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Abstract

We use the language of differential cohomology to give an analytic
description of the moduli space of classical vacua for heterotic string
theory in eight dimensions. The complex structure of this moduli space
is then related to the character of the appropriate Kac-Moody algebra.

1 Introduction

The general framework of heterotic string theory [24] [25] [10] involves, as
defining geometric data, a space-time in the form of a smooth spin manifold
X and a principal G-bundle P → X. In this context, the background fields
are given by a triplet (g,A,B) consisting of a riemannian metric g on X, a
connection A on P and a B-field B, which is represented, at least locally,
by a two-form on X.
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The first conditions that one has to impose, as required by the cancellation
of anomalies, are topological. The space-time X has to be ten-dimensional.
The Lie group G must be (E8 × E8) o Z2 or Spin(32)/Z2. Moreover, the
three background fields are to be considered up to gauge equivalence. This
means that the connection is considered up to bundle isomorphism, that
the metric is considered up to diffeomorphism equivalence, and that the
two-form B is considered up to equivalence by adding exact two-forms.

One of the major problems at this point has been to understand exactly
the mathematical nature of the B-field. In the original physics interpretation
[25], the B-field B is manipulated as a globally defined two-form on X with
its contribution to the world-sheet path-integral being given by the phase:

(1) exp
(
i

∫
Σ
x∗B

)
.

However, this definition is not fully satisfactory. First, B in this formulation
lacks a gauge invariance. Second, the B-field interpretation in heterotic
string theory must obey the world-sheet anomaly cancellation mechanism,
as explained for instance by Witten in [19]. This requires, among other
conditions, that the path-integral contribution (1) of B is not a complex
number of unit length but rather an element in the total space of a non-
trivial circle bundle. In addition, the field strength HB, which is a globally
defined three-form, has to satisfy the equation.

(2) dHB =
1

4πcG
Tr (FA ∧ FA)− 1

4π
Tr (Fg ∧ Fg) .

Here FA and Fg represent the curvature forms of the connection A and the
Levi-Civita connection associated to the metric g in TX, respectively. The
number cG is the dual Coxeter number of G. In the naive interpretation of
B as a globally defined two-form, HB = dB. In particular HB is a closed
3-form and cannot satisfy (2).

The above issues suggest that the B-field is not in fact a globally defined
two-form but rather must be given by a more subtle object, which locally
resembles a two-form but has a non-trivial global structure. In the recent
years, it has been noted by a number of authors (see for instance [19] and
[5]) that, in order to satisfy the above conditions, the B-field has to be
understood within a gerbe-like formalism. In this paper we follow ideas
developed by Freed in [5] and Hopkins and Singer in [21], and interpret the
B-field as a non-flat 2-cochain in differential cohomology1 . These cochains

1In the general heterotic string setting, this approach introduces the B-field as an object
in differential KO-theory. However, when one compactifies over the two-torus, as is the
case we shall be dealing with here, the topological type of the space-time is sufficiently
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appear as a mixture of Cech cocycles and local differential forms and can be
regarded, in an open covering Ua of X, as multiplets:

B =
(
H, ω2

a, ω
1
ab, ω

0
abc, ω

−1
abcd

)
with H being a globally defined three-form (the field strength HB) and ωi lo-
cal i-forms (constant functions to 2πZ if i = −1). The anomaly cancellation
condition appears in this formulation as:

(3) ďB = CSA − CSg
where ď represents the differentiation operator in differential cohomology
and CSA and CSg are Chern-Simons terms regarded as non-flat 3-cocycles.
One can introduce then a concept of gauge invariance for B-fields. Two
B-fields are said to be gauge equivalent if the two differential 2-cochains
underlying them differ by a coboundary of a flat differential 1-cochain. It
follows that the globally defined 3-form HB, the field strength of B, is gauge
invariant. However, it is not necessarily true that HB is closed. In fact,
one recovers easily the expected equation (2) by just writing the anomaly
cancellation condition (3) at the field strength level.

Moreover, apart from their rather technical construction, the B-fields as
differential 2-cochains carry a very nice geometrical interpretation. They
represent sections in a two-gerbe [11] and carry holonomy denoted:

(4) exp
(
i

∫
Σ
x∗B

)
along any map x : Σ → X in the same way circle bundle connections carry
holonomy along loops. This is the proper meaning of (1), the B-field con-
tribution to the world-sheet path-integral. However the quantity (4) is not
an unitary complex number but rather a point in the total space of a circle
fibration, which fits exactly the picture required anomaly cancellation (see
[19] for details).

In this framework, the heterotic classical vacua are obtained by taking the
triplets (A, g,B) satisfying the cancellation condition (3) and imposing over
them the classical Equations of Motion. These equations can be written as:

(5) FA = 0, Ric(g) = 0, HB = 0.

The moduli space of heterotic classical vacua MG
het is then constructed out

of all solutions to (5) modulo gauge equivalence.

The goal of this paper is to work out a precise mathematical description
of the moduli space of classical vacua for heterotic string theory when the

low-dimensional that one can ignore the differences between KO-theory and standard
cohomology.
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space-time is compactified along a two-torus. Namely, X = R8 × E with
E a two-torus and the fields are considered up to Euclidean equivalence on
the R8 factor. The moduli space of quantum vacua associated to this case
has been described in [24] and [25] from a purely physical perspective. In
that formulation, the B-field appears as a globally defined two-form B and
the metric and B fit together to form the imaginary and, respectively, the
real part of the so-called complexified Kahler class. The physical quantum
features of the theory depend then on a certain lattice of momenta L(A,g,B)

described by Narain in [24]. This is a rank 20 lattice that lives inside a fixed
ambient real space R2,18, is well-defined up to O(2)×O(18) rotations and is
even and unimodular. The real group O(2, 18) acts transitively on the set
of all L(A,g,B) and, in this regard, one can consider the physical momenta as
being parameterized by the 36-dimensional real homogeneous space:

(6) O(2, 18)/O(2)×O(18).

One identifies then the points in (6) corresponding to equivalent quantum
theories. This amounts to factoring out the left-action of the group Γ of
integral isometries of the lattice. The quantum (Narain) moduli space of
distinct heterotic string theories compactified on the two-torus appears as:

(7) Mquantum
het = Γ\O(2, 18)/O(2)×O(18).

From a geometric interest point of view, the above physics-inspired Narain
construction has a couple of disadvantages. First, since (7) provides a de-
scription of quantum states, not all the identifications are accounted by clas-
sical geometry. As explained for example in [27], part of the Γ-action models
the so-called quantum corrections and results in identifications of momenta
for pairs of triplets (A, g,B) which are not isomorphic. Second, the Narain
construction does not provide a holomorphic description. Technically, one
can endow the homogeneous quotient (7) with a complex structure, but
holomorphic families of elliptic curves and flat connections do not embed
as holomorphic subvarieties in Mquantum

het (see the Appendix of [20] for an
outline of this issue).

In this paper, we take a completely geometrical approach and use the
interpretation of the B-fields as differential cochains in order to give an
analytic description for the moduli space of classical vacua MG

het. In section
4 we prove the following:

Theorem 1. The moduli space of classical solutions MG
het can be given the

structure of a 18-dimensional complex variety with orbifold singularities.
Moreover, MG

het represents the total space of a holomorphic C∗-fibration

(8) MG
het →ME,G
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over the moduli space ME,G of isomorphism classes of pairs of elliptic curves
and flat G-bundles, where G = (E8 × E8) o Z2 in the case of the E8 × E8

heterotic theory and G = Spin(32)/Z2 in the case of Spin(32)/Z2 theory.

In this context, it is important then to analyze the holomorphic type of
fibration (8). The structure of the base space ME,G is well-known (see
[9]). Given a fixed elliptic curve E, the family of equivalence classes of
flat G-bundles (for G simply-connected) can be identified with the complex
quotient:

W\ (Pico(E)⊗Z ΛG)

where ΛG represents the coroot lattice of G and W is the Weyl group. Using
a coordinate oriented model to track down the variation of the elliptic curve,
one can regard ME,G as a complex orbifold:

(9) ΠG\VG.

where VG = H×(C⊗Z ΛG). H represents the complex upper half-plane and
ΠG is a modular group acting on VG by mixing as a semi-direct product the
SL(2,Z) action on H and the affine Weyl group action on C⊗Z ΛG.

The model (9) allows us to analyze easily holomorphic C∗-fibrations over
ME,G. Such fibrations over a complex orbifold are best described in terms
of equivariant line bundles over the universal cover. Those are holomorphic
line bundles L → VG where the action of the modular group ΠG on the
base is given a lift to the fibers. All holomorphic line bundles over VG are
trivializable and a lift of the action of ΠG to fibers can be obtained through
a set of automorphy factors (ϕa)a∈ΠG

with ϕa ∈ H0(VG, O∗
VG

) satisfying:

ϕab(x) = ϕa(bx) · ϕb(x).

Such a set generates a class in the group cohomology H1(ΠG,H
0(VG, O∗

VG
)).

Two automorphy factor sets provide isomorphic fibrations if and only if they
determine the same group cohomology class.

There is one particular important holomorphic C-fibration over ME,G,
the ΛG-character fibration. This fibration can be defined using the model
(9) as the fibration supporting the ΛG-character function:

(10) BΛG
: VG → C, BΛG

(τ, z) =
ΘΛG

(τ, z)
η(τ)16

where ΘΛG
(τ, z) represents the holomorphic theta-function associated to the

lattice ΛG and η is Dedekind’s eta function. The holomorphic function BΛG

has an important interpretation. It represents (see [12]) the zero-character of
the level l = 1 basic highest weight representation of the Kac-Moody algebra
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associated to G. Under the action of the modular group, BΛG
descends to

a section in a non-trivial C-fibration:

(11) Z →ME,G

We call this the ΛG-character fibration. Then, as we prove in section 6, one
has:

Theorem 2. The heterotic C∗-fibration (8) can be holomorphically identified
with the C∗-fibration induced by the ΛG-character fibration (11).

One can then conclude that, in the light of Theorem 1, the moduli space
MG

het of heterotic classical vacua compactified along the 2-torus can be seen
naturally as the total space of the C∗-fibration associated to (11).

As a final note, we comment on the relation between the space MG
het

that we construct here and the Narain moduli space Mquantum
het of quantum

vacua (7). It turns out that, there exists a diffeomorphism between an
open neighborhood along the zero section of the zero-section in the C∗-
fibration of MG

het and an open subset of Mquantum
het on which the volume

of the elliptic curve is large. That is precisely the region where physics
predicts the quantum corrections became insignificant and the moduli spaces
of classical and quantum vacua should coincide. This issue, as well as the
place of MG

het in the framework of the F-Theory/Heterotic String duality in
eight dimensions, is the subject of a joint paper [20] with John Morgan.

This paper is a revised version of the author’s Ph.D. thesis at Columbia
University. The author would like to take this opportunity to thank his
teacher there, John Morgan, for his assistance, encouragement and patience.

2 The B-field as a Differential Cochain

This section introduces the framework needed for giving a precise definition
of the B-field. We shall treat this object in the language of differential
integral cohomology following ideas of Freed [5] and Hopkins-Singer [21].
This approach mixes together differential forms and integral cohomology
and has its roots in earlier works of Deligne [4] and Cheeger-Simons [8].
However, as we shall see, the B-field is a cocycle rather than a class in this
theory.



A. CLINGHER 179

2.1 Differential Cohomology.

Let X be a smooth manifold. Choose U = (Ui)i∈I , an open covering of X
indexed by an ordered set I. For r, s ∈ Z, we set:

Čr,s(U) =


0 if s < −1 or r < 0 ;
Cr(U ,Ωs

X) if 0 ≤ s ;
Cr(U , 2πZ) if s = −1.

where Cr(X,Ωs
X) represents the set of Cech r-cochains with values on the

sheaf of s-forms on X, Ωs
X :

Cr(U ,Ωs
X) =

∏
i0,i1,....ir

Ωs
X(Ui0 ∩ Ui1 ∩ ... ∩ Uir).

Following [5], a flat differential n-cochain is defined as an element of the
direct sum:

Čn(U) :=
⊕
r+s=n

Čr,s(U)

In other words, one can see a flat differential n-cochain as a multi-plet of
differential Cech cochains:

ω = (ωna , ω
n−1
a1a2

, ωn−2
a1a2a3

, ...... ω−1
a1a2....an+2

)

There are two derivation operators acting on the above differential cochains.
A vertical differentiation operator d : Čr,s(U) → Čr,s+1(U) represents the
usual differentiation on each form component (inclusion if s = −1). A
second horizontal operator δ : Čr,s(U) → Čr+1,s(U) is the Cech coboundary
operator:

δ(ωn)a1,a2,....an+2 =
n+2∑
j=1

(−1)j+1ωna1...aj−1aj+1...an+2
|Ua1∩....∩Uan+2

.

The flat cochains together with the two derivations build a double complex
(Čr,s(U), d, δ). As usual in such situations a total differentiation can be
introduced:

ď : Čn(U) → Čn+1(U) , ď|Čr,s = δ|Čr,s + (−1)r+1d|Čr,s .

(Č∗(U), ď) is a cochain complex, defining flat n-cocycles and flat n-coboundaries
which in turn generate U-cohomology groups Ȟn(U).

Let V = (Vj)j∈J be a refinement of the open covering U = (Ui)i∈I and let
σ : J → I be a subordination map such that Vj ⊂ Uσ(j) for any j ∈ J . One
then has the restriction homomorphism:

σ∗ : Čn(U) → Čn(V).
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commuting with the two differentiation operators d and δ. This defines a
morphism of cochain complexes inducing a homomorphism at cohomology
level:

σUV : Ȟn(U) → Ȟn(V).
As in Cech theory:

Lemma 3. The homomorphism σUV depends only on the open covering U
and refinement V and not on the choice of subordination map σ : J → I.
Furthermore, σUU is identity, and if W is a refinement of V then σUW =
σVW ◦ σUV .

Proof. Assume σ, σ′ : J → I are two subordination maps with Vj ⊂ Uσ(j) ∩
Uσ′(j). We define a family of homomorphisms:

kq : Čq(U) → Čq−1(V)

by the following pattern. If

ω = (ωqi1 , ω
q−1
i1i2

, ωq−2
i1i2i3

, ...... ω−1
i1i2....iq+2

) ∈ Čq(U)

then kq(ω) = η ∈ Čq−1(V) where

η = (ηq−1
j1

, ηq−2
j1j2

, ηq−3
j1j2j3

, ...... η−1
j1j2....jn+1

) ∈ Čq(U)

with components:

(12) ηq−rj1j2···jr =
r∑
t=1

(−1)t+1 ωq−rσ(j1)···σ(jt)σ′(jt)σ′(jt+1)···σ′(jr) |Vj1
∩Vj1

∩···∩Vjr
.

