = 64δ16ζ 16v16d(u, v) , (2.19)

where

a(u, v) = −2δζv
(
u3 − 6βγ εu2v + 3(4β2γ 2ε2 − αδ2ζ 2)uv2

− 2β(4β2γ 3ε3 − 3αγ δ2εζ 2 − δ3ζ 3)v3
)

,

b(u, v) = −4δ6ζ 6v6
(
2γ εu2 − (8βγ 2ε2 + γ δζ 2 + δ2εζ )uv

+ (8β2γ 3ε3 − 3αγ δ2εζ 2 + 2βγ 2δεζ 2 + 2βγ δ2ε2ζ − δ3ζ 3)v2
)

,

c(u, v) = −8γ δ11εζ 11v11
(
γ εu − (2βγ 2ε2 + γ δζ 2 + δ2εζ )v

)
,

(2.20)

and d(u, v) = (γ ζ − δε)2u8 + O(v) is an irreducible homogeneous polynomial of
degree eight.

Equation (2.18) defines a Jacobian elliptic fibration with eight singular fibers of
Kodaira type I1, one singular fiber ofKodaira type I ∗

10 (ADE type D14), and aMordell–
Weil group of sections MW(πmax, σmax) = {I}.

2.2 Modular Description

The parameters of the defining equations for the Weierstrass models in Sects. 2.1.1–
2.1.4 can be interpreted asmodular forms, established by two of the authors and Shaska
in [9].

Let L2,4 be the orthogonal complement N⊥ ⊂ 
K3 in the K3 lattice 
K3 =
H⊕3 ⊕ E8(−1) ⊕ E8(−1) with orthogonal transformations O(L2,4). Let D2,4 be the
Hermitian symmetric space, specifically the bounded symmetric domain of type I V4,
given as

D2,4 = O+(2, 4)/
(
SO(2) × O(4)

)
, (2.21)

where O+(2, 4) denotes the subgroup of index two of the pseudo-orthogonal group
O(2, 4) consisting of the elements whose upper left minor of order two is positive.
Let O+(2, 4; Z) = O(L2,4) ∩ O+(2, 4) be the arithmetic lattice of O+(2, 4), i.e.,
the discrete cofinite group of holomorphic automorphisms on the bounded Hermi-
tian symmetric domain D2,4. We also set SO+(2, 4) = O+(2, 4) ∩ SO(2, 4) and
SO+(2, 4; Z) = O(L2,4) ∩ SO+(2, 4).
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An appropriate version of the Torelli theorem [14] gives rise to an analytic isomor-
phism between the moduli space of N-polarized K3 surfaces and the quasi-projective
four-dimensional algebraic varietyD2,4/O+(2, 4; Z).We consider the normal, finitely
generated algebra A(D2,4,G) = ⊕k≥0A(D2,4,G)k of automorphic forms onD2,4 rel-
ative to a discrete subgroup G of finite covolume in O+(2, 4), graded by the weight
k of the automorphic forms. For G = O+(2, 4; Z), the algebra A(D2,4,G) is freely
generated by forms Jk of weight 2k with k = 2, 3, 4, 5, 6; this is a special case of
a general result proven by Vinberg in [52,53]. A subtle point here is that one has to
obtain A(D2,4,G) as the even part

A(D2,4,G) =
[
A(D2,4,G0)

]
even

(2.22)

of the ring of automorphic forms with respect to the index-two subgroup G0 =
SO+(2, 4; Z).

Based on the exceptional analytic equivalence between the bounded symmetric
domains of type I V4 and of type I2,2, an explicit description of the generators {Jk}6k=2
can be derived. To start, we remark that D2,4 ∼= H2,2, where

H2,2 =
{(

τ1 z1
z2 τ2

)
∈ Mat(2, 2; C)

∣∣∣ Im (τ1) · Im (τ2) >
1

4
|z1 − z̄2|2, Im τ1 > 0

}
.

(2.23)

The domain H2,2 is a generalization of the Siegel upper half-space H2 in the sense
that

H2 = {
� ∈ H2,2

∣∣ � t = �
}

. (2.24)

A subgroup � ⊂ U(2, 2), given by

� =
{
G ∈ GL

(
4, Z[i])

∣∣∣G† ·
(

0 I2
−I2 0

)
· G =

(
0 I2

−I2 0

)}
, (2.25)

acts on � ∈ H2,2 by

∀G =
(
A B
C D

)
∈ � : G · � = (C · � + D)−1(A · � + B) . (2.26)

There is an involution T acting on H2,2 by transposition, i.e., � �→ T · � = � t ,
yielding an extended group as the semi-direct product �T = � � 〈T 〉. Moreover, the
group �T has the index-two subgroup given by

�+
T =

{
g = G Tn ∈ �T

∣∣∣ n ∈ {0, 1}, (−1)n det G = 1
}

. (2.27)

The identificationD2,4 ∼= H2,2 gives rise to an homomorphismU(2, 2) → SO+(2, 4)
which also identifies G0 ∼= �+

T [52].
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In the above context, the five modular forms {Jk}6k=2 can be computed in terms of
theta functions onH2,2 introduced byMatsumoto [32]. The result is that the generators
of the graded ring of even modular forms relative to the group �+

T can be determined
explicitly:

Theorem 2.1 [9] The invariants J2, J3, J4, J5, J6 are modular forms of respective
weights 4, 6, 8, 10, and 12, relative to the group �+

T .

We remark that there also is an automorphic form a with non-trivial automorphic
factor of weight 10 satisfying a2 = J 25 − 4J4 J6; for its precise definition, we refer to
[9].