We claim that:

(13) ďkq + kq+1ď = σ∗ − (σ′)∗.

Indeed, for a multi-index (j) = (j1j2 · · · jr) one can write:(
ďk(ω)

)
(j)

= (−1)rdk(ω)(j) + [δk(ω)](j) =

= (−1)r
r∑
t=1

(−1)t+1 dωσ(j1)···σ(jt)σ′(jt)···σ′(jr) +

+
r∑
l=1

(−1)l+1(kω)j1···jl−1jl+1···jr =

= (−1)r
r∑
t=1

(−1)t+1 dωσ(j1)···σ(jt)σ′(jt)···σ′(jr) +

+
r∑
l=1

l−1∑
t=1

(−1)t+lωσ(j1)···σ(jt)σ′(jt)···σ′(jl−1)σ′(jl+1)···σ′(jr)) +
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+
r∑
l=1

r−1∑
t=l

(−1)t+l ωσ(j1)···σ(jl−1)σ(jl+1)···σ(jt−1)σ′(jt−1)···σ′(jr)).

Similarly,[
k(ďω)

]
(j)

=
r∑
t=1

(−1)t+1
(
ďω
)
σ(j1)···σ(jt)σ′(jt)···σ′(jr)

=

= (−1)r+1
r∑
t=1

(−1)t+1 dωσ(j1)···σ(jt)σ′(it)···σ′(ir)+

+
r∑
t=1

t−1∑
l=1

(−1)t+l ωσ(j1)···σ(jl−1)σ(jl+1)···σ(jt)σ′(jt)···σ′(jr)+

+
r∑
t=1

(
− ωσ(j1)···σ(jt−1)σ′(jt)···σ′(jr) + ωσ(j1)···σ(jt)σ′(jt+1)···σ′(jr)

)
+

+
r∑
t=1

r+1∑
l=t+2

(−1)t+l ωσ(j1)···σ(jt)σ′(jt)···σ′(jl−1)σ′(il+1)···σ′(jr) .

After canceling the terms with opposite signs, one obtains:(
ďk(ω)

)
(j)

+
[
k(ďω)

]
(j)

= ωσ(i1)σ(i2)···σ(ir) − ωσ′(i1)σ′(i2)···σ′(ir).

Relation (13) shows that kq represents a homotopy operator between the two
cochain complex morphisms (σ′)∗ and σ∗. Hence, they must induce identical
morphisms at cohomology level. This proves the first part of lemma. The
second part follows immediately. �

Lemma 3 shows that
(
Ȟr(U), σUV

)
forms a direct system. One then takes

the direct limit over all possible coverings, defining:

Ȟr(X) = lim
→
U

(
Ȟr(U), σUV

)
.

These flat differential cohomology groups are known to form the smooth
Deligne cohomology of X [4].

The differential objects we wish to study and make use of are non-flat ex-
tensions of the above cochains. By definition, a non-flat differential cochain
is a pair (H, ω) consisting of a global (n+ 1)-form H ∈ Ωn+1(X) and a flat
n-cochain ω. One represents such an object, in an open covering, as a multi-
plet of form-valued Cech cochains:

ω = (H, ωna , ω
n−1
a1a2

, ωn−2
a1a2a3

, ...... ω−1
a1a2....an+2

).
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The top global form H represents the field strength of ω. Let us denote
the set of non-flat differential n-cochains defined over an open covering U
by:

NČn(U) = Čn(U)× Ωn+1(X).
The differentiation operator ď extends naturally to Čn(U) . As in the flat
case, (NČ∗(U), ď) determines a cochain complex defining cocycles NŽn(U)
and coboundaries NŽn(U).

The discussion in Lemma 3 can be immediately reformulated to the new
context. For a refinement V of U with two distinct subordination maps
σ, σ′ : J → I, the two induced restriction homomorphisms:

σ∗, (σ′)∗ : Čn(U) → Čn(V).

differ by:

(14) ďkq + kq+1ď = σ∗ − (σ′)∗.

In above expression, k∗ is the homotopy operator

kq : NČq(U) → NČq−1(V)

defined by:

kq
(
H, ωqi1 , ω

q−1
i1i2

, ωq−2
i1i2i3

, ......, ω−1
i1i2....iq+2

)
=

=
(
0, ηq−1

j1
, ηq−2

j1j2
, ηq−3

j1j2j3
, ......, η−1

j1j2....jn+1

)
with components ηq−rj1j2....jr

, 1 ≤ r ≤ q given by formulas (12). In a similar
manner to the flat case, projection

σUV : NȞq(U) → NȞq(V)

does not depend on the choice of subordination assignment. Differential
non-flat cohomology groups can then be defined:

(15) NȞ∗(X) = lim
→
U

(
NȞr(U), σUV

)
.

However, we are more interested here in non-flat cochains as explicit differ-
ential objects rather than as a framework for the above non-flat cohomology
groups. In fact, one can show that the non-flat cohomology (15) recovers
the Cech cohomology of X with coefficients in the sheaf of smooth functions
to the circle, NȞn(X) ' Hn

Cech(X, S
1).

Let us denote the set of non-flat differential cochains on X by

NČn(X) =
⋃
U

NČn(U).

Among the cochains in NČn(X) we give special consideration to those as-
sociated to global differential forms. Let T ∈ Ωn(X) be such a n-form. In
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a given open covering, U = (Ui)i∈I , one can consider a differential cocycle
with only two non-vanishing components as follows:

(16) (dT, T |Ui , 0, 0, · · · ) .

This makes a non-flat differential n-cocycle. In future considerations we
shall use differential forms in cocycle-like computations, always interpreting
the form as in (16).

There exists a natural equivalence relation on the set of non-flat differen-
tial n-cocycles.

Definition 4. Two cocycles ω1 ∈ NŽn(U1) and ω2 ∈ NŽn(U2) are said
to be equivalent (denoted ω1 ∼ ω2) if there exists a common refinement U
and corresponding subordination maps such that the difference of the two
restrictions of ω1 and ω2 on NŽn(U) is a coboundary of a differential flat
(n-1)-cochain on U .

Clearly, two flat n-cocycles are equivalent if and only if they determine the
same class in Ȟn(X). The relation ∼ does not extend as equivalence rela-
tion for general non-flat n-cochains. That is because there exist n-cochains
ω ∈ NČn(U) which restricted on a refinement U ′ through two distinct sub-
ordination maps give restrictions ω′, ω′′ ∈ NČn(U ′) such that the difference

ω′ − ω′′ = ďknω + kn+1ďω

is not necessarily a coboundary of a flat (n− 1)-cochain. However, relation
∼ is still an equivalence relation on the subset Bn(X) ⊂ NČn(X) defined
as:

(17) Bn(X) =
{
ω ∈ NČn(U) | U open covering, ďω ∈ Ωn+1(X)

}
.

2.2 Geometrical Interpretation

The differential cochains introduced above have a nice geometrical interpre-
tation. Roughly speaking, they represent connections on higher dimensional
analogues of circle bundles, n-gerbes. Let us start by looking at the low-
dimensional models.

In a given open covering U = (Ua)a∈A of X, a non-flat differential zero-
cochain appears as a triplet σ = (T, fa, tab) with T being a global 1-form, fa
local functions and tab 2πZ-valued assignments. If σ is a cocycle, relations
dT = 0, Ta = dfa and fa − fb = tab assure us that the local functions
qa = exp(ifa) glue together to a global function q : X → S1. Moreover,
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the global 1-form T is obtained by just pulling back through q the Maurer-
Cartan form of S1. Two zero-cocycles are equivalent if and only if they
determine the same global map q : X → S1.

In a similar open neighborhood, a non-flat one-cochain appears as:

ω = (H, θa, hab, rabc)

where H is a global 2-form, θa are local 1-forms, hab are local functions
and rabc are 2πZ-valued integral assignments. Again, if ω is a cocycle then
the local ingredients above are related by dH = 0, Ha = dθa, θa − θb = hab,
hbc−hac+hab = rabc and rbcd−racd+rabd−rabc = 0. Let gab : Ua∩Ub → S1 be
the local functions gab = exp(ihab). They satisfy the relation gabg

−1
ac gbc = 1

and therefore make a Cech 1-cocycle with a cohomology class in H1(X,S1).
Such an object is known to determine a circle bundle L → X. The rest
of the cocycle conditions tell that local 1-forms θa glue together to form a
circle connection on L. The global two-form H is naturally the curvature
of the connection. One can read the connection holonomy along 1-loops
directly from the cocycle ω. Let us assume γ : S1 → X is a smooth loop
in X. The open covering (Ua)a∈A will, by restriction, cover γ. We choose a
triangulation of the loop γ subordinated to the covering. Such a feature is
determined by a union:

γ = ∆1 ∪∆2 ∪ .... ∪∆n

with ∆i : [0, 1] → γ , ∆i(1) = ∆i+1(0) for 1 ≤ i ≤ n− 1 and ∆n(1) = ∆1(0).
The triangulation γ is subordinated to the covering (Ua)a∈A in the sense
that a subordination map ρ : {1, · · ·n} → A is chosen such that ∆i ⊂ Uρ(i).
The holonomy of the connection around the loop γ can then be computed
as the exp(i · holγ) where:

(18) holγ =
∑
i

∫
∆i

θρ(i) −
∑
i

∫
∆i(0)

hρ(i)ρ(i−1)

Here, ρ(−1) = ρ(n). So far, it seems that the above formula for holγ depends
on the choice of triangulation and subordination map. However, one can
show that under variations of triangulation of the loop or subordination map
ρ, the expression holγ gets modified by an element in 2πZ. The exponential
exp(i · holγ) remains therefore unchanged under such modifications.

Geometrically, a non-flat differential one-cocycle is therefore just a cir-
cle bundle connection. One verifies immediately that two one-cocycles are
equivalent if and only if the corresponding connections are gauge equivalent.

Assume now that under the above conditions one introduces a non-flat
one-cochain σ satisfying ďσ = ω. Using the earlier notation, one obtains:
H = dT , θa = Ta− dfa, hab = −fa+ fb+ tab and rabc = tbc− tac+ tab. From
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here, one deduces that gab = q−1
a qb and therefore the local functions qa glue

together to form a global section trivializing the circle bundle L. Moreover,
the holonomy of the connection is described in this trivialization by just
integrals of the global 1-form T . One can say therefore that relation ďσ = ω
realizes σ as a “geometrical” section in L, in the sense that the information
provides a section together with its behavior under holonomy of the existing
S1-connection.

The above arguments can be generalized to fit higher dimensional dif-
ferential cochains. Let ω ∈ NŽn(X) be a differential non-flat n-cocycle
described in an open covering (Ua)a∈A as a multi-plet:

(19) ω = (H, ωna , ω
n−1
a1a2

, ωn−2
a1a2a3

, .... ω0
a1a2....an+1

, ω−1
a1a2....an+2

).

The upper index represents the degree of the corresponding local form. The
−1 index corresponds to locally constant functions taking values in 2πZ.
One defines local S1-valued functions:

ga1a2....an+1 : Ua1 ∩ Ua2 ∩ · · · ∩ Uan+1 → S1,

ga1a2....an+1 = exp(i · ω0
a1a2....an+1

).

It is a straightforward computation that (δg)a1a2....an+2
= 1 and therefore

g defines a Cech n-cocycle. This data defines (see [11] for details) a (n-1)-
gerbe. These are objects which, due to their geometrical features, can be
considered higher dimensional analogues of circle bundles. The cocycle ω
defines then a connection on such a (n-1)-gerbe. Such a connection carries, as
we shall explain shortly, a holonomy along any embedded closed n-manifold.
Two connections are said to be gauge equivalent if they determine similar
holonomies. Moreover an equality of type ďσ = ω with σ ∈ NČn−1(X)
can also be explained geometrically. Similarly to the circle bundle case, the
(n-1)-cochain σ determines a section trivializing the n-gerbe underlying ω.

Let us explain how the holonomy associated to a gerbe connection of type
ω is defined. Suppose Y is a n-dimensional closed submanifold embedded in
X. In order to define the holonomy of ω along Y one needs two additional
ingredients:

1) A dual cell decomposition for Y. That is a decomposition dual
to a triangulation. (We need each vertex to be adjacent to n edges,
each edge to be adjacent to n− 1 2-cells, and so on.) Let us describe
the top cells as (∆i)i∈I . They inherit orientation from the orientation
of Y. We denote by ∆i1i2...ik the n+1-k dimensional cell obtained by
intersecting ∆i1 , ∆i2 , .... ∆ik (if such a cell exist). We assume the
following orientation convention. A cell ∆i1i2...ik receives orientation
as boundary component in ∆i1i2...ik−1

. That means ∆i1i2 is oriented
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as boundary component in ∆i1 which is oriented a priori. ∆i1i2i3 gets
orientation as part of the boundary of ∆i1i2 , and so on. We will refer
to a multi-index in the form (i) = (i1i2 · · · ik). ∆(i) will then be a
(n+1−k)-cell with a certain orientation. Permuting the elements in the
index does not change the cell but the orientation changes according
to the signature of the permutation.

2) A subordination map, ρ : I → A such that ∆i ⊂ Uρ(i).

These being settled, one defines the holonomy of ω along Y as exp (i · holY (ω))
where:

(20) holY (ω) =
n+1∑
k=1

(−1)k+1
∑

(i)=(i1>i2>···>ik)

∫
∆(i)

ωn+1−k
ρ(i1)ρ(i2)...ρ(ik)

Here we just pick an order relation on I to make sure we do not use the same
cell twice during summation. It can be seen that above formula generalizes
the holonomy description for 1-cocycles presented earlier. The holonomy
does not depend on the choice of dual cell decomposition or subordination
map. That is justified by:

Claim 5. The expression holY (ω) above varies by an element in 2πZ under
modifications of the dual cell decomposition ∆i or of the subordination map
ρ.

Proof. We follow two steps. Firstly, we show that varying the subordination
map for the same cell decomposition changes expression (20) by an element
in 2πZ. Secondly, we’ll see that refining a cell decomposition under the
same subordination map does not change (20). These will be enough to
prove Claim 5 .