The fact that two K3 surfaces in the family in Eq. (2.2) are isomorphic if and only if
their six-parameter coefficient sets belong to the same orbit of C

6 underG in Eq. (2.3)
allows to identify the modular forms Jk relative to the action of �T with the following
set of invariants associated with the K3 surfaces in the family:

J2 = α, J3 = β, J4 = γ · ε, J5 = γ · ζ + δ · ε, J6 = δ · ζ , (2.28)

which then allows one to prove:

Theorem 2.2 ([9]) The four-dimensional open analytic space

MN =
{
J = [ J2, J3, J4, J5, J6 ] ∈ WP(2, 3, 4, 5, 6) | (J4, J5, J6) 	= (0, 0, 0)

}
(2.29)

forms a coarse moduli space for N-polarized K3 surfaces.

Under the restriction of H2,2/�+
T to H2/Sp4(Z) induced by Eq. (2.24), we obtain

[J2(�) : J3(�) : J4(�) : J5(�) : J6(�)]
= [ψ4(τ ) : ψ6(τ ) : 0 : 21235χ10(τ ) : 21236χ12(τ )], (2.30)

whereψ4, ψ6, χ10, andχ12 are theSiegelmodular formsof respectiveweights 4, 6, 10,
and 12 introduced and defined by Igusa in [20].

For the four inequivalent Jacobian elliptic fibrations on the family of N-polarized
K3 surfaces X obtained in Sect. 2.1, we will now construct Weierstrass models with
coefficients in Q[J2, J3, J4, J5, J6] or Q[J2, J3, a, J5, J6] in the case of the standard
fibration.

2.2.1 The standard fibration

Assuming J6 	= 0, we denote the two solutions of the equation a2 = J 25 − 4J4 J6 by
±a. The elliptic fibration πstd : X → P

1 in Sect. 2.1.1 can be written in a suitable
affine coordinate chart as

Y 2 = X3 + f±(t) X + g(t) , (2.31)
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with

f±(t) = −t3 J 36

(
J5 ∓ a

2
t2 + 3J2 J6t + (J5 ± a)J6

2

)
,

g(t) = J 56 t
5
(
t2 − 2J3t + J6

)
, (2.32)

and a discriminant � = J 96 t
9 p±(t) where

p±(t) = 2
(
J 25 (J5 ± a) − J4 J6(3J5 ± a)

)
t6 + · · · + 2J 36

(
J 25 (J5 ∓ a) − J4 J6(3J5 ∓ a)

)
.

(2.33)

Notice that we have f−(J6/t) = J 46 f+(t)/t8 and g(J6/t) = J 66 g(t)/t
12. Since the

map

(t, X ,Y ) �→ (t ′, X ′,Y ′) = (J6/t , J 26 X/t4 , −J 36 Y/t6) (2.34)

maps the K3 surfaces in Eq. (2.31) with f−(t) to one with f+(t) and the holomorphic
two-form dt∧dX/Y to dt ′∧dX ′/Y ′, it provides a holomorphic, symplecticmorphism
between the two K3 surfaces.

For J6 = 0, we have δ = 0 or ζ = 0, and the elliptic fibration πstd : X → P
1 in

Sect. 2.1.1 can be written as either

Y 2 = X3 − t3
(
t2 + 3J2 t + J4

)
X + t5

(
J5 − 2J3t

)
, (2.35)

or

Y 2 = X3 − t3
(
J4t

2 + 3J2 t + 1
)
X + t5

(
− 2J3t + J5t

2
)

. (2.36)

The fibrations are related by the birational morphism

(t, X ,Y ) �→ (t ′, X ′,Y ′) = (1/t , X/t4 , −Y/t6) , (2.37)

which also maps the holomorphic two-form dt ∧ dX/Y to dt ′ ∧ dX ′/Y ′.

2.2.2 The alternate fibration

The Jacobian elliptic fibration πalt : X → P
1 in Sect. 2.1.2 is written in a suitable

affine coordinate chart as

Y 2 = X
(
X2 + A(t) X + B(t)

)
, (2.38)

with

A(t) = t3 − 3J2 t − 2J3 , B(t) = J4 t
2 − J5 t + J6 , (2.39)
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and a discriminant � = E(t)2D(t) where E(t) = J4t2 − J5t + J6 and

D(t) = t6 − 6J2t
4 − 4J3t

3 + (9J 22 − 4J4)t
2 + (12J2 J3 + 4J5)t + 4(J 23 − J6) .

(2.40)

2.2.3 The base-fiber-dual fibration

The Jacobian elliptic fibration πbfd : X → P
1 in Sect. 2.1.3 is written in a suitable

affine coordinate chart as

Y 2 = X3 + F(t) X + G(t) , (2.41)

with

F(t) = t2
(

− 3J2t
2 − J5t − 1

3
J 24

)
,

G(t) = t3
(
t4 − 2J3t

3 + (J2 J4 + J6)t
2 + 1

3
J4 J5t + 2

27
J 34

)
,

(2.42)

and a discriminant � = t8P(t) where P(t) = −27t6 + 108J3t5 + · · · + a2 J 24 .

2.2.4 The maximal fibration

The Jacobian elliptic fibration πmax : X → P
1 in Sect. 2.1.4 is written in a suitable

affine coordinate chart as

Y 2 = X3 + a(t) X2 + b(t) X + c(t) , (2.43)

with

a(t) = J6
(
t3 + 6J3 J4t

2 + 3(4J 23 J
2
4 − J2 J

2
6 )t − 2J3(3J2 J4 J

2
6 − 4J 23 J

3
4 + J 36 )

)
,

b(t) = −J 66

(
2J4t

2 + (8J3 J
2
4 + J5 J6)t + (8J 23 J

3
4 − 3J2 J4 J

2
6 + 2J3 J4 J5 J6 − J 36 )

)
,

c(t) = J4 J
11
6

(
J4t + (2J3 J

2
4 + J5 J6)

)
,

and a discriminant� = J 166 d(t)where d(t) = a2t8+ . . . is an irreducible polynomial
of degree eight. By an appropriate change of coordinates, one can write the fibration
in Eq. (2.43) in Weierstrass normal form

y2 = x3 + α(t)x + β(t)

where α(t) = t6 + · · · and β(t) = t9 − · · · are irreducible polynomials of degree six
and nine, respectively.
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A simple computation shows that the various discriminants (denoted by Disct ) and
resultants (denoted by Rest ) with respect to the variable t are related to a modular
form J30 of weight 60 which is a polynomial in {Jk}6k=2 and given by

J30 = Disct D = Disct d = 24

318 J 306

Disct p

Res3t (t
−3 f , t−5g)

= − J 92
321

Disct P

Res3t (t
−2F, t−3G)

.