To start with the first step, let us assume that the initial subordination
map of (∆i)i∈I , :

ρ : I → A
is modified over a unique cell ∆io such that:

ρ̃(i) =

{
ρ(i) if i 6= io ;
ρ̃(io) 6= ρ(io) if i = io ;

Let holY (ω) be the holonomy defined using the subordination map ρ and
h̃olY (ω) be the holonomy defined using ρ̃. We claim the following happens:

holY (ω) − h̃olY (ω) =
∑

(i)=(io=i1>i2>···in+1)

∫
∆(i)

ω−1
ρ(i1)ρ̃(i1)ρ(i2)···ρ(in+1)
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The quantity on the right is then a sum of numbers in 2πZ (integrals are
just functions evaluated in points) and the difference of the two holonomies
is therefore 2π times an integer. That completes the first step. Let us prove
the relation above. Assume the order relation for indices i ∈ I is chosen
such that io is the largest index. We make the following notations:

Pk =
∑

(i)=(io=i1>i2>···>ik)

∫
∆(i)

(
ωn+1−k
ρ(i1)ρ(i2)...ρ(ik) − ωn+1−k

ρ̃(i1)ρ(i2)...ρ(ik)

)
and

Sk =
∑

(i)=(io=i1>i2>···>ik)

∫
∆(i)

dωn−kρ(i1)ρ̃(i1)ρ(i2)···ρ(ik)

Therefore

holY (ω) − h̃olY (ω) =
n+1∑
k=1

(−1)k+1 Pk

But P1 = S1 and in general for 2 < k :

Sk−1 + (−1)k+1 Pk = Sk

This results by just applying Stokes’ Theorem. Hence:

holY (ω) − h̃olY (ω) =
n+1∑
k=1

(−1)k+1 Pk =

= S1 +
n+1∑
k=2

(Sk − Sk−1) = Sn+1.

But since

Sn+1 =
∑

(i)=(io=i1>i2>···>in+1)

∫
∆(i)

ω−1
ρ(i1)ρ̃(i1)ρ(i2)···ρ(in+1)

the needed identity follows.

We now go over the second step. Let us assume we have two different
dual cell decompositions (∆i)i∈I and (∆j)j∈J with the latter one being a
refinement of the former. Say, there’s a map:

ϕ : J → I such that ∆j ⊂ ∆ϕ(j) .

Moreover, both decompositions are subordinated to the covering Ua through
maps:

ρ : I → A

ρ ◦ ϕ : J → A .
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Assume the indices in both I and J are ordered such that the refinement
map ϕ is increasing. We have two expressions for holonomy, depending on
which decomposition we are using:

n+1∑
k=1

(−1)k+1
∑

(i)=(i1>i2>···>ik)

∫
∆(i)

ωn+1−k
ρ(i1)ρ(i2)...ρ(ik)

and
n+1∑
k=1

(−1)k+1
∑

(j)=(j1>j2>···>jk)

∫
∆(j)

ωn+1−k
ρ(j1)ρ(j2)...ρ(jk)

They are the same though. That is (roughly speaking) because ωn+1−k
ρ(j1)ρ(j2)...ρ(jk)

vanishes as soon as two sub-indices are the same. This completes the second
step. �

2.3 Definition of the B-Field.

We are in position to give a definition for the B-field [5]. Recall the notation
in (17).

Definition 6. Let space-time X be a smooth manifold. A B-field on X is a
non-flat differential 2-cochain B ∈ B2(X) defined over an open covering U .

Let us recall that for non-flat differential n-cochains in:

Bn(X) =
{
ω ∈ NČn(U) | U covering, ďω ∈ Ωn+1(X)

}
one has the equivalence relation ∼ defined in 2.1 which extends the standard
cocycle equivalence.

Definition 7. Two B-fields B1, B2 ∈ B2(X) are said to be (gauge) equiva-
lent if B1 ∼ B2.

Two B-fields cannot be normally added up unless they are defined on the
same open covering. However, there is a well-defined summation rule on the
set of equivalence classes:

(21) B2(X)/ ∼ .

For B1, B2 ∈ B2(X), one defines [B1] + [B2] = [B′1 +B′2], where B′1, B
′
2 are

restrictions of B1, B2 on an open covering refining both coverings underlying
B1 and B2. This definition does not depend on the choice of refinement or
subordination maps. In this respect, (21) becomes a group.

Let ω ∈ Ω3(X) be a fixed 3-form and:

Tω = {[B] | B ∈ B2(X), ďB = ω}.
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The equivalence relation does not modify the field strength HB of a B-field
B ∈ B2(X). There is then an exact sequence:

0 → Ȟ2(X) ↪→ B2(X)/ ∼ Φ→ Ω3(X)× Ω3(X)

with Φ(B) = (HB, ďB). Clearly, Tω = Φ−1(Ω3(X)×{ω}). One can therefore
conclude that the field strength projection map:

Tω → Ω3(X), [B] → HB

realizes a fibration over the image, the fibers being principal homogeneous
spaces for the second smooth Deligne cohomology, Ȟ2(X).

Let us review the geometrical meaning attached to these objects. Any
B-field contains a 3-form ω = ďB which (as a differential 3-cocycle in the
sense of (16)) can be seen as a connection Aω on the trivial 2-gerbe over X.
Aω has exact field strength (given by dHB = dω) and it may very well carry
holonomy along closed 3-manifolds embedded in X. The B-field can be seen
as a (geometrical) section trivializing the 2-gerbe. Since B is not required
to be flat, the section is not necessarily parallel with respect to Aω. In fact,
its covariant derivative with respect to Aω is HB.

In general, according to above definition, B-fields are just non-flat dif-
ferential 2-cochains. They do not carry holonomy in the standard sense.
(Non-flat 2-cocycles can be viewed as connections on gerbes and do carry
holonomy along closed surfaces.) However, as mentioned above, B can be
regarded then as a section trivializing a 2-gerbe. But a non-flat 2-cocycle
can be seen (integrated down, see the appendix for details) to give a circle
bundle connection over the space of embedded closed surfaces in X. Its un-
derlying circle bundle is trivial but has no natural trivialization. A B-field
which is a section of a 2-gerbe integrates down to produce a section of this
circle bundle. Thus, a B-field assigns to any closed surface Σ mapping to
X, a point in the circle fiber over the point of the space of mappings given
by Σ → X. We denote this by:

exp
(
i

∫
Σ
B

)
and interpret it as the holonomy of the B-field along Σ. If B is a cocycle
(ďB = 0) the circle bundle has a canonical trivialization and with respect
to that, the quantity above can be seen as a unitary complex number, well-
defined up to an overall phase factor independent of the mapping. It realizes
the standard gerbe connection holonomy.
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2.4 The Chern-Simons Cocycle.

Let G be a compact, simply-connected, simple Lie group and P → X a
principal G-bundle. To any choice of connection A on P → X, one can
associate a non-flat differential Chern-Simons 3-cocycle CSA ∈ NŽ3(X).
As shown by Freed in [5], a general definition for CSA can be achieved by
pulling back a universal choice on BG through classifying maps. However,
in this way CSA is well-defined just up to a flat differential 3-coboundary.
For computational reasons we would like to introduce CSA directly as a 3-
cocycle. Although not canonically, this can be achieved by fixing a local
trivialization of the bundle. Our task is further eased by the fact that all
G-bundles we shall be dealing with throughout this paper are trivializable.

Let g be the Lie algebra of G and ad: G→ End(g) the adjoint represen-
tation. Chern-Weil theory provides an isomorphism:

H4(BG,R) ' I2(G)

where I2(G) represents the family of ad-invariant quadratic forms on g. Such
a quadratic form is called integral if it represents an integral cohomology
class in H4(BG,R). For compact, simply connected, simple, Lie groups G,
H4(BG,Z) ' Z. The integral ad-invariant forms make a free group a rank
one. A generator is given by:

(22) q(a) =
1

16π2cG
< a, a >k .

Here, the right-hand side bracket denotes the Killing form on g. The number
cG is the Dynkin index of G which is always integer or half-integer . cG = 1/2
for G = SU(n). For G = E8 the number cG equals the dual Coxeter number
30.

The Lie bracket on g can be naturally extended to a graded Lie algebra
bracket on Ω∗(X, g). Precisely,

[ωp, ωq] (v1, v2 · · · vp+q) =

1
(p+ q)!

∑
σ∈Sp+q

(−1)sgn(σ)
[
ωp(vσ(1), vσ(2) · · · vσ(p)), ω

q(vσ(p+1), · · · vσ(p+q))
]
.

It satisfies
[ωp, ωq] = (−1)pq+1 [ωq, ωp]

as well as the Jacobi identity

[ωp, [ωq, ωr]] = [[ωq, ωr] , ωp] + (−1)pq [ωq, [ωp, ωr]] .

The inner product (22) extends as well to a pairing:

〈·, ·〉 : Ωp(X,g)⊗ Ωq(X,g) → Ωp+q(X)
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〈ωp, ωq〉 (v1, v2 · · · vp+q) =

1
(p+ q)!

∑
σ∈Sp+q

(−1)sgn(σ)
〈
ωp(vσ(1), vσ(2) · · · vσ(p)), ω

q(vσ(p+1), · · · vσ(p+q))
〉
k
.

One can check that:

〈ωp, ωq〉 = (−1)pq 〈ωq, ωp〉 and 〈ωp, [ωq, ωr]〉 = 〈[ωp, ωq] , ωr〉 .

On G, one has the g-valued Maurer-Cartan 1-form θG, which assigns to each
vector its left-invariant extension. This satisfies:

L∗gθG = θG, and R∗gθG = adg−1θG

where Lg, Rg : G → G represent left and right multiplication with g ∈ G.
Its differential verifies the Maurer- Cartan equation:

dθG +
1
2

[θG, θG] = 0.

Combining the two pairing operators we obtain a new 3-form on G:

WG = −1
6
〈θG, [θG, θG]〉 ∈ Ω3(G,R).

It is a closed bi-invariant 3-form with integral periods.

We introduce then the connection data. A connection on P → X can be
seen as a 1-form A ∈ Ω1(P, g) satisfying:

L∗pA = θG, and R∗gA = adg−1A.

The curvature,

F = dA+
1
2

[A, A]

verifies:
L∗pF = 0, and R∗gF = adg−1F

as well as the Bianchi identity;

dF +
1
2

[A, F ] = 0.

The Chern-Simons 3-form is by definition a global form on the total space:

CSA =
〈
A, dA+

1
3

[A, A]
〉

=
〈
A, F − 1

6
[A, A]

〉
∈ Ω3(P,R).

Its basic properties are:

• L∗pCSA = WG

• R∗gCSA = CSA
• dCSA = 〈F, F 〉
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the last relation being the standard computation for the Chern-Simons ac-
tion.

So far, all objects were defined on the total space of the bundle. However,
by employing a choice of local trivializations, all data can be transfered down
to X. Here we simplify our discussion. We assume that the G-bundle P → X
is trivial. We fix, once for all, a global section s : X → P trivializing the
bundle. In this setting, everything can be pulled-back on X. We shall keep
the same notation for the curvature 1-form and its curvature and Chern-
Simons three-form although what we really mean is their pull-back through
the section s. The Chern-Simons non-flat differential 3-cocycle can then be
defined as the 3-cocycle induced by the global 3-form:

2π
〈
A, dA+

1
3

[A, A]
〉

= 2π
〈
A, F − 1

6
[A, A]

〉
∈ Ω3(X,R).

In differential cocycle language the Chern-Simons 3-cocycle can be repre-
sented in a random open covering as:

(23) CSA = 2π
(
〈F, F 〉 ,

〈
A, dA+

1
3

[A,A]
〉
|Ua , 0, 0, 0, 0

)
.

This makes a well-defined cocycle since the global 4-form 2πH = 2π 〈F, F 〉 ∈
Ω4(X) has periods in 2πZ. If G = SU(n), H = ch2(F ) and its associated 4-
cohomology class recovers the second Chern class c2(P ) ∈ H4(X,Z). Since
the bundle is trivial this cohomology class vanishes.

The formulation (23) of CSA depends on the choice of trivialization s.
However, a variation of s changes CSA by a flat 3-coboundary. The gauge
class of the 3-cocycle does not change. The above definition of the Chern-
Simons 3-cocycle can be extended to non-trivial G-bundles. The construc-
tion process involves fixing a family of local trivializations. However, we
shall not deal with the non-trivial bundle case here.

We continue with:

Lemma 8. The holonomy of CSA along a closed 3-manifold W embedded
in X recovers the Chern-Simons invariant cs(W,A).

Proof. This follows from standard arguments in Chern-Simons theory. Let
W ↪→ X be an embedded closed 3-manifold. There always exists a 4-
manifold M such that ∂M = W . The bounding 4-manifold M is not nec-
essarily embedded in X. Due to its triviality, the bundle P extends to a
G-bundle P̃ over M . The global section S and connection A extend also to
s̃ and Ã on P̃ . Therefore the restriction on W of the Chern-Simons cocycle
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CS extends to a non-flat 3-cocycle CS
Ã

on M . In this setting:

(24) holW (CSA) = exp
(

2π ·
∫
M

〈
F̃ , F̃

〉)
.

But (24) is exactly the Chern-Simons invariant cs(W,A). �

In what follows we analyze the way Chern-Simons cocycles (seen here as
global 3-forms due to triviality of the bundle) change under the action of
symmetry group G of bundle automorphisms ϕ for P covering orientation
preserving diffeomorphisms ϕ̄ on X.

Theorem 9.

1) For each ϕ ∈ G and connection A there exist a differential flat 2-chain
θ(A,ϕ) ∈ B2(X) such that

(25) CSϕ∗A = ϕ̄∗CSA + ďθ(A,ϕ).

2) For any two ϕ1, ϕ2 ∈ G, the quantity:

(26)
[
θ(A,ϕ1◦ϕ2)

]
−
[
θ(ϕ∗1A,ϕ2)

]
−
[
ϕ̄∗2θ(A,ϕ1)

]
vanishes in B2(X)/ ∼.

Proof. We look at the first part of the theorem. The symmetry group G con-
sist of all automorphisms ϕ of the bundle P covering orientation preserving
diffeomorphisms ϕ̄ on X. It includes as a normal subgroup the group of
standard gauge transformations G(P ). Technically, we have the following
short exact sequence of groups:

(27) {1} → G(P ) → G → Diff+(X) → {1}.