(2.44)

3 Confluences of singular fibers

In this section, we describe some confluences of the singular fibers that are possible for
the fibrations constructed in Sects. 2.1.1–2.1.4. The results are summarized in Fig. 1.
In the figure, D(
) denotes the discriminant group of a lattice
which is an important
group theoretic invariant of the lattice used in Nikulin’s classification theory [45,47].

For J4 = 0, the base-fiber-dual fibration in Eq. (2.41) specializes to

Y 2 = X3 − t3
(
3J2 t + J5

)
X + t5

(
t2 − 2J3t + J6

)
. (3.1)

For J4 = 0, J6 	= 0, we have a = ±J5: The standard fibration in Eq. (2.31) then
simplifies, after rescaling, to either Eq. (3.1) or

Y 2 = X3 − t4
(
J5t + 3J2 t

)
X + t5

(
J6t

2 − 2J3t + 1
)

. (3.2)

The two fibrations are related by the birational morphism

(t, X ,Y ) �→ (t ′, X ′,Y ′) = (1/t , X/t4 , −Y/t6) , (3.3)

which also maps the holomorphic two-form dt ∧ dX/Y to dt ′ ∧ dX ′/Y ′. Thus, the
standard and the base-fiber-dual fibration specialize to the same elliptic fibration in
Picard rank 17 (J4 = 0) andPicard rank 18 (J4 = J5 = 0),marked in color-coded rows
(blue) in Fig. 1. These are precisely the equations derived in [31] for the F-theory dual
of a non-geometric heterotic theory with gauge algebra g = e8 ⊕ e7 and g = e8 ⊕ e8
and one non-vanishing Wilson line parameter. We will explain the physical relevance
of this observation in Sect. 4.

For J4 = 0, the alternate fibration in Eq. (2.38) specializes to

Y 2 = X3 +
(
t3 − 3J2 t − 2J3

)
X2 −

(
J5t − J6

)
. (3.4)

Similarly, for J4 = 0, J6 	= 0 the maximal fibration in Eq. (2.43) simplifies, after
rescaling, to Eq. (3.4). Thus, the alternate fibration and themaximal fibration specialize
to the same fibration in Picard rank 17 (J4 = 0) and Picard rank 18 (J4 = J5 = 0),
marked in color-coded rows (red) in Fig. 1. This is precisely the equation derived
in [31] for the F-theory dual of a non-geometric heterotic theory with gauge algebra
g = e8⊕e7 and one non-vanishingWilson line parameter.Wewill explain the physical
relevance of this observation in Sect. 4.
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Fibration (2.31) pX Singular Fibers MW(πstd, σstd) Lattice Polarization Λ D(Λ)

generic 16 2III∗ + 6I1 {I} H ⊕ E7(−1) ⊕ E7(−1) Z
2
2

Rest(t−3f, t−5g) = 0 16 2III∗ + II + 4I1 {I} H ⊕ E7(−1) ⊕ E7(−1) Z
2
2

J30 = 0 17 2III∗ + I2 + 4I1 {I} H ⊕ E7(−1) ⊕ E7(−1) ⊕ A1(−1) Z
3
2

J4 = 0 17 II∗ + III∗ + 5I1 {I} H ⊕ E8(−1) ⊕ E7(−1) Z2

J4 = J5 = 0 18 2II∗ + 4I1 {I} H ⊕ E8(−1) ⊕ E8(−1) 0

(a) Extensions of lattice polarizations for the standard fibration

Fibration (2.38) pX Singular Fibers MW(πalt, σalt) Lattice Polarization Λ D(Λ)

generic 16 I∗
8 + 2I2 + 6I1 Z/2Z H ⊕ E7(−1) ⊕ E7(−1) Z

2
2

Rest(D, E) = 0 16 I∗
8 + III + I2 + 5I1 Z/2Z H ⊕ E7(−1) ⊕ E7(−1) Z

2
2

= 0 17 I∗
8 + I4 + 6I1 Z/2Z H ⊕ E8(−1) ⊕ D7(−1) Z4

J30 = 0 17 I∗
8 + 3I2 + 4I1 Z/2Z H ⊕ E7(−1) ⊕ E7(−1) ⊕ A1(−1) Z

3
2

J4 = 0 17 I∗
10 + I2 + 6I1 Z/2Z H ⊕ E8(−1) ⊕ E7(−1) Z2

J4 = J5 = 0 18 I∗
12 + 6I1 Z/2Z H ⊕ E8(−1) ⊕ E8(−1) 0

(b) Extensions of lattice polarizations for the alternate fibration

Fibration (2.41) pX Singular Fibers MW(πbfd, σbfd) Lattice Polarization Λ D(Λ)