Due to triviality of the bundle the above sequence splits. Indeed there is
a map Diff+(X) → G, ϕ̄  ϕ̄o sending a diffeomorphism ϕ̄ of X to the
unique automorphism of P leaving the section s invariant. This map builds
a section for the second projection in the exact sequence (27). Therefore
any automorphism ϕ ∈ G can be decomposed uniquely as:

(28) ϕ = ψ ◦ ϕ̄o

with ψ ∈ G(P ). The symmetry group can then be understood as a semi-
direct product:

G(P ) o Diff+(X).
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Let ψ be a standard gauge transformation. In the chosen trivialization s,
ψ can be seen through a smooth function t : X → G. For any connection A
we get:

ψ∗A = adt−1A+ t∗θG.

The Chern-Simons three-form gets modified as follows:

(29)
〈
ψ∗A, dψ∗A+

1
3

[ψ∗A,ψ∗A]
〉
−
〈
A, dA+

1
3

[A,A]
〉

=

= d 〈adt−1A, t∗θG〉+ t∗WG.

The 3-form WG is closed and has integral periods. Therefore, one could
interpret 2π · WG as a flat 3-cocycle with trivial holonomy. Hence, we can
pick a universal choice of a flat 2-cochain η ∈ Č2(G) satisfying ďη = 2π ·WG.
Based on this assumption we define:

(30) θ(A,ψ) = 2π · 〈adt−1A, t∗θG〉 + t∗η

The first term on the right-hand side of (30) is to be interpreted as a non-flat
differential 2-cochain representable in a random covering Ua as:

2π · (0, 〈adt−1A, t∗θG〉 |Ua , 0, 0, 0 ) .

In this setting θ(A,ψ) as defined in (30) becomes a differential flat 2-cochain.
A straight-forward computation based on (29) shows that:

(31) CSψ∗A = CSA + ďθ(A,ψ).

Here we make use of the fact that CSA and CSψ∗A, as 3-cocycles associated
to global 3-forms, can be represented in any choice of open covering, in
particular on the covering underlying θ(A,ψ). The above expression is then
(25) in the case of a standard gauge transformation.

Let us consider ϕ ∈ G. According to (28), we can uniquely decompose ϕ
as:

ϕ = ψ ◦ ϕ̄o
where ϕ̄o is the unique automorphism covering ϕ̄ on base space, preserving
the trivializing section s and ψ ∈ G(P ). Clearly:
(32)
CSϕ∗A = CS(ψ◦ϕ̄o)∗A = CSϕ̄∗o(ψ∗A) = ϕ̄∗CSψ∗A = ϕ̄∗

(
CSA + ďθ(A,ψ)

)
.

Defining:
θ(A,ϕ) = ϕ̄∗θ(A,ψ)

and using this in (32) we obtain:

CSψ∗A = ϕ̄∗CSA + ďθ(A,ψ)

which is exactly equation (25).
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We prove now the second part of the theorem. As before, we start by
analyzing the case when the two automorphisms involved are just gauge
transformations. Let ψ1, ψ2 ∈ G(P ). We have:

P
ψ1→ P

ψ2→ Py y y
X = X = X.

The three flat 2-cochains involved, θ(A,ψ1◦ψ2), θ(ψ∗1A,ψ2) and θ(A,ψ1) live on
different open coverings. However, our goal is to prove an equality involving
their equivalence classes. We take a common refinement and make choices
of subordination maps restricting therefore the three flat 2-cochains on a
unique common open covering where they can be added up. The equivalence
classes won’t be affected by the choice of refinement. In this setting:

(33) θ(A,ψ1◦ψ2) − θ(ψ∗1A,ψ2) − θ(A,ψ1) =

= 2π ·
〈
ad(t2t1)t−1A, (t2t1)∗θG

〉
− 2π ·

〈
adt−1

2
(adt−1

1
A+ t∗1θG), t∗2θG

〉
−

− 2π ·
〈
adt−1

1
A, t∗1θG

〉
+ (t2t1)∗η − t∗2η − t∗1η =

(34) = 2π ·
〈
adt−1

2
t∗1θG, t

∗
2θG

〉
+ (t2t1)∗η − t∗2η − t∗1η.

Therefore, expression (33) does not depend on connection A. Now, clearly,
(34) makes a differential 2-cocycle. That is because:

ď
(
2π ·

〈
adt−1

2
t∗1θG, t

∗
2θG

〉
+ (t2t1)∗η − t∗2η − t∗1η

)
=

= 2π · d
〈
adt−1

2
t∗1θG, t

∗
2θG

〉
+ (t2t1)∗WG − t∗2WG − t∗1WG = 0.

It is also a flat 2-cocycle since all 2-cochains θ(A,ψ) are flat. We show (34)
is actually a coboundary of a flat differential 1-cochain. That follows from
the fact that its holonomy along any embedded compact oriented 2-manifold
vanishes. Let Σ ⊂ X be an embedded smooth surface. There always exist
a compact, oriented 3-manifold W such that ∂W = Σ. It is not necessarily
that W is embedded in X. The bundle P extends to P̃ over W and so does
the trivialization s. Obstruction theory (based on π1(G) = 0) shows that the
two gauge transformations ψi, i ∈ {1, 2} extend to gauge transformations
ψ̃i, i ∈ {1, 2} in P̃ . They correspond to functions: t̃i : W → G. Accordingly,
the flat 2-cocycle (34) extends to a flat 2-cocycle

(35) 2π ·
〈
adt̃−1

2
t̃∗1θG, t̃

∗
2θG

〉
+ (t̃2t̃1)∗η − t̃∗2η − t̃∗1η.

But, in such situations the holonomy of (34) along Σ is just the exponential
of the strength field of (35) integrated over W . The latter vanishes since the
strength field of (35) is zero.
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We look now at the general case. Assume that ϕ1, ϕ2 ∈ G covering
ϕ̄1, ϕ̄1 ∈ Diff+(X)

P
ϕ1→ P

ϕ2→ Py y y
X

ϕ̄1→ X
ϕ̄1→ X

and they decompose as:

ϕi = ψi ◦ ϕ̄io, i ∈ {1, 2}.
By definition

θ(A,ϕi) = ϕ̄∗i θ(A,ψi).

Let ψ′1 = ϕ̄2o ◦ ψ1 ◦ ϕ̄−1
2o ∈ G(P ). For any connection A we then have:

(36) θ(ϕ̄∗2oA,ψ1) = ϕ̄∗2θ(A,ψ′1).

Therefore, expression (26) becomes:

(37)
[
θ(A,ϕ2◦ϕ1)

]
−
[
θ(ϕ∗2A,ϕ1)

]
−
[
ϕ̄∗1θ(A,ϕ2)

]
= (ϕ̄2o ◦ ϕ̄1o)∗

[
θ(A,ψ2◦ψ′1)

]
−

− ϕ̄∗1

[
θ(ϕ∗2A,ψ1)

]
− ϕ̄∗1ϕ̄

∗
2

[
θ(A,ψ2)

]
.

Now, from the case of pure gauge transformations we know that, on some
common refining sub-covering:

(38) θ(A,ψ2◦ψ′1) − θ(ψ∗2A,ψ′1) − θ(A,ψ2)

is a coboundary of a differential flat 1-cochain. Putting together relations
(37) and (38) we obtain that:[

θ(A,ϕ2◦ϕ1)

]
−
[
θ(ϕ∗2A,ϕ1)

]
− ϕ̄∗1

[
θ(A,ϕ2)

]
= ϕ̄∗1ϕ̄

∗
2

[
θ(ψ∗2A,ψ′1)

]
−

− ϕ̄∗1

[
θ(ϕ∗2A,ψ1)

]
+
[
ď{flat 1− cochain}

]
.

Using equality (36) with connection ψ∗2A we notice that the first term in
the right-hand side of above expression vanishes. We can therefore conclude
that: [

θ(A,ϕ2◦ϕ1)

]
−
[
θ(ϕ∗2A,ϕ1)

]
− ϕ̄∗1

[
θ(A,ϕ2)

]
= 0.

�

The above features are the basic facts about Chern-Simons cocycles when G
is a simply-connected, simple, Lie group. However, the two compact groups
we shall use throughout the paper, (E8 × E8) o Z2 and Spin(32)/Z2, do not
quite fall in this category. In what follows we adapt the previous discussion
to those cases.

G = (E8 ×E8) o Z2. A trivializable G-bundle P → X can be understood as
a sum P1×P2 with Pi → X, i ∈ {1, 2} trivializable E8-bundles. A section s
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is P can be fixed in the form of a pair (s1, s2) with si section in Pi. Following
the pattern, one can view a G-connection on P as a pair A = (A1, A2) with
Ai, i = 1, 2 as E8-connections on Pi’s. We define then the Chern-Simons
cocycle as:

(39) CSGA = CSE8
A1

+ CSE8
A2
.

The differential 2-cochains θ(A,ϕ) can be reconstructed as well. The group
of automorphisms ϕ of P has as index-two subgroup the group of auto-
morphisms ϕ = (ϕ1, ϕ2) with ϕi automorphisms of Pi. The Z2 quotient is
generated by the automorphism that exchanges the two E8 factors. We go
ahead and define for ϕ = (ϕ1, ϕ2):

(40) θG(A,ϕ) = θE8

(A1,ϕ1) + θE8

(A2,ϕ2).

A straightforward computation shows that Theorem 9 is still true.

G = Spin(32)/Z2. Let P → X be a trivializableG = Spin(32)/Z2-connection.
We set a section s. The Lie group projection Spin(32) → Spin(32)/Z2 in-
duces an isomorphism at Lie algebra level. We define the Chern-Simons
cocycle corresponding to a connection A by using the trace pairing of the
standard 32-dimensional representation of Spin(32). To view it in a different
way, say P̃ is the trivial lifting of P to a Spin(32)-bundle

(41)
P̃

p→ Py y
X = X

together with a section s̃ = p∗s. There is then a 1-to-1 correspondence
(given by pull-back through p) between G-connections on P and Spin(32)-
connections on P̃ . The Chern-Simons cocycle can then be defined as:

(42) CSGA =
1
2
· CSSpin(32)

p∗A .

The θ(A,ϕ) 2-cochains can be extended similarly. Here we make use of the
fact that, as we mentioned before, the symmetry group G in the Spin(32)/Z2

case consists of only liftable automorphisms. So, any ϕ ∈ G covering ϕ̄ ∈
Diff+(X) can be seen as coming from an automorphism ϕ̃ of P̃ . We define
then:

(43) θG(A,ϕ) =
1
2
· θ(p∗A,ϕ̃).

It can be seen that, up to a coboundary of a differential flat 1-cochain, the
right side of (43) does not depend on the choice of automorphism lifting ϕ̃.
Indeed, say ˜̃ϕ is a different lifting. Then ˜̃ϕ = ξ ◦ ϕ̃ where ξ is the gauge
transformation in P̃ which consist in each fiber of right multiplication with
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q, the exotic element in Z2. Let ϕ̃ = ψ ◦ ϕ̄o with ψ gauge transformation.
Then, for any connection Ã on P̃ ,

θ
(Ã,ϕ̃)

= ϕ̄∗θ
(ϕ̄∗Ã,ψ)

and θ
(Ã,˜̃ϕ)

= ϕ̄∗θ
(ϕ̄∗Ã,ξ◦ψ)

.

But, up to a coboundary of a flat 1-chain,

θ
(ϕ̄∗Ã,ξ◦ψ)

= θ
(ϕ̄∗Ã,ψ)

+ θ
(ψ∗ϕ̄∗Ã,ξ).

The last term on the right side above vanishes. That happens because,
denoting B = ψ∗ϕ̄∗Ã and applying definition (30) one can write:

(44) θ(B,ξ) = 2π · 〈adt−1B, t∗θG〉+ t∗η

where t : X → Spin(32) is the map associated to the gauge transformation
in the given trivialization. In the case of ξ, the map t is constant. Therefore,
both terms in the right side of (44) vanish. Going back to the two equations
above, that is enough to conclude:

θ
(Ã,ϕ̃)

= θ
(Ã,˜̃ϕ)

up to a coboundary of a flat 1-cochain.

Expression (43) gives then a well-defined formulation for θG(A,ϕ). Theorem
9 is verified.

We finish this section with a short remark about the gravitational SO(10)
Chern-Simons.

G = SO(10). The gravitational Chern-Simons term CSg appears in the
anomaly cancellation condition (45) described in next chapter. It represents
the Chern-Simons cocycle associated to the Levi-Civita connection induced
by riemannian metric g on TX. That can be seen as a connection on the
SO(10)-principal bundle of orthonormal oriented frames associated to TX.
So CSg is basically the Chern-Simons cocycle of a SO(10)-connection. How-
ever, the space-time X is endowed from the beginning with a spin structure.
The Levi-Civita connection lifts uniquely to a Spin(10) connection on the
fixed spin bundle. We define CSg to be half of the Chern-Simons associ-
ated to the Spin(10)-lifted Levi-Civita. The Lie group Spin(10) is simply-
connected (and in our particular case of space-time the spin structure is
trivializable) so the entire previous discussion applies.

3 The String Data

In this section, we analyze the parameter data for heterotic string theory.
In general, a 10-dimensional spin manifold X is chosen as a space-time and
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a gauge bundle is fixed to be a G-principal bundle P → X. For anomaly
cancellation reasons [10], the Lie group G must be one of the two choices
(E8 × E8) o Z2 or Spin(32)/Z2. The string data specifying a theory consist
of a triplet (g, A, B) involving a metric on X, a G-connection on P and a
B-field in the form of a differential non-flat 2-cochain on X. Equations of
Motion [10] impose the following conditions:

1) The metric g on X is Ricci flat.
2) The G-connection A on P has vanishing curvature.
3) The B-field B has vanishing field strength.

These classical solutions to the Equations of Motion are to be considered
up to gauge equivalence. However, before factoring to equivalence classes,
there is one more constraint to be taken into account. This is the anomaly
cancellation condition interpreted by Freed [5] as:

(45) ďB = CSA − CSg.
CSA and CSg are the Chern-Simons 3-cocycles corresponding to the con-
nection A, respectively the lifted Levi-Civita connection associated to the
metric g on the fixed spin bundle of X. Their construction was explained
in section 2.4. The possibility of imposing such a constraint requires an a
priori topological condition on space-time X. Namely,

(46) λ(P ) = p1(TX) in H4(X, Z).

Here λ ∈ H4(BG,Z) represents the level of the theory.