generic 16 II∗ + I∗
2 + 6I1 {I} H ⊕ E8(−1) ⊕ D6(−1) Z

2
2

Rest(t−2F, t−3G) = 0 16 II∗ + I∗
2 + II + 4I1 {I} H ⊕ E8(−1) ⊕ D6(−1) Z

2
2

= 0 17 II∗ + I∗
3 + 5I1 {I} H ⊕ E8(−1) ⊕ D7(−1) Z4

J30 = 0 17 II∗ + I∗
2 + I2 + 4I1 {I} H ⊕ E8(−1) ⊕ D6(−1) ⊕ A1(−1) Z

3
2

J4 = 0 17 II∗ + III∗ + 5I1 {I} H ⊕ E8(−1) ⊕ E7(−1) Z2

J4 = J5 = 0 18 2II∗ + 4I1 {I} H ⊕ E8(−1) ⊕ E8(−1) 0

(c) Extensions of lattice polarizations for the base-fiber dual fibration

Fibration (2.43) pX Singular Fibers MW(πmax, σmax) Lattice Polarization Λ D(Λ)

generic 16 I∗
10 + 8I1 {I} H ⊕ D14(−1) Z

2
2

Rest(α, β) = 0, 16 I∗
10 + II + 6I1 {I} H ⊕ D14(−1) Z

2
2

= 0 17 I∗
11 + 7I1 {I} H ⊕ D15(−1) Z4

J30 = 0 17 I∗
10 + I2 + 6I1 {I} H ⊕ D14(−1) ⊕ A1(−1) Z

3
2

J4 = 0 17 I∗
10 + I2 + 6I1 Z/2Z H ⊕ E8(−1) ⊕ E7(−1) Z2

J4 = J5 = 0 18 I∗
12 + 6I1 Z/2Z H ⊕ E8(−1) ⊕ E8(−1) 0

(d) Extensions of lattice polarizations for the maximal fibration

Fig. 1 Extensions of lattice polarization

Moreover, Fig. 1 gives the confluences of singular fibers that occur along the van-
ishing loci of a = 0 (with a2 = J 25 − 4J4 J6) and J30 = 0 (where J30 is defined in
Eq. (2.44)).We also determined the possible confluences 2I1 → I I and I2+ I1 → I I I
that can occur within the four elliptic fibrations (the polynomials f , g, D, E , F,G,
and α, β are defined in Sects. 2.1.1–2.1.4).

4 Classification of non-geometric heterotic models

An eight-dimensional effective theory for the heterotic string compactified on T2 has
a complex scalar field which takes its values in the Narain space [40]

D2,18/O(
2,18), (4.1)
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where Dp,q is the symmetric space for O(p, q), i.e.,

Dp,q = (O(p) × O(q))\O(p, q). (4.2)

The Narain space is the quotient of the symmetric space for O(2, 18) by the auto-
morphism group O(
2,18) of the unique integral even unimodular lattice of signature
(2, 18), i.e.,


2,18 = H ⊕ H ⊕ E8(−1) ⊕ E8(−1) . (4.3)

In an appropriate limit, the Narain space decomposes as a product of spaces param-
eterizing the Kähler and complex structures on T2 as well as sixteen Wilson line
expectation values around the two generators of π1(T2); see [41] for details. How-
ever, the decomposition is not preserved when the moduli vary arbitrarily. Families
of heterotic models employing the full O(
2,18) symmetry are therefore considered
non-geometric compactifications, because the Kähler and complex structures on T2,
and theWilson line values, are not distinguished under the O(
2,18)-equivalences but
instead are mingled together.

If we restrict ourselves to a certain index-two subgroup O+(
2,18) ⊂ O(
2,18)

in the construction above, the non-geometric models can be described by holomor-
phic modular forms. This is because the group O+(
2,18) is the maximal subgroup
whose action preserves the complex structure on the symmetric space, and thus is
the maximal subgroup for which modular forms are holomorphic. The statement of
the F-theory/heterotic string duality in eight dimensions [51] is the statement that the
quotient space

D2,18/O
+(
2,18) (4.4)

coincides with the parameter space of elliptically fibered K3 surfaces with a section,
i.e., the moduli space of F-theory models. This statement has been known in the math-
ematics literature as well; see, for example, [17]. However, to construct the duality
map between F-theory models and heterotic sting vacua explicitly, one has to know
the ring of modular forms relative to O+(
2,18) and their connection to the corre-
sponding elliptically fibered K3 surfaces. However, this ring of modular forms is not
known in general. We consider the restriction to a natural four-dimensional sub-space
D2,4/O+(2, 4; Z) of the space in Eq. (4.4). Due to Theorem 2.1, the corresponding
ring of modular forms is known.

Let L2,4 be the lattice of signature (2, 4) which is the orthogonal complement of
E7(−1) ⊕ E7(−1) in 
2,18. By insisting that the Wilson lines associated with the
E7(−1) ⊕ E7(−1) sub-lattice are trivial, we restrict to heterotic vacua parameterized
by the sub-space

D2,4/O(L2,4) . (4.5)
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The corresponding degree-two cover is precisely the quotient space discussed above,
namely

D2,4/O
+(L2,4) . (4.6)

For this natural four-dimensional sub-space in the full eighteen-dimensional mod-
uli space, we will determine the duality map (and thus the quantum-exact effective
interactions) between a dual F-theory and heterotic string pair in eight space-time
dimensions. As we will show, the restriction to this sub-space describes the partial
Higgsing of the corresponding heterotic gauge algebra g = e8 ⊕ e8 or g = so(32) for
the associated low-energy supergravity theory.

The Jacobian elliptic fibrations in Sect. 2.1 provide the possible F-theories for
D = 8 compactifications over the four-dimensional sub-space in (4.6) of the full
eighteen-dimensional moduli space. We now consider families of such non-geometric
heterotic compactifications that naturally lead to compactifications for D < 8. To
start with, an inspection of our results from Sect. 2.1 shows that for the dual F-theory
models there are no Jacobian elliptic fibrations on the sub-space (4.6) with a Mordell–
Weil group of positive rank. Non-torsion sections in aWeierstrass model are known to
describe the charged matter fields of the corresponding F-theory model [13,34]. Thus,
we have the following:

Corollary 4.1 For generic families of non-geometric heterotic compactifications sam-
pling the moduli space D2,4/O+(L2,4), there cannot be any charged matter fields.

4.1 The e8 ⊕ e8-string

As we have seen in Sect. 2.2, the space in Eq. (4.6) parameterizes pseudo-ample K3
surfaces with H ⊕ E7(−1) ⊕ E7(−1) lattice polarization. Section 2.1.3 shows that
these K3 surfaces admit an elliptic fibration with section, one fiber of Kodaira type
I ∗
2 or worse, and another fiber of type precisely I I ∗. Here, we have used the lattice
isomorphism

H ⊕ E7(−1) ⊕ E7(−1) ∼= H ⊕ E8(−1) ⊕ D6(−1) . (4.7)

Because of the presence of a I I ∗ fiber, the Mordell–Weil group is always trivial,
including all cases with gauge symmetry enhancement. From a physics point of view
as was argued in [31], assuming that one fiber is fixed and of Kodaira type I I ∗ will
avoid “pointlike instantons” on the heterotic dual after further compactification to
dimension six or below, at least for general moduli.

The key geometric fact for the construction of F-theory models is that Eq. (2.41)
defines an elliptically fibered K3 surface X with section whose periods determine
a point � ∈ H2,2 up to the action of �+

T , and with the coefficients in the defining
equation being modular forms relative to �+

T of even characteristic. The explicit form
of the F-theory/heterotic string duality on the moduli space in Eq. (4.6) then has two
parts: Starting from � ∈ H2,2, we always obtain a Jacobian elliptic fibration on the
K3 surface X from Eq. (2.41). Conversely, we can start with any Jacobian elliptic
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fibration given by the general equation

Y 2 = X3 + a t2X + b t3 + c t3X + c d t4 + e t4X + (d e + f ) t5 + g t6 + t7 .

(4.8)

We then determine a point in � ∈ H2,2 (up to the action of �+
T ) by calculating the

periods of the holomorphic two-form ωX = dt ∧ dX/Y over a basis of the lattice
H ⊕ E7(−1) ⊕ E7(−1) in H2(X , Z). It follows that for some non-vanishing scale
factor λ we have

c = −λ10 J5(�), d = −λ8

3
J4(�), e = −3 λ4 J2(�),

f = λ12 J6(�), g = −2 λ6 J3(�),

(4.9)

and a = −3 d2, b = −2 d3. Under the restriction of H2,2 to the Siegel upper half-
plane H2, we have d = 0 and

[J2(�) : J3(�) : J4(�) : J5(�) : J6(�)]
= [ψ4(τ ) : ψ6(τ ) : 0 : 21235χ10(τ ) : 21236χ12(τ )] , (4.10)

as points in the four-dimensional weighted projective space WP(2, 3, 4, 5, 6), where
ψ4, ψ6, χ10, and χ12 are Siegel modular forms of respective weights 4, 6, 10, and 12
introduced by Igusa in [20]. Moreover, a simple rescaling reduces Eq. (2.41) to

Y 2 = X3 − t3
( 1

48
ψ4(τ )t + 4χ10(τ )

)
X + t5

(
t2 − 1

864
ψ6(τ ) t + χ12(τ )

)
,

(4.11)

which is precisely the equation derived in [31] for the F-theory dual of a non-geometric
heterotic theory with gauge algebra g = e8 ⊕ e7 and one non-vanishing Wilson line
parameter. We have proved the following:

Proposition 4.2 Equation (4.8) defines the F-theory dual of a non-geometric heterotic
theory with gauge algebra g = e8 ⊕ so(12).

4.2 Condition for five-branes and supersymmetry

The strategy for constructing families of non-geometric heterotic compactifications
is the following: Start with a compact manifold Z as parameter space and a line
bundle 
 → Z. Choose sections c(z), d(z), e(z), f (z), and g(z) of the bundles 
⊗10,

⊗8, 
⊗4, 
⊗12, and 
⊗6, respectively; then, for each point z ∈ Z, there is a non-
geometric heterotic compactification given by Eq. (4.8) with c = c(z), d = d(z), etc.,
and a = −3 d(z)2, b = −2 d(z)3 and moduli � ∈ H2,2 and O+(L2,4) symmetry
such that Equations (4.9) hold.

Appropriate five-branes must still be inserted on Z as dictated by the geometry
of the corresponding family of K3 surfaces. The change in the singularities and the
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lattice polarization for the fibration (2.41) occur along three loci of co-dimension one,
namely a = 0, J30 = 0, and J4 = 0; see Sect. 3. Each locus is the fixed locus of
elements in�T \�+

T . It is trivial towrite down the reflections in O
+(L2,4)\SO+(L2,4)

corresponding to a = 0, J30 = 0, and J4 = 0, respectively; see [9].
From the point of view of K3 geometry, given as a reflection in a lattice element δ

of square −2 we have the following: If the periods are preserved by the reflection in δ,
then δ must belong to the Néron–Severi lattice of the K3 surface. That is, the Néron–
Severi lattice is enlarged by adjoining δ. We already showed in Sect. 3 that there are
three ways an enlargement can happen: The lattice H ⊕ E7(−1) ⊕ E7(−1) of rank
sixteen can be extended to H ⊕ E7(−1) ⊕ E7(−1) ⊕ 〈−2〉, H ⊕ E8(−1) ⊕ E7(−1),
or H ⊕ E8(−1) ⊕ D7(−1), each of rank seventeen.