In case G = (E8 × E8) o Z2 one obtains H4(BG,Z) = H4(BE8,Z) ×
H4(BE8,Z). It is a known fact [14] that for a simply-connected, simple Lie
group H, H4(BH,Z) ' Z. A generator ξ for H4(BE8,Z) is obtained via
Chern-Weil theory from the ad-invariant quadratic form:

Io : e8 → R, Io(a) =
1

16π2cE8

〈a, a〉k

where e8 is the Lie algebra of E8, 〈·, ·〉 represents the Killing form on e8 and
cE8 = 30 is the dual Coxeter number. The level of the G = (E8 × E8) o Z2

theory is then chosen as λ = (ξ, ξ) ∈ H4(BG,Z).

The case G = Spin(32)/Z2 can be treated similarly. One has:

H4(BG,Z) ' Z

and the level of the theory is chosen to be the generator λ ∈ H4(BG,Z)
representing in Chern-Weil theory the quadratic form:

1
2
Io : spin(32) → R,

1
2
Io(a) =

1
2
· 1
16π2cSpin(32)

〈a, a〉k .
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The particular case of eight-dimensional heterotic string is simpler from
this point of view. One compactifies from ten to eight dimensions. The space
time isX = E×R8, with E a 2-dimensional torus. Condition (46) is satisfied
by default since there is no 4-cohomology. In this particular framework, the
classical solutions to the Equations of Motion are invariant under orientation
preserving isometries of R8 and we consider only R8-invariant solutions.
Therefore we can equivalently regard the three objects involved as:

1) g, flat metric on E.
2) A, G-connection on a fixed principal bundle P → E.
3) B, flat differential cochain on E with ďB = CSA − CSg.

If G = (E8 × E8) o Z2 all G-bundles over a 2-torus are topologically trivial.
However, for G = Spin(32)/Z2 there exist a non-trivial topological type.
The topological type of the bundle is characterized by the generalized Stiefel-
Whitney class w̃2 ∈ H2(X,Z2) which measures the obstruction to lifting the
structure group of the bundle to Spin(32). Nevertheless, the Spin(32)/Z2

heterotic string assumes that the gauge bundle allows such a lifting (P carries
a vector structure in physics terminology). Therefore we consider from now
on that the G-bundle P → E is topologically trivial.

Let us denote by M̃het the set of triplets (g, A, [B]) such that g is a flat
metric, FA = 0, HB = 0 and [B] ∈ Tω where

ω = CSA − CSg.

In addition, set:

PG = {(g, A) | g flat metric, FA = 0} .

One cannot consider the equivalence class of a general differential 2-cochain.
However, all bundles involved here are trivializable. Therefore, as explained
in section 2.4, the two Chern-Simons cocycles CSA and CSg are global 3-
forms. The B-fields appearing in the definition of M̃het are then included
in B2(X) and their equivalence class is well-defined.

The above M̃het and PG spaces carry natural smooth structures. There
is a projection map:

(47) π : M̃het → PG,

realizing a smooth fibration. The space of gauge classes of flat 2-cocycles,
Ȟ2(E) ' S1 acts freely and transitively on each fiber. In this sense, (47)
becomes a principal circle bundle. This raw picture must be divided out
by symmetries. The symmetry group G consists of bundle automorphisms
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covering any orientation preserving diffeomorphism of the base:

P
ϕ→ P

↓ ↓
E

ϕ̄→ E

(48) G def=
{
ϕ ∈ AutG(P ) | ϕ̄ ∈ Diff+(E)

}
.

(Strictly speaking this is the symmetry group for (E8 × E8) o Z2 case. If
G = Spin(32)/Z2, G is only made out of those automorphisms that can be
lifted to Spin(32) automorphisms.) The group G is a non-trivial extension
of the diffeomorphism group of E by the group of changes of gauge of the
bundle P :

{1} → G(P ) → G → Diff+(E) → {1}.
G acts naturally on both, the total and base spaces of (47). The action on
PG is the standard one:

PG × G → PG, (g, A).ϕ = (ϕ̄∗g, ϕ∗A).

In order to establish the action on the total space, we use the following facts:

CSϕ̄∗g = ϕ̄∗CSg

and
CSϕ∗A = ϕ̄∗CSA + ďθ(A, ϕ).

Here θ(A, ϕ) is a flat 2-cochain in B2(X) as described in section 2.4. The
action M̃het × G → M̃het can then be described as:

(g, A, [B]).ϕ = (ϕ̄∗g, ϕ∗A, [ϕ̄∗B] + [θ(A, ϕ)]).

It is a well defined action since, as is established in 2.4,

[θ(A, ϕ1◦ϕ2)]− [θ(ϕ∗1A, ϕ2)]− [ϕ̄∗2θ(A, ϕ1)] = 0.

The symmetry group action commutes with the projection π factoring the
circle bundle (47). However, as we shall see, there are points in the base
for which the stabilizer group does not act trivially on the fiber above.
Nevertheless, all stabilizer groups are finite. The circle bundle (47) descends
to a circle fibration:

(49) M̃het /G → PG /G.

The total space above represents exactly the moduli space of heterotic string
parameters Mhet. Our goal is to describe this space in detail and charac-
terize the circle fibration (49).
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4 Anomaly Cancellation: Chern-Simons vs. Pfaffians

The discussion in section 3 was based on a smooth family of metrics and G-
connections on a 2-torus. The associated space of B-field equivalence classes
forms the total space of a principal circle bundle over the parameter space.
Moreover, this bundle carries a natural connection. Now, let ρ be a complex
unitary representation of the Lie group G. Using ρ one can construct for
each pair (A, g) a complex elliptic operator, the coupled Dirac operator. A
determinant line bundle can be associated to this family of operators. It
carries canonical Quillen connection and metric. Under certain conditions,
a tensor combination of such determinant bundles recovers completely the
B-field circle bundle with its connection. The determinant tensor combina-
tion forms the so-called fermionic anomaly of the family. The identification
existing between the two bundles is known as the Green-Schwartz anomaly
cancellation. This section provides the details of the construction.

4.1 The Chern-Simons Bundle

To begin with, we establish the following general setting. Let p : Z → Y be
a smooth fibration of manifolds with all fibers isomorphic to a 2-torus E.
We assume the following geometrical data:

• A spin structure and a metric g(Z/Y ) on the tangent bundle along the
fibers T (Z/Y ) → Z.

• A projection TZ → T (Z/Y ).
• A (trivializable) SO(n)-bundle U → Z endowed with a connection
Agrav.

• A (trivializable) G-principal bundle Q→ Z endowed with a connection
Agauge.

• A complex unitary representation ρ : G → U(r) carrying a real struc-
ture (meaning that representation ρ can be obtain by complexification
from a real representation).

The tangent bundle over the fibers of p can be endowed with a canonical
connection. Indeed, let gY be an arbitrary riemannian metric on Y . Since
TZ = p∗TY ⊕ T (Z/Y ), the pull-back p∗gY together with g(Z/Y ) generates
a riemannian metric on Z. Let ∇Z be its Levi-Civita connection. Projecting
∇Z on the tangent bundle along fibers we obtain a connection ∇(Z/Y ). It is
independent of the choice of metric gY on Y [2].
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The Chern-Simons cocycle associated to the family:

(50) CS = CSAgauge − CSAgrav .

is a non-flat 3-cocycle2 in NŽ3(Z). It can be seen as a connection on a
2-gerbe over Z. Fixing an y ∈ Y we obtain a 2-torus Ey = p−1(y) together
with a G-connection Agauge

y = Agauge|Ey and a metric gy on TEy. The
restriction Agrav

y = Agrav|Ey recovers the Levi-Civita connection associated
to gy. Therefore

CS|Ey = CSAgauge
y

− CSAgrav
y

∈ NŽ3(Ey).

The Chern-Simons 3-cocycle (50) can be pushed-forward (see section A) to
Y , defining a 1-cocycle:

(51) ω =
∫
Z/Y

CS ∈ NŽ1(Y )

which can be geometrically interpreted as a circle connection on a certain
principal circle bundle

(52) RY → Y.

We call this the Chern-Simons bundle associated to the family.

Now, we incorporate the B-fields. Let:

(53) M̃Y =
{

(y, [B]) | [B] ∈ Tω, where ω = CSAgauge
y

− CSAgrav
y

}
.

M̃Y can be endowed with a canonical topology and smooth structure. The
projection π : M̃Y → Y makes then a circle bundle under the action on the
total space of Ȟ2(E) ' S1.

Theorem 10. There exist a canonical circle bundle isomorphism ΦY :

M̃Y
ΦY→ RYy y

Y = Y

identifying the B-field parameter space M̃Y to the total space of the circle
bundle (52).

Proof. The correspondence ΦY goes as follows. Let (y, [B]) be an element
in M̃Y . B is a non-flat 2-cochain on Ey satisfying:

(54) ďB = CSAgauge
y

− CSAgrav
y

.

2Due to the fact that the two bundles involved are trivializable, the Chern-Simons
cocycle CS actually represents, as explained in section 2.4, a global 3-form.
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We take:

(55) ΦY ([B]) =

[∫
Ey

B

]
The integral inside (55) is explained in section A. Although the construction
of the integral itself on 2-cochains in not canonical, its (gauge) equivalence
class is well-defined. ΦY ([B]) is simply an equivalence class of a 0-cochain
over the point y ∈ Y . (Roughly speaking such a 0-cochain over a point is just
a real number, two 0-cochains being equivalent if the difference of the two
numbers is in 2πZ.) But CSAgauge

y
−CSAgrav

y
= CS|Ey and equation (54) shows

B can be interpreted as a section in the 2-gerbe underlying CSAgauge
y

−CSAgrav
y

.
The integration mechanism commutes with differentiation (see section A).
Hence, formally:

ď

(∫
Ey

B

)
=
∫
Ey

(
CSAgauge

y
− CSAgrav

y

)
.

In this light, ΦY ([B]) can be regarded as a geometrical section in the circle
bundle underlying the 1-cocycle

(56)
∫
Ey

(
CSAgauge

y
− CSAgrav

y

)
=

(∫
Z/Y

CS

)∣∣∣
y

= ω|y

Yet, this circle bundle is just the circle Ry over y. Therefore a section
represents just a a point in Ry. Hence, ΦY ([B]) can be seen as being an
element inside the total space of the Chern-Simons bundle (52).

The map ΦY is well-defined since two gauge-equivalent B-fields integrate
to gauge-equivalent 0-cochains generating the same section-point in RY .
One checks immediately that it realizes an equivariant isomorphism. �

Remark 11. As seen above, the total space of the Chern-Simons bundle (52)
describes the space of equivalence classes of B-fields associated to a family
of metrics and connections Y . The connection ω naturally induced on this
circle bundle has curvature:

Ωω =
∫
Z/Y

(HAgauge −HAgauge)

where HAgauge and HAgrav are the strength fields of the Chern-Simons cocycles
CSAgauge and CSAgrav . The holonomy along a smooth loop γ : S1 → Y can
be obtained as:

holω(γ) = cs(W,Agauge) · cs(W,Agrav)−1,

the two factors on the right side representing Chern-Simons invariants along
the closed 3-manifold W swept by γ inside Z.
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4.2 Chern-Simons vs. Pfaffians.

Next, we establish a relation between the above Chern-Simons circle bundle
and determinant bundles for analytic Dirac operators. We follow arguments
described in [7]. There are fixed metrics and spin structures on each 2-torus
Ey in the family. Therefore, one can define Dirac operators:

(57) D+
y : S+

y → S−y .

There is a holomorphic interpretation for these operators. A metric on a
surface induces a complex structure through its conformal class. The spin
structure is then a holomorphic root K1/2 for the canonical line K. Dirac
operators become just ∂-operators:

(58) ∂K1/2 : E0(K1/2) → E0,1(K1/2).

They build a determinant line bundle Det(D+
y ) → Y which comes endowed

with a Quillen metric and connection [16]. Moreover, the natural pairing:

(59) E0(K1/2)⊗ E0,1(K1/2) → C, a⊗ b  
∫
E
a⊗ b

gives an isomorphism:

E0,1(K1/2) ' E0(K1/2)∗.

The Dirac operators (58) can then be regarded as skew-adjoint operators:

(60) ∂K1/2 : E0(K1/2) → E0(K1/2)∗.

In these conditions the corresponding determinant line bundle admits a
square root. This square root is the pfaffian complex line bundle (see [7] for
details):

(61) Pfaff(D+
y ) → Y.

It comes equipped with a metric and connection which are half the ones on
the determinant line.

The framework can be further developed. One couples the Dirac operators
(57) to the following families of connections:

• connection ∇grav
y induced by Agrav

y in the rank n complex bundle as-
sociated to Uy through the (complexified) standard representation of
SO(n).

• connection ∇gauge
y induced by Agauge

y in the rank r complex hermitian
bundle associated to Qy through the representation ρ.

• connection ∇Z/Y
y on TEy ⊗Z C.
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We obtain three families of elliptic operators: Dgrav
y , Dgauge

y and D(Z/Y )
y .

Each family builds a pfaffian line bundle. The pfaffians can be constructed
since all three complex bundles supporting the coupling connections have
natural real structures.

We consider the following fermionic combination depending on two inte-
gers α and β.:

(62) Lferm = Pfaff(Dgauge
y ) ⊗ (Pfaff(Dy) )⊗β ⊗

⊗
(
Pfaff(D(Z/Y )

y )
)⊗α

⊗
(
Pfaff(Dgrav

y )
)⊗(−α)

.

The tensor product (62) produces a complex line bundle Lferm → Y and
is endowed with a canonical Quillen metric gq and compatible unitary con-
nection ∇q [7] [2]. Moreover, in the case of a holomorphic family Y , (62)
inherits a holomorphic structure compatible with the connection. Restrict-
ing (62) to unit circles in each fiber we obtain a circle bundle L̃ferm → Y ,
the phase pfaffian. The Quillen connection descends to L̃ferm.

Under certain conditions the phase pfaffian can be identified (up to an
overall phase) to the Chern-Simons circle bundle (52). Explicitly, let us as-
sume that G is a simply-connected, compact Lie group and λ ∈ H4(BG, Z)
is the integral class giving the level of the Chern-Simons cocycle. The
strength field of the Chern-Simons cocycle is then a de Rham represen-
tative for the image of λ in real cohomology. The unitary representation
ρ : G→ U(r) induces a cohomology map at the level of classifying spaces:

Bρ4 : H4(BU(r), Z) → H4(BG, Z).