On the heterotic side, these five-brane solitons are easy to see—we derived the
corresponding confluences of singular fibers in Sect. 3: When J30 = 0, we have a
gauge symmetry enhancement from e8 ⊕ so(12) to include an additional su(2), and
the parameters of the theory include a Coulomb branch for that gauge theory on which
the Weyl group Wsu(2) = Z2 acts. Thus, there is a five-brane solution in which the
field has aZ2 ambiguity encircling the location in the moduli space of enhanced gauge
symmetry. When J4 = 0, we have an enhancement to e8 ⊕ e7 gauge symmetry, and
when a = 0, an enhancement to e8 ⊕ so(14). Further enhancement to e8 ⊕ e8 gauge
symmetry occurs along J4 = J5 = 0.

To understand when such families of compactifications are supersymmetric, we
adapt the discussion in [31]: A heterotic compactification on T2 with parameters
given by � ∈ H2,2 is dual to the F-theory compactification on the elliptically fibered
K3 surface X (�). For sections c(z), d(z), e(z), f (z), and g(z) of line bundles over
Z, we have a criterion for when F-theory compactified on the elliptically fibered man-
ifold (4.8) is supersymmetric: This is the case if and only if the total space defined
by Eq. (4.8) – now considered as an elliptic fibration over a base space locally given
by variables t and z—is itself a Calabi–Yau manifold. The base space of the elliptic
fibration is a P

1-bundle π : W → Z which takes the form W = P(O ⊕ M) where
M → Z is the normal bundle of �0 := {t = 0} in W. Monomials of the form tn are
then considered sections of the line bundlesM⊗n . We also set �∞ := {t = ∞} such
that −KW = �0 + �∞ + π−1(−KZ).

When the elliptic fibration (4.8) is written in Weierstrass form, the coefficients of
X1 and X0 must again be sections of L⊗4 and L⊗6, respectively, for a line bundle
L → W. The condition for supersymmetry of the total space is L = OW(−KW).
Restricting the various terms in Eq. (4.8) to �0, we find relations

(L|�0)
⊗4 = 
⊗4 ⊗ M⊗4 = 
⊗10 ⊗ M⊗3 = 
⊗16 ⊗ M⊗2,

(L|�0)
⊗6 = M⊗7 = 
⊗6 ⊗ M⊗6

= 
⊗12 ⊗ M⊗5 = 
⊗18 ⊗ M⊗4 = 
⊗24 ⊗ M⊗3.

(4.12)

Thus, it follows that M = 
⊗6 and L|�0 = 
⊗7 (up to torsion) and the P
1-bundle

takes the form W = P(O ⊕ 
⊗6). Since �0 and �∞ are disjoint, the condition for
supersymmetry is equivalent to 
 = OZ(−KZ). We have proved the following:
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Proposition 4.3 Equation (4.8) defines a supersymmetric family of non-geometric het-
erotic vacua with gauge algebra e8 ⊕ so(12) over a compact parameter space Z
equipped with the line bundle 
 = OZ(−KZ) → Z if c(z), d(z), e(z), f (z), and g(z)
in Eq. (4.9) are sections of the bundles
⊗10,
⊗8,
⊗4,
⊗12, and
⊗6, respectively.

4.3 Double covers and pointlike instantons

To a reader familiar with elliptic fibrations, it might come as a surprise that the Weier-
strass model we considered in Eq. (4.8) did not simply have two fibers of Kodaira
type I I I ∗ and a trivial Mordell–Weil group. On each K3 surface endowed with a
H ⊕ E7(−1) ⊕ E7(−1) lattice polarization, such a fibration exists, and we con-
structed it in Eq. (2.31). However, it is not guaranteed that the fibration extends across
any parameter space, and there might be anomalies present.

Starting from � ∈ H2,2 we always obtain a pair of Jacobian elliptic fibrations
on the K3 surface X from Eq. (2.31). The indeterminacy of the sign ±a forces us
to consider a pair of fibrations related by a holomorphic, symplectic isomorphism.
Conversely, we can start with the general Jacobian elliptic fibration, normalized with
δ = 1 and given by the general equation

Y 2 = X3 − εt3X − 3αt4X + ζ t5 − γ t5X − 2βt6 + t7 . (4.13)

If we then determine a point in� ∈ H2,2 by calculating the periods of the holomorphic
two-form ωX = dt ∧ dX/Y over a basis of the lattice H ⊕ E7(−1) ⊕ E7(−1) in
H2(X , Z), we must have J6 	= 0 since otherwise the terms t7 and ζ t5 could not both
be present. It follows that for some non-vanishing scale factor λ we have

α = λ4 J2(�) , β = λ6 J3(�) , ζ = λ12 J6(�) ,

ε = λ10
(J5 ∓ a)(�)

2
, γ = λ−2 (J5 ± a)(�)

2J6(�)
,

(4.14)

such that γ ε = λ8 J4(�) and γ ζ + ε = λ10 J5(�).
In order to construct families of non-geometric compactifications, we vary the

heterotic vacua over a parameter space Z as in Sect. 4.2, the functions α, β, γ ε, ζ

are again sections of line bundles 
⊗2k → Z for k = 2, 3, 4, 6. The condition for
supersymmetry already established in Sect. 4.2 yields 
 = OZ(−KZ). We want to
take the square root of the line bundle 
⊗20 = 
⊗8 ⊗ 
⊗12, that is, construct a line
bundle N → Z with N⊗2 = 
⊗20 such that a becomes a section of the new line
bundle N .

If the line bundleN is effective, i.e.,N ∼= OZ(D) for some smooth, effective divisor
D in Z—which is satisfied if dim H0(Z,N ) > 0—then a double cover ϕ : Y → Z
can be constructed that is ramified over D. The double cover ϕ : Y → Z is defined in
terms of the line bundleN → Z and a non-trivial section σ ofN⊗2 as follows: (1) Z
is embedded in the total space of N⊗2 and given locally by an equation of the form
z = σ , (2) Y is embedded in the total space of N and given locally by the equation
y2 = σ , (3) the double cover ϕ is the restriction of the square map N → N⊗2, and
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(4) the branch locus is given by {σ = 0} ⊂ Z. In turn, it is known that if H1(Z) = 0,
then the double cover ϕ : Y → Z is uniquely determined by its branch locus; see [6].
In our situation, we set σ = a2 = J 25 − 4J4 J6.

Thus, Eq. (4.13) can define a supersymmetric family of non-geometric heterotic
vacua with gauge algebra e7 ⊕ e7 over a compact parameter spaceY, ifY is obtained
as the double cover of Z in Sect. 4.2 branched along a = 0. We showed in Sect. 3 that
for J4 = 0 we have J 25 = a2 and the choice of square root a = ±J5 determines which
of the two fibers of type I I I ∗ is extended to a fiber of type I I ∗; Eq. (2.31) then reduces
to Eq. (4.11) which is precisely the equation derived in [31] for the F-theory dual of
a heterotic theory with gauge algebra g = e8 ⊕ e7 and one non-vanishing Wilson line
parameter.

However, the underlying K3 surface in Eq. (2.31) acquires a singularity whenever
J6 → 0. For the coefficient of t5X in Eq. (2.31) to remainwell defined, wemay require
J6 	= 0 over Z which implies that J6 is a trivializing section for the bundle 
⊗12; in
particular, we have 
⊗12 ∼= OZ. Then, the conditions derived for supersymmetry
and the existence of the double cover are similar to the conditions governing global
and local anomaly cancellation in [29,30]. On the other hand, if a general family of
non-geometric compactifications in Eq. (4.13) intersects the locus J6 = 0, the K3
surface in Eq. (2.31) becomes singular, while at the same time the curvature of the
bundle 
 also gets concentrated in an infinitesimal region of the base space because
of Eq. (4.14). In [2], the authors identified these points as pointlike instantons in the
heterotic string, which correspond to the curvature acquiring singularities at singular
points on the (blowdown of the) K3 surface.

4.4 The so(32)-string

In Sect. 2, we showed that a K3 surface X with lattice polarization H ⊕ E7(−1) ⊕
E7(−1) also admits two additional fibrations, which we called the alternate and the
maximal Jacobian elliptic fibration. These turn out to be related to the so(32) heterotic
string.

We will now establish the explicit form of the F-theory/heterotic string duality on
themoduli space (4.6) for this case. The intrinsic property of the elliptically fibered K3
surfaces which lead to the corresponding F-theory backgrounds is the requirement that
there is one singular fiber in the fibration of type I ∗

n for some n ≥ 8 and a two-torsion
element in the Mordell–Weil group. Then, a slight modification of the argument in [2,
Sec. 4] or [35, App. A.] shows that the corresponding Weierstrass equation takes the
form

Y 2 = X3 +
(
t3 + e t + g

)
X2 +

(
− 3 d t2 + c t + f

)
X . (4.15)

In the language of string theory, we obtain an F-theory model on a K3 surface, ellip-
tically fibered over P

1, with nonzero flux of an antisymmetric two-form B through
the sphere. Such F-theory compactifications were first analyzed by Witten in [57] in
the limiting locus when the elliptic fibration becomes isotrivial and also discussed in
[8,49]. The picture was later extended to general F-theory elliptic fibrations in [7].

123



3100 A. Clingher et al.

Only the cohomology class of the antisymmetric two-form B has a physical meaning.
Accordingly, the value of the flux is quantized and it is fixed to be equal to ω/2 where
ω denotes the Kähler class of the sphere. In terms of the Jacobian elliptic fibration,
the nonzero flux is generated by the non-trivial two-torsion element (X ,Y ) = (0, 0)
of the Mordell–Weil group.

The explicit form of the F-theory/heterotic string duality on the moduli space in
Eq. (4.6) for the so(32) heterotic string then has two parts: Starting from a period point
� ∈ H2,2 and the action of �+

T , we always obtain a Jacobian elliptic fibration with
non-trivial two-torsion element in the Mordell–Weil group on the K3 surface X from
Eq. (2.41). Conversely, we can start with any Jacobian elliptic fibration in Eq. (4.15).
We then determine a point inD2,4 by calculating the periods of the holomorphic two-
form ωX over a basis of the period lattice H ⊕ E7(−1) ⊕ E7(−1) in H2(X , Z), such
that a change of marking corresponds to the action of a modular transformation in �+

T .
As before, it follows that for some non-vanishing scale factor λ Equations (4.9) must
hold. The gauge algebra is enhanced to so(24) ⊕ su(2)⊕2. It follows as in [4,5] that
the gauge group of this model is (Spin(24) × SU (2) × SU (2))/Z2. Thus, we have
proved:

Proposition 4.4 Equation (4.15) defines the F-theory on an elliptic K3 surface with
nonzero flux of an antisymmetric two-form B through the sphere that is dual to a
non-geometric heterotic theory with gauge algebra g = so(24) ⊕ su(2)⊕2.

The condition for five-branes and supersymmetry for families of non-geometric het-
erotic compactifications is completely analogous to Sect. 4.2, and their construction
is easily carried out as Eq. (2.38) establishes the connection between the parameters
and the modular forms relative to �+

T . In particular, for J30 = 0, we find a gauge sym-
metry enhancement to include an additional su(2); when a = 0, the gauge algebra is
enhanced to so(24) ⊕ su(4). This follows from the results in Sect. 3.