Theorem 12. If Bρ4(c2) = 2α · λ and α(n+ 22) = r + β then the Quillen
connection ∇q on the phase pfaffian L̃ferm and the α-multiple of the Chern-
Simons connection ω existing on the α-th tensor power of (52) have the same
curvature and holonomy.

Proof. To begin with, we compute the curvature of the fermionic anomaly
(62). The basic ingredient here is Bismut-Freed formula [7] which computes
the curvature of the Quillen connection on a general pfaffian line bundle. In
our particular case we obtain:

(63) ΩLferm =

= π

(∫
Z/Y

Â(Ω(Z/Y ))
(
ch(Ωgauge) + β + α ch(Ω(Z/Y ))− α ch(Ωgrav)

))
(2)

.



A. CLINGHER 207

Let:
p = p1

(
∇(Z/Y )

)
be the Chern-Weil representative for the first Pontriagin class written in
terms of connection ∇(Z/Y ) on the vertical tangent space T (Z/Y ) → Y .
Then:

Â(Ω(Z/Y )) = 1− p

24
+ · · ·

ch(Ωgauge) = r + ch1(Ωgauge) + ch2(Ωgauge) + · · ·
ch(Ωgrav) = n+ ch1(Ωgrav) + ch2(Ωgrav) + · · ·

ch(Ω(Z/Y )) = 2 + p+ · · ·
Rewriting the relevant terms inside the integral (63), one obtains:

ΩLferm =

= π

∫
Z/Y

(
α(22 + n)− β − r

24
p+ ch2(Ωgauge)− α ch2(Ωgrav)

)
.

Assuming r + β = α(22 + n), the above expression becomes:

(64) ΩLferm = π

∫
Z/Y

(ch2(Ωgauge)− α ch2(Ωgrav)) .

The strength field of the gauge Chern-Simons is:

HCSAgauge = 2π · 1
2α

· ch2(Ωgrav)

whereas for the gravitational Chern-Simons:

HCSAgrav = 2π · 1
2
· ch2(Ωgrav).

Combining this with (64) we obtain

ΩLferm = α

∫
Z/Y

(HCSAgauge −HCSAgrav ) .

The equality of holonomies is more delicate. It relies on a key relation
between ξ-invariants and Chern-Simons invariants [1]. The facts we need
here are best summarized in the following lemma ([6], Proposition 3.20):

Lemma 13. Let M be a spin three-manifold, g a riemannian metric on M
and E →M a complex hermitian vector bundle with compatible connection
A. We denote by D+

(g,A) the standard Dirac operator coupled to connection
A. Its ξ-invariant is defined as:

ξ(A) =
η(A) + h(A)

2
where η(A) is the spectral eta-invariant [3] of D+

(g,A) and h(A) is the dimen-
sion of the kernel of this operator.
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Assume that for a certain positive integer N , the formal combination:[
N · Â(Ωg) ch(ΩA)

]
(4)

represents the Chern-Weil representative of an integral characteristic class
c ∈ H4(BU,Z). We denote by cs(A) ∈ U(1) the level c Chern-Simons
invariant associated to the connection A. Then, the unitary complex number:

(65) e2Nπi·ξ(A) · cs(A)−1

is a spin bordism invariant depending only on the class of E → M in
Ωspin

3 (BU). In particular, if E extends over a spin 4-manifold bounding
M , then (65) vanishes.

We use this technical lemma for our purposes. Let γ : S1 → Y be a smooth
loop. We denote by W the spin 3-manifold swept by γ inside Z. We pick a
metric on S1. It induces a metric on go on W . For each ε we construct the
Dirac operator associated to the scaled metric go/ε2. Coupling this Dirac
operator with the restrictions of each of the three connections existing on
Z, Agauge, Agrav and ∇(Z/Y ) we obtain three elliptic operators. The three
ξ-invariants associated to them are obtain on the following pattern [3]:

ξε =
ηε + hε

2

where ηε represents the eta-invariant associated to the corresponding Dirac
operator and hε is the dimension of the kernel. In fact, as shown in [6], in
dimension 3 the ξ-invariant is independent of the metric and therefore the
index ε can be ignored. The fermionic holonomy along γ can be obtained
through Witten’s adiabatic limit formula [3] which for this particular case
stands as:

(66) holLferm
(γ) = e−πiξ where ξ = ξgauge + α ξ(Z/Y ) − α ξgrav.

Now, the curvature considerations explained earlier together with Lemma
13 led us to conclude that:

(67) e−πiξ · cs(W,Agauge)−α · cs(W,Agrav)α

is a spin bordism invariant. Since any given closed spin 3-manifold can be
realized as the boundary of a spin 4-manifold and all connections considered
here extend, (67) must vanish. �
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The theorem 12 allows one to identify (up to an overall phase) the two circle
bundles:

(68)

R⊗α
Y ' L̃fermy y
Y = Y.

Next, we are going to apply this pattern in two particular cases relevant to
our discussion.

4.3 The adjoint pfaffian.

Let us return to heterotic variables on a 2-torus. For simplicity we analyze
the case G = (E8 × E8) o Z2. Let us consider Y = PG be the family of
pairs of flat metrics on E and flat G-connections on the trivial G-bundle
P → E. The group of symmetries G consists of bundle automorphisms
covering orientation preserving diffeomorphisms on the base space X. As
explained earlier the moduli space of string variables Mhet makes the total
space of a fibration:

(69) M̃het /G → PG /G
which is obtained by factoring out the action of the symmetry group G from
a circle line bundle:

(70) π : M̃het → PG.
Moreover, the action of G on the base space has finite stabilizer groups. (69)
makes a circle fibration.

We apply the earlier discussion to a particular framework involving a
family Y given by the following geometrical data:

• Y = PG , Z = E × PG, fibration p : Z → Y is just projection on the
first factor.

• the tangent bundle along the fibers, T (Z/Y ) is just TE×PG → E×PG.
It is endowed with a metric g(Z/Y ) and a connection ∇(Z/Y ).

• U → E × PG is the rank 10 real vector bundle obtained by direct
summing T (Z/Y ) with the rank 8 trivial vector bundle over E × PG.
It is endowed with metric ggrav = g(Z/Y )⊕gprod and connection Agrav =
∇(Z/Y )⊕∇prod ( gprod and∇prod are the product metric and connection
on the rank 8 trivial real bundle over E × PG).

• Q = P × PG. We endow it with a gauge connection Agauge such that
Agauge|P×(A, g) = A.
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• ρ is the adjoint representation of G. It has rank 496.

By theorem 10, the line bundle (70) can be canonically identified to the
Chern-Simons circle bundle associated to the family Y = PG:

(71)

M̃het
'→ RPGy y

PG = PG.

The right hand side bundle comes equipped with a Chern-Simons circle
connection. We consider the fermionic pfaffian phase combination L̃ad as-
sociated to this particular geometric data with α = cE8 = 30 and β = 464.
Interpreting theorem 12 accordingly we obtain:

Corollary 14. There exist a circle bundle isomorphism (unique up to mul-
tiplication by a unitary complex number) between the order cE8 tensor power
of circle bundle (70) and the adjoint phase pfaffian L̃ad,

(72)

M̃⊗cE8
het ' L̃ady y
PG = PG.

identifying the Chern-Simons connection to a cG order fraction of the Quillen
connection.

Proof. For a simply-connected, simple, compact Lie group G, H4(BG,Z) '
Z. An explicit generator θ corresponds to the integral ad-invariant quadratic
form:

q : g → R, q(a) =
1

16π2c
< a, a >k

where the above right-hand side pairing < ·, · >k represents the Killing form.
The number c is always integer or half-integer. For G = SU(n), c = 1/2.
For G = E8, c equals the dual Coxeter number cE8 = 30.

Here we analyze the case G = (E8 × E8) o Z2. The Chern-Simons level
λ ∈ H4(BG,Z) ' Z ⊕ Z corresponds to (θ, θ) where θ is the generator
in H4(BE8,Z). The adjoint representation ad: E8 → SU(248) induces a
cohomology map:

Bad4 : H4(BSU(248),Z) → H4(BE8,Z), with Bad4(c2) = 2cE8 ·θ = 60·θ.
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The adjoint representation of G is then just ρ = (ad, ad) : E8 × E8 →
SU(248)× SU(248) ↪→ SU(496) and induces:

Bρ4 : H4(BSU(496),Z) → H4(BSU(248),Z)×H4(BSU(248),Z)
Bad4×Bad4

→ H4(BG,Z)
with Bρ4(c2) = (2cE8 · θ, 2cE8 · θ) = 2cE8 · λ. Taking then α = cE8 = 30
and β = 464, both conditions in Theorem 12 are satisfied. �

In the light of above statement, the heterotic fibration M̃het → PG can be
regarded naturally as a root of order cE8 for the adjoint pfaffian phase L̃ad.
The latter can be further simplified. One can write:

Dgrav
(A, g) = D(Z/Y )

(A, g) ⊕Dg(C
8).

The second operator on the right hand side represents just the Dirac operator
on E associated to the metric g coupled with the product connection on the
trivial rank 8 vector bundle over E. This does not depend on connection A
and is just eight times the standard Dirac operator Dg associated to metric
g. Therefore:

det(Dgrav
(A, g)) = det(D(Z/Y )

(A, g) )⊗ det(Dg)8.
Rewriting the fermionic pfaffian combination (62), one obtains:

(73) Lad = Pfaff(Dgauge
(A, g)) ⊗ Pfaff(Dg)⊗(β−8α) =

= Pfaff(Dgauge
(A, g)) ⊗ Pfaff(Dg)⊗224.

The L̃ad represents just the phase of (73).

The action of symmetry group G on PG preserves the geometric data.
Therefore, the group G acts [7] [6] on each of the pfaffians involved in (73)
preserving the Quillen metrics and connections. Hence, there is an action of
G on the phase pfaffian L̃ad. It makes (72) an equivariant isomorphism. The
identification can be pushed down to quotients. One obtains an isomorphism
of fibrations:

(74)

M̃⊗cE8
het /G '→ L̃ad /Gy y
PG /G = PG /G.

This correspondence provides a first link relating the heterotic parame-
ters to fermionic pfaffian phases. However, it does not offer quite enough
input about the string parameter moduli space since one obtains informa-
tion about, roughly speaking, the order cE8 tensor power of the moduli
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space and not the moduli space itself. One way to use the same construc-
tion and decrease the order of the power would be to choose a lower rank
representation. E8 does not have irreducible representations in rank lower
than 248. However, reducing the group structure one can get lower rank
representations.

4.4 The spin pfaffian

Let H = Spin(16) × Spin(16). There is a copy of Spin(16)/Z2 sitting as a
subgroup inside E8. Taking its double cover one obtains a Lie group mor-
phism j : Spin(16) → E8. It is known (see [14]) that the induced cohomology
map:

(75) Bj4 : H4(BE8, Z) → H4(BSpin(16), Z)

is an isomorphism.

We denote by PH the family of pairs (A, g) of flat connections on the
trivial H-bundle over E and flat metrics on E. There is a projection map:

(76) σ : PH → PG
assigning to each H-connection its associated G-connection through:

j × j : Spin(16)× Spin(16) → (E8 × E8) o Z2

We use the earlier geometric data on PH taking as representation ρ the
standard 32-dimensional representation available for H. This will provide a
pfaffian since it is actually a real representation. The space of gauge classes
of B-fields associated to the PH family makes the top space of the Chern-
Simons circle bundle

(77) RH → PH .
Moreover, due to (75) the circle bundle (77) is exactly the pull-back of the
Chern-Simons bundle from PG through projection σ:

(78)
RH ' σ∗RG → RG ' M̃hety y y y
PH = PH

σ→ PG = PG.
The Chern-Simons connection on RH gets identified with the pull-back
through σ of the Chern-Simons connection on RG.

Next, we build the fermionic combination of pfaffians corresponding to
the 32-dimensional representation ρ and α = 1, β = 0:

Lρ = Pfaff(Dgauge
(A, g))⊗ Pfaff(D(Z/Y )

g ) ⊗ Pfaff(Dgrav
g )⊗−1.
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It can be simplified to:

(79) Lρ = Pfaff(Dgauge
(A, g)) ⊗ Pfaff(Dg)⊗−8

Employing Theorem 12, one obtains:

Corollary 15. There is a circle bundle isomorphism (unique up to multipli-
cation by a unitary complex number) between the phase pfaffian combination
(79) and the pull-back to PH of the raw (E8 × E8)oZ2 heterotic bundle (47):

(80)
L̃ρ ' σ∗M̃het → M̃hety y y
PH = PH

σ→ PG

transporting the Chern-Simons connection on M̃het back to the Quillen con-
nection existing on the pfaffian phase bundle.

Proof. We verify the conditions in Theorem 12. Let ξ be the generator
in H4(BSpin(16),Z) ' Z. If θ is the generator in H4(BE8,Z) then, as
mentioned before, under the map j : Spin(16) → E8, we get an isomorphism:

Bj4H4(BE8,Z) → H4(BSpin(16),Z)

with Bj4(θ) = ξ. The Chern-Simons cocycle of level λ = (θ, θ) ∈ H4(BG,Z)
pulls then back to the Chern-Simons theory corresponding to level λ̃ =
(ξ, ξ) ∈ H4(BH,Z).

We just have to check then the conditions needed in Theorem 12. Let
s : Spin(16) → SU(16) be the complexification of the standard 16-dimensional
real representation of Spin(16). It induces a cohomology map:

Bs4 : H4(BSU(16),Z) → H4(BSpin(16),Z)

with Bs4(c2) = 2 · ξ. The 32-dimensional representation

ρ = (s, s) : H → SU(16)× SU(16) ↪→ SU(32)

induces then:

Bρ4 : H4(BSU(32),Z) → H4(BSU(16),Z)×H4(BSU(16),Z)

Bs4×Bs4→ H4(BH,Z)

with Bρ4(c2) = (2 · ξ, 2 · ξ) = 2λ̃. �

The symmetry group GH acts on PH . It preserves the geometric data nec-
essary for building the pfaffians, and determines [7] [6] an unitary action
on

Pfaff(Dgauge
(A, g)) ⊗ Pfaff(Dg)⊗−8.
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Moreover, any H-gauge transformation induces a G-gauge transformation
and therefore we have a group morphism:

i : GH → G.

The two actions commute, making the isomorphisms in diagram (80) equi-
variant. There exist then a circle fibration identification at quotient level:

(81)

L̃ρ /GH ' ρ∗
(
M̃het /G

)
→ M̃het /Gy y y

PH /GH = PH /GH
σ→ PG /G

Therefore, the heterotic fibration pulls-back to recover the spin pfaffian.
Summarizing the information obtained throughout this section we can say:

Proposition 16.

1) The moduli space of G = E8 × E8 heterotic parameters, Mhet makes
the total space of a circle fibration

(82) Mhet → PG /G.

This is obtained by factoring out the action of the symmetry group G
from circle bundle M̃het → PG.

2) As an equivariant model, (82) represents a root of order cE8 = 30 for
the adjoint pfaffian phase fibration:

L̃ad /G → PG /G.

3) The pull-back of (82) through the σ projection of (76) recovers the
pfaffian phase corresponding to the 32-dimensional representation of
Spin(16)× Spin(16).

We finish this section with a short note about the G = Spin(32)/Z2 case.
This can be handled similarly to the E8 × E8 case. However, there are a
couple differences we enumerate here. First of all, as mentioned before, the
bundle P is chosen such that it carries a vector structure. Since we are
working over the 2-torus, P must be topologically trivializable. We choose
the trivial Spin(32) bundle P̃ as a lift for P .

The Lie group projection Spin(32) → Spin(32)/Z2 induces an isomor-
phism at Lie algebra level. Chern-Simons cocycles for Spin(32)/Z2-connections
on P are then defined (see section 2.4) using the Killing form of spin(32).
The symmetry group G is made out of liftable symmetries, namely those
automorphisms of P which can be lifted to automorphisms on P̃ .
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Based on this framework the entire E8×E8 discussion in this section can
be adapted to work for G = Spin(32)/Z2. The spin pfaffian arrives via the
standard 32-dimensional spin representation ρ of H = Spin(32). The analog
of Proposition 16 can be formulated:

Proposition 17.

1) The moduli space of G = Spin(32)/Z2 heterotic parameters, Mhet

makes the total space of a circle fibration

(83) Mhet → PG /G.

This can be regarded as an equivariant model. (83) is obtained by
factoring out the action of the symmetry group G from a circle bundle
M̃het → PG.

2) As an equivariant model, (83) represents a root of order 30 for the
adjoint pfaffian phase fibration:

L̃ad /G → PG /G.

3) The pull-back of (83) through PH → PG recovers the pfaffian phase
corresponding to the 32-dimensional representation of Spin(32). More-
over, the pull-back commutes with the actions of the symmetry group
G, creating an identification of equivariant models.

One can interpret this description of Spin(32)/Z2 heterotic parameters
along the lines set by Witten [19] in his analysis of world-sheet anomaly
cancellation. Our definition of B-fields as differential 2-cochains recovers the
properties Witten enlists in his discussion on the nature of these fields. The
Spin(32)/Z2 analog of pfaffian combination (79) represents the supergravity
fermionic anomaly circle bundle and its cancellation mechanism can be seen
through ideas similar to world-sheet anomaly cancellation.

Evaluating the supergravity path integral for a fixed Riemann surface
(namely the choice E ⊂ E × R8) one obtains a product combination:

(84) L−1
ρ (A, g) exp

(
i

∫
E
B

)
.

Here, L−1
ρ (A, g) represents the inverse of the pfaffian combination (79) while

the second factor is the “holonomy” of the B-field B along the 2-torus E.
Both factors represent sections of non-trivial line bundles. The first one
makes a section in the inverse of the line bundle Lρ. The second quantity,
as discussed in section 1, takes values in the total space of a circle bundle,
the Chern-Simons bundle R. Both bundles carry unitary connections. In
order for the path integral combination (84) to be a complex number, not
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just a point in the total space of a tensor bundle, one needs to covariantly
trivialize the tensor combination

L−1
ρ ⊗R.

A trivialization can be achieved only if the two phase bundles can be made
to cancel each other. In other words, if a smooth isomorphism L̃ρ ' R
identifying the two circle holonomies does exist. The third statement in
Proposition 17 provides exactly such an isomorphism.

5 Moduli of Heterotic Data and the Character Fibration

Let G be one of the two Lie group choices E8 × E8 or Spin(32)/Z2. We
analyze the family PG up to gauge equivalence. The family is made out of
pairs consisting of flat G-connections A and flat metrics g over the 2-torus
E. By convention, if G = Spin(32)/Z2 we consider only those connections
that can be lifted to Spin(32). The gauge group G is represented by auto-
morphisms ϕ of the bundle covering orientation preserving diffeomorphisms
ϕ̄ on E (as mentioned earlier if G = Spin(32)/Z2 one considers only liftable
automorphisms). G enters a short exact sequence:

{1} → G(P ) ↪→ G → Diff+(E) → {1}

and acts on PG as ϕ · (A, g) = (ϕ∗A, ϕ̄∗g).

The space of flat metrics splits as:

Meto(E) = Conf(E)× R∗+
any given metric producing a conformal class and a volume. It is known
that, on a 2-torus, a conformal class produces a complex structure. The
group of orientation preserving diffeomorphisms Diff+(E) acts on Meto(E)
leaving the volume component invariant. Therefore:

Meto(E)/Diff+(E) =
(
Conf(E)/Diff+(E)

)
× R∗+.

Two conformal classes determine isomorphic complex structures on E if and
only if they can be transformed one into the other through an orientation-
preserving diffeomorphism. The orbit space:

ME = Conf(E)/Diff+(E)

represents then the family of isomorphism classes of elliptic curves. For
practical reasons we shall identify a complex structure on a 2-torus by a
complex number τ inside the upper half-plane H. The corresponding elliptic
curve is obtained by factoring the lattice Z⊕τZ out of the complex plane C.
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Two points in the upper half-plane τ1 and τ2 determine isomorphic complex
structures if and only if:

τ2 =
aτ1 + b

cτ1 + d
with

(
a b
c d

)
∈ SL(2, Z).

One can therefore describe the moduli space of isomorphic classes of elliptic
curves as a complex orbifold:

(85) ME = PSL(2,Z)\H.

Turning to connections, the family of gauge equivalence classes of G-
connections over a 2-torus is identified to Hom(π1(E), G)/G, the group G
acting on the space of homomorphisms by conjugation. A gauge class can
therefore be seen as a pair of commuting elements in G, up to simultaneous
conjugation. For simply connected groups this picture can be refined (see
for example [9]). Any two commuting elements in G can be simultaneously
conjugated inside a maximal torus. This also holds for liftable G-connections
if G is connected but not necessarily simply-connected. We make a choice of
maximal torus T ↪→ G. Let W = W (T,G) be the associated Weyl group and
tR ⊂ g be the Cartan sub-algebra. There is then a 1-to-1 correspondence:

(86) Hom(π1(E), G) /G ' Hom(π1(E), T ) /W.

We consider the coroot lattice ΛG ⊂ tR. The Weyl group acts on ΛG preserv-
ing the set of coroots. There is an identification T ' U(1)⊗Z ΛG commuting
with the Weyl action. Under this identification:
(87)
Hom(π1(E), T ) ' Hom(π1(E), U(1)⊗Z ΛG) ' Hom(π1(E), U(1))⊗Z ΛG.

The set Hom(π1(E), U(1)) represents the family of gauge equivalence classes
of flat hermitian line bundles. In the presence of a complex structure Eτ
this can be regarded as Pico(Eτ ). Hence, using (86) and (87), on a complex
torus Eτ the space of gauge classes of G-connections can be identified to the
complex orbifold:

(88) (Pico(E)⊗Z ΛG) /W.

For G = E8 × E8, this is a product of two identical 8-dimensional complex
weighted projective spaces [13]. If G = Spin(32)/Z2 then (88) makes a
quotient of a 16-dimensional complex weighted projective space by Z2×Z2.
Bringing things together one concludes:

Theorem 18. ([9] [13]) The moduli space ME, G of equivalence classes
of flat G-connections over elliptic curves can be given the structure of a
17-dimensional complex variety. It fibers over the moduli space of elliptic
curves:

(89) ME, G →ME
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all fibers being 16-dimensional compact complex orbifolds. Moreover, there
is a diffeomorphism of stratified spaces:

(90) PG/G 'ME, G × R∗+,

the second factor on the right-hand side representing the volume of the flat
metric on E.

Let us recapitulate now the facts of previous sections. Following section
3, in both relevant cases G = (E8 × E8) o Z2 and G = Spin(32)/Z2, the
moduli space of heterotic string data MG

het is obtained by factoring out the
action of the symmetry group G in the principal circle bundle of (47):

(91) M̃G
het → PG.

As discussed in section 4, this bundle is endowed with a Chern-Simons S1-
connection. Furthermore, the quotient space PG/G splits as in (90). Since
the gravitational Chern-Simons invariant does not vary under flat conformal
transformations, the bundle (91) can be trivialized along the volume direc-
tion and therefore the space MG

het can be seen as the total space of a C∞

fibration with fibers isomorphic to R∗+ × S1 = C∗:

(92) MG
het →ME,G.

One can see at this point that MG
het inherits a natural structure of ana-

lytic space. Indeed, looking at the C∗-fibration that covers (92), one sees
that this fibration is associated to a C∞ fibration with complex lines over a
smooth complex manifold which is endowed with a connection and compati-
ble hermitian metric. These features induce a natural complex structure on
the total space of the line bundle which descends to an analytic structure
on MG

het. Moreover, in this setting, fibration (92) becomes a holomorphic
(Seifert) C∗-fibration. The analysis of this holomorphic structure of (92) is
the central goal of this paper.

In future considerations we shall use an abstract, coordinate oriented,
working model for ME, G. Namely, let:

VG
def= H× (C⊗Z ΛG) .

Every pair (τ, z) ∈ VG can be seen to determine an elliptic curve Eτ together
with a flat G-connection connection on Eτ . Indeed, one can take:

Eτ = C/Z⊕ τZ

and then the factor z can be seen to determine an element in:

(93) (Pico(Eτ )⊗Z ΛG) /W ' (Eτ ⊗Z ΛG) /W
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which according to the previous arguments define a corresponding G-flat
connection on Eτ . Let pr1 : VG → H be the projection on the first factor.
For each τ ∈ H take:

Lτ : = {τ} × ((Z⊕ τZ)⊗ ΛG) ⊂ pr−1
1 (τ).

Then Lτ represents a family of 32-dimensional lattices sitting fiber-wise
inside the fibration pr1.

Definition 19. Let ΠG be the group of holomorphic automorphisms of the
fibration pr1 which preserve the lattice family L and cover PSL(2,Z) trans-
formations on H.

It turns out that two elements (τ, z) and (τ ′, z′) of H × ΛC determine iso-
morphic pairs of elliptic curves and flat G-connections if and only if they
can be transformed one into another through an isomorphism in ΠG. In this
sense, the analytic space:

(94) ΠG \ (H× ΛC)

can be seen as the moduli space of pairs of elliptic curves and flat G-bundles3

ME,G. Also, there is a canonical projection p : ΠG → PSL(2,Z) which
commutes with pr1 inducing a fibration:

ΠG\VG → PSL(2,Z)\H.
This is the model for projection (89) in theorem 18.

Let us single out the following three particular subgroups of ΠG:

• SG =
{
ψ ∈ ΠG

∣∣∣ ψ(τ, z) =
(
aτ+b
cτ+d ,

z
cτ+d

)
,

(
a b
c d

)
∈ SL(2,Z)

}
• TG =

{
ψ ∈ ΠG

∣∣∣ ψ(τ, z) = (τ, z + q1 + τq2), (q1, q2) ∈ ΛG ⊕ ΛG
}

• WG =
{
ψ = id⊕ f ∈ ΠG

∣∣∣ f ∈ O(Λ)
}

.

The three subgroups SG, TG and WG generate the entire ΠG. In addition,
note that SG ∩WG = {±id} and that Ker(p) is generated by WG and TG.
One concludes from these facts that ΠG is a semi-direct product:

(95) ΠG = TG o
(
WG ×{±id} SG

)
.

The model (94) allows us now to describe easily holomorphic line bundles
over the moduli space of of elliptic curves and flat G-bundles, ME, G. Such
bundles over a complex orbifold are best described in terms of equivariant
line bundles over the cover. These equivariant bundles are line bundles
L → VG where the action of the group ΠG on the base is given a lift to

3Again, in the case G = Spin(32)/Z2, one considers only Spin(32)-liftable connections
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the fibers. All holomorphic line bundles over VG are trivial and a lift of
the action to fibers can be obtained through a set of automorphy factors
(ϕa)a∈ΠG

with ϕa ∈ H0(VG,O∗
VG

) satisfying:

ϕab(x) = ϕa(b · x)ϕb(x).
Such a set makes a 1-cocycle ϕ in Z1(ΠG,H

0(VG,O∗
VG

)). Two automorphy
factors provide isomorphic line bundles on ME, G if and only if they de-
termine the same cohomology class in H1(ΠG,H

0(VG,O∗
VG

)). To state this
rigorously, there is a canonical map φ entering the following exact sequence:

(96) {1} → H1(ΠG,H
0(VG,O∗

VG
))

φ→ H1(ME, G, O∗
ME, G

)

→ H1(VG, O∗
VG

) ' {1}.

There is an important holomorphic line bundle living on ME, G. Leaving
aside more advanced interpretation, one can minimally define this bundle
as the fibration with lines supporting the character function of ΛG. Indeed,
in both cases G = E8 × E8 and G = Spin(32)/Z2, the coroot lattice ΛG is
positive definite, unimodular and even and therefore, one can define then an
associated holomorphic theta function (see [12] [15] for details) :

(97) ΘΛG
: VG → C, ΘΛG

(τ, z) =
∑
γ∈Λ

eπi(2(z,γ)+τ(γ,γ)).

The pairing appearing above represents the bilinear complexification of the
integral pairing on ΛG. The ΛG-character function can be written then as
a quotient of ΘΛG

:

(98) BΛG
: VG → C, BΛ(τ, z) =

ΘΛG
(τ, z)

η(τ)16
.

Here, η(τ) is Dedekind’s eta function:

η(τ) = eπiτ/12
∞∏
m=1

(
1− e2πimτ

)
,

which is an automorphic form of weight 1/2 and multiplier system given by
a group homomorphism χ : SL2(Z) → Z/24Z, in the sense that [18]:

η(γ · τ) = χ(γ)
√
cτ + d η(τ) for γ =

(
a b
c d

)
∈ SL2(Z).

The character terminology for (98) is justified by its role in the represen-
tation theory of infinite-dimensional Lie algebras. The function BΛG

is the
zero-character of the level l = 1 basic highest weight representation of the
Kac-Moody algebra associated to G (see [12] for details).