In the mathematical classification of all distinct Jacobian elliptic fibrations sup-
ported on the family of K3 surfaces X in Eq. (2.2) for Picard rank 16, there is a
fundamental difference compared to the classification in Picard rank 17 and 18. Here,
the family of K3 surfaces X in Eq. (2.2) admits the additional Jacobian elliptic fibra-
tion given in Eq. (2.43) which we called the maximal fibration. In fact, the general
elliptic fibration that has a singular fiber of Kodaira type I ∗

8 over t = ∞ is of the form

Y 2 = X3 +
(
a′t3 + b′t2 + c′t + d ′)X2 +

(
e′t2 + f ′t + g′)X +

(
h′t + k′).

(4.16)

The F-theory model determined by Eq. (4.16) does not admit a two-torsion element
in the Mordell–Weil group and is polarized by the lattice H ⊕ E7(−1) ⊕ E7(−1).
However, for J4 = 0, the two cases in Eq. (4.15) and (4.16) coincide. That is, after
using Eq. (2.30) and a simple rescaling, both Eqs. (2.38) and (2.43) restrict to

Y 2 = X3 +
(
t3 − 1

48
ψ4(τ ) t − 1

864
ψ6(τ )

)
X2 −

(
4χ10(τ ) t − χ12(τ )

)
X ,

(4.17)
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which is precisely the equation derived in [31] for the F-theory dual of a heterotic
theory with gauge algebra g = so(28) ⊕ su(2) and one non-vanishing Wilson line
parameter. In the limit J4 → 0, two nodes in Eq. (4.16) coalesce and form a fiber of
Kodaira type I2 that generates the su(2)-gauge enhancement. At the same time, when
the coefficients h′, k′ → 0 vanish, a non-trivial two-torsion element is generated in
the Mordell–Weil group. We have proved the following:

Proposition 4.5 Equation (2.43) defines the F-theory on an elliptic K3 surface dual
to a non-geometric heterotic theory with gauge algebra g = so(28).

The condition for five-branes and supersymmetry for families of non-geometric het-
erotic compactifications in this second case is again completely analogous to Sect. 4.2,
and their construction is easily carried out since Eq. (2.43) establishes the connection
between the parameters and the modular forms relative to �+

T . In particular, it was
shown in Sect. 3 that for a = 0, we have a gauge symmetry enhancement to so(30),
and for J4 = J5 = 0, the gauge group is further enhanced to Spin(32)/Z2.

5 Discussion and outlook

Weclassified all non-geometric heteroticmodels obtainedby thepartialHiggsingusing
twoWilson lines of the heterotic gauge algebra g = e8⊕e8 or so(32) for the associated
low-energy effective eight-dimensional supergravity theory. The surprising result is:
As opposed to the Higgsing of the heterotic gauge algebra using only oneWilson line,
the Higgsing with two Wilson lines produces two different branches for each type of
heterotic string theory. We interpreted the dual F-theory models as Jacobian elliptic
fibrations supported on the family ofK3 surfaceswith canonical H⊕E7(−1)⊕E7(−1)
polarization. The inequivalent Jacobian elliptic fibrationswere classified, andwe found
the defining equations for Weierstrass models whose parameters are modular forms
generalizing well-known Siegel modular forms. Two of these fibrations correspond to
the Higgsing of heterotic gauge algebra g = e8 ⊕ e8 to either e8 ⊕ so(12) or e7 ⊕ e7,
and the other two are related to the Higgsing of g = so(32) to either so(24)⊕su(2)⊕2

or so(28). In the former case, the two fibrations are differentiated by avoiding or
supporting “pointlike instantons” on the heterotic dual after further compactification
to dimension six. In the latter case, the two fibrations are distinguished by trivial
or non-trivial flux of an antisymmetric two-form B through the base of the elliptic
fibration.We demonstrated how the fibrations can be used to construct families of non-
geometric heterotic compactifications. The necessary condition for five-branes and
supersymmetry was determined explicitly. Therefore, our results provide a significant
generalization of existing results in [18,28,31,35].

As a result, this article provides a complete description of the F-theory/heterotic
string duality in D = 8 with two Wilson lines. For no or one non-trivial Wilson line
parameter, an analogous approach has been proven to also provide a quantum-exact
effective description of non-geometric heterotic models [18,31,35]. We expect that
the analysis carries over in our case. Since there is no microscopic description of the
dual F-theory, the explicit form of the F-theory/heterotic string duality in this article
also provides new insights into the physics of F-theory compactifications. One of
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the conclusion of the work in [31] was that taking a heterotic compactification even
a “small distance” from the large radius limit destroys the traditional semiclassical
interpretation and no longer allows us to discuss the compactification as being that
of a manifold with a bundle. We point out that this is not unlike what happens in
type II compactifications, where the analysis of �-stability [3,16] shows that going
any distance away from large radius limit, no matter how small, necessarily changes
the stability conditions on some D-brane classes and so destroys the semiclassical
interpretation of the theory. Thus, we expect that our results might be of importance for
a better understanding of non-perturbative aspects of the heterotic string, for example,
as it relates to NS5-branes states and small instantons [48,56].

Moreover, we expect that the close connection between modular forms and equa-
tions presented in this article will enable us to use a well-known F-theory construction
and build interesting classes of non-geometric heterotic compactifications which have
duals described in terms of K3-fibered Calabi-Yau manifolds.. The starting point is
the heterotic string compactified on a torus and utilizes the non-perturbative duality
symmetries which this theory possesses. The construction was explained in consider-
able detail in [31,35] and was then used to obtain many examples realizing families of
non-geometric heterotic compactifications with one Wilson line parameter [23,27,33]
using the classification of pencils of genus-two curves by Namikawa and Ueno [37–
39]. In [24], our classification result was already used to construct certain examples of
families of non-geometric heterotic string vacua with two Wilson line parameters and
corresponding Calabi–Yau threefold. It is interesting to ask whether a systematic pro-
gram can be carried out, classifying all resulting compactifications in six dimensions.
We leave this question for future work.
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