The function BΛG
obeys the following transformation properties:
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Proposition 20. ([12]) Under the action of the group ΠG, the ΛG-character
function (98) transforms as :

BΛG
(g · (τ, z)) = ϕch

g (τ, z) ·BΛG
(τ, z), g ∈ ΠG.

The factors ϕch
a can be described on the generators of the group ΠG as:

• ϕch
g (τ, z) = eπi(−2<q2,z>−τ<q2,q2>) for g ∈ TG induced by (q1, q2) ∈

ΛG ⊕ ΛG.

• ϕch
g = e

πic<z,z>
cτ+d for g ∈ SG induced by

(
a b
c d

)
∈ SL(2,Z).

• ϕch
g = 1 for g ∈ WG.

The function BΛG
descends therefore to a holomorphic section of a holomor-

phic C-fibration:

(99) Z → ΠG\ (H× ΛC) = ME,G.

for which a set of automorphy factors are given by the ϕch
g in proposition

20.

The main result of this paper asserts:

Theorem 21. There exist a holomorphic isomorphism of C∗-fibrations be-
tween (92) and the C∗ the ΛG-character fibration (99). The isomorphism is
unique up to twisting with a non-zero complex number.

The rest of the paper is dedicated to proving this theorem.

6 Proof of Theorem 21.

Our strategy is as follows. We shall exploit the link described in section 4
between the heterotic fibration:

(100) MG
het → PG/G

and the pfaffian combinations (73) and (79) in order to explicitly compute
a set of automorphy factors ϕhet

g , g ∈ ΠG for (92). Then we shall compare
ϕhet
g such computed with the automorphy factors ϕch

g of the ΛG-character
fibration (99) provided by proposition 20.

6.1 Determinants of Flat Line Bundles over Elliptic Curves

One can regard a pair consisting of an elliptic curve and a flat hermitian
line bundle as an element (τ, u) ∈ H × C. The imaginary complex number
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τ determines a complex structure Eτ on the 2-torus whereas a complex
number u = ατ + β ∈ C determines a flat bundle of holonomy map:

h : π1(E) ' Z⊕ Z → U(1), h(m,n) = e2πi(αm+βn).

The projection pr1 : H × C → H carries fiber wise a continuous family of
lattices Uτ = Z ⊕ τZ ⊂ H × C. We denote by ΠU(1) the group of auto-
morphisms of projection pr1, preserving the lattice family Uτ and covering
PSL(2,Z) transformations on the base. Two pairs (τ1, u1) and (τ2, u2) de-
termine isomorphic pairs of elliptic curves and flat line bundles if and only if
they belong to the same orbit under the action of ΠU(1). The moduli space
of elliptic curves and flat hermitian line bundles can then be seen as:

(101) ME,U(1) = ΠU(1)\ (H× C) .

The induced projection:

ME,U(1) →ME = PSL(2,Z)\H

makes a holomorphic torus fibration, the fiber over [τ ] ∈ME being Pico(Eτ ).
The symmetry group ΠU(1) is generated by two particular subgroups:

• SU(1) =
{
ψ ∈ ΠU(1)

∣∣∣ ψ(τ, u) =
(
aτ+b
cτ+d ,

u
cτ+d

) }
where

(
a b
c d

)
∈ SL(2,Z).

One has that SU(1) ' SL(2,Z).

• TU(1) =
{
ψ ∈ ΓU(1)

∣∣∣ ψ(τ, u) = (τ, u+ a1 + a2τ)
}

where (a1, a2) ∈ Z⊕ Z.

In this case TU(1) ' Z⊕ Z.

The group ΠU(1) can then be generated as a semi-direct product TU(1)oSU(1).

Consider then the odd spin structure (trivial double cover of the frame
bundle) on E. In the presence of a metric on E, there is then an induced
Dirac operator. Moreover, this operator can be coupled to the flat con-
nections creating therefore a family of elliptic differential operators. Inter-
preting the flat line bundles as holomorphic line bundles, one can see these
operators as ∂L operators. The family determines then a determinant C-
fibration (see [7] for more details):

(102) Det(DL) →ME,U(1)

carrying a natural determinant section det : ME,U(1) → Det(DL). One can
use then the model (101) to describe a set of automorphy factors for this
fibration.
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Lemma 22. The determinant fibration (102) can be obtained by factoring
the trivial holomorphic line bundle over H×C by a set of automorphy factors
ϕg, g ∈ ΠU(1) with:

1) ϕg(τ, u) = (−1)q1+q2 eπi(−2uq2−τq22)

for g ∈ TU(1) determined by (q1, q2) ∈ Z⊕ Z

2) ϕg(τ, u) = χ(m)2 eπi
cu2

cτ+d

for g ∈ SU(1) associated to m =
(
a b
c d

)
∈ SL(2,Z).

Moreover, the determinant section det in obtained in this setting as the
factorization of the holomorphic function:

f : H× C → C, f(τ, u) =
ϑ1(τ, u)
η(τ)

.

Here ϑ1(τ, u) is Siegel’s twisted theta function:

ϑ1(τ, u) =
∑
n∈Z

e2πi(u−
1
2)(n+ 1

2)+πiτ(n+ 1
2)

2

.

Proof. We follow arguments from [7]. The determinant line (102) can be
endowed with Quillen metric and connection compatible with the holomor-
phic structure. The Quillen norm of the determinant section det is then
computed as regularized determinant. According to [17] [7], one has:

(103) || det(τ, u) || =
∣∣∣∣ eπiuu2

ϑ1(τ, u)
η(τ)

∣∣∣∣
with u2 coming from the decomposition u = u1 + τu2.

Let us consider the pull-back π∗Det(DL) through the covering map π : H×
C →ME,U(1). The determinant section det pulls back to a new section d̃et
in π∗Det(DL). The Quillen metric and connection pull-back to π∗Det(DL)
as well. One computes then the curvature of the pull-back connection as:

(104) Ω = ∂∂ log‖d̃et‖2

Combining with (103) we get:

(105) Ω = ∂∂ (2πiuu2) = 2πi ∂∂
(
u2 − uu

τ − τ

)
We choose now a holomorphic trivialization for π∗Det(DL). It is not possible
to find a covariant trivialization (with respect to the pull-back Quillen con-
nection ∇Q) since the curvature does not vanish. However, one can deform
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the connection to:

∇′ = ∇Q − µ , µ ∈ Ω1(H× C).

and remove the curvature. In performing this deformation, we keep in mind
that we need a holomorphic trivialization so, we wish to keep the connection
compatible with the holomorphic structure. In order to achieve this, the
deformation 1-form must satisfy:

(106) dµ = Ω and µ0,1 = 0 .

We make the choice:

(107) µ = 2πi∂
(
u2 − uu

τ − τ

)
which satisfies conditions (106). The new connection ∇′ is flat and therefore
it is possible now to choose a holomorphic covariant section denoted σ.
Clearly, d̃et = fσ with f holomorphic function. In connection with (103)
one gets then:

| f | =
∣∣∣∣ϑ1(τ, z)

η(τ)

∣∣∣∣ .
Since f is holomorphic, we see that, up to multiplication by an unitary
complex number:

(108) f =
ϑ1(τ, z)
η(τ)

.

The automorphy factors result then from the well-known transformation
rules for (108). They are (as described in [18]) :

(109) f(τ, u+ q1 + τq2) = (−1)q1+q2 eπi(−2uq2−τq22) f(τ, u)

for (q1, q2) ∈ Z⊕ Z and

(110) f

(
aτ + b

cτ + d
,

u

cτ + d

)
= χ(m)2 e

πicz2

cτ+d f(τ, z)

for m =
(
a b
c d

)
∈ SL(2,Z) . �

There is a particular case of this construction that we need to also analyze.
Suppose that we give up the coupling with flat connections and just con-
sider the Dirac operators induced by the flat metrics of the elliptic curves.
As showed in (60), these operators can be interpreted as skew-symmetric
operators. In this setting, there exists a square root for the determinant,
the pfaffian. This C-fibration:

(111) Pfaff(∂τ ) →ME = PSL(2,Z)\H.
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appeared earlier in the fermionic combinations (79) and (73). Removing the
flat connections from lemma 22 one obtains:

Corollary 23. The holomorphic pfaffian fibration (111) can be obtained by
factoring out of the trivial line over H by a set of automorphy factors:

ϕom(τ) = χ(m) for m =
(
a b
c d

)
∈ SL(2,Z).

6.2 Automorphy Factors for Fermionic Pfaffians

We employ now the data of previous section to compute automorphy factors
for the line bundles (79) and (73). Each of the two is a tensor product
involving pfaffian bundles. Automorphy factors for the simplest one are
given by Corollary 23. In this section we compute the automorphy factors
for the other two.

The first one to look at is the adjoint pfaffian:

(112) Pfaff(Dad) →ME, G.

This holomorphic line bundle is obtained as the pfaffian of the family of
Dirac operators coupled to flat connections on the complex vector bundle
associated to the adjoint representation of G. This complex vector bundle
has a natural real structure. The pfaffian carries a canonical holomorphic
section pfaffad : ME, G → Pfaff(Dad). Working under coordinate model:

ME, G = ΠG\VG

we can describe the bundle as follows:

Lemma 24. The pfaffian line bundle (112) can be obtained by factoring out
the trivial line over the universal cover VG by means of automorphy factors
ϕad
g , g ∈ ΠG defined on generators as:

1) ϕad
g (τ, z) = ecGπi(−2<z,q2>−τ<q2,q2>)

for g ∈ TG associated to (q1, q2) ∈ ΛG ⊕ ΛG
2) ϕad

g (τ, z) = χ(m)N ecGπi
c<z,z>
cτ+d

for g ∈ SG associated to m =
(
a b
c d

)
∈ SL(2,Z)

3) ϕad
g (τ, z) = 1 for g ∈ WG.

Here cG = 30 is the Coxeter number of the group G (it takes the same value
for both choices E8 × E8 and Spin(32)/Z2) and N = dim(G) = 496.
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Proof. Let r be a root of G. One can also look at r as a particular weight
r : T → U(1) where T is a choice of maximal torus T ⊂ G. For each flat
T -connection A one can use the weight to associate a flat hermitian line
bundle, or a holomorphic line bundle. This association leads to an analytic
projection:

σr : ME, T →ME,U(1).

Employing coordinate models one can see this map can be seen as being
factored from:

σ̃r : VG → H⊕ C, σ̃r(τ, z) = (τ, < r∨, z >).

In this setting, the adjoint determinant appears as a tensor product over all
roots of G (including the zero ones):

(113) D̃et(Dad) =
⊗
r

σ∗rDet(DL).

After factoring out the action of the Weyl group, the line bundle (113)
descends to the determinant fibration Det(Dad) →ME, G. Lemma 22 pro-
vides a set of automorphy factors ϕrg, g ∈ ΠG for each σ∗rDet(DL). These
are defined on generators of ΠG as:

1) ϕrg(τ, z) = (−1)(<r
∨,q1>+<r∨,q2>) eπi(−2<r∨,z><r∨,q2>−τ<r∨,q2>2)

for g ∈ TG associated to (q1, q2) ∈ ΛG ⊕ ΛG

2) ϕrg(τ, z) = χ(m)2 eπi
c<r∨,z>2

cτ+d

for g ∈ SG associated to m =
(
a b
c d

)
∈ SL(2,Z).

One can then construct a set of automorphy factors ϕ̃ad
g , g ∈ ΠG for the

adjoint determinant by just taking the product of above quantities over all
roots of G. An useful shortcut here is provided by the formula:

(114)
∑
r

< r∨, z1 >< r∨, z2 >= 2cG < z1, z2 > .

One obtains therefore that ϕ̃ad
g can be given on generators of ΠG as:

1) ϕ̃ad
g (τ, z) = e2cGπi(−2<z,q2>−τ<q2,q2>)

for g ∈ TG associated to (q1, q2) ∈ ΛG ⊕ ΛG

2) ϕ̃ad
g (τ, z) = χ(m)2N e2cGπi

c<z,z>2

cτ+d

for g ∈ SG associated to m =
(
a b
c d

)
∈ SL(2,Z).

It is straightforward then that a set of automorphy factors ϕad
g for the adjoint

pfaffian can be obtained by factoring the exponents of ϕ̃ad
g by two. The
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Weyl action factors are constant 1 due to the Weyl invariance of the pfaffian
section. �

As opposed to the adjoint pfaffian, the spin pfaffian line bundle appearing
in fermionic combination (79) corresponds to a lower rank representation.
However, such representations do not exist on G and therefore, in order to
lower the rank one has to reduce the bundle group. For the sake of clar-
ity, let us assume that we analyze the case G = (E8 × E8) o Z2. Set then
H = Spin(16) × Spin(16). There exists then a Lie group homomorphism:
α : Spin(16) → E8 which doubles to α× α : H → G. Any flat H-connection
induces then an associated flat G-connection and this correspondence pro-
duces an analytic morphism between the respective moduli spaces:

(115) σ : ME,H →ME,G.

This map can be explicitly realized in coordinate models. Let x1, x2, · · · x8

be the fundamental (co)weights of SO(16). The (co)roots of Spin(16) can
then be seen as:

1
2

(±xi ± xj) , 1 ≤ i < j ≤ 8

and they generate the (co)root lattice ΛSpin(16) of Spin(16). The (co)root
lattice of E8 makes a sub-lattice of ΛSpin(16). The (co)roots are obtained in
two series:

±xi ± xj , these are from Spin(16)/Z2 and there are 112 of them

1
2

(±x1 ± x2 · · · ± x8) , where there are an even number of minus signs.

The Lie group homomorphism α : Spin(16) → E8 induces then a morphism
of coroot lattices:

αΛ : ΛSpin(16) → ΛE8 , αΛ

(
1
2

(±xi ± xj)
)

= ±xi ± xj .

This homomorphism, in turn, extends canonically to a homomorphism

α : ΛH → ΛG

commuting with the Weyl projection p : WH →WG. One gets therefore the
map:

(116) id⊕ (id⊗ α) : ΠH\H × (C⊗Z ΛH) → ΠG\H × (C⊗Z ΛG)

which models exactly the complex variety morphism (115).

As mentioned earlier, unlike E8, Spin(16) admits a representation in rank
16, the spin representation. Taking the direct sum of two such representa-
tions, one obtains a representation ρ for H in dimension 32. Coupling the
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Dirac operators on elliptic curves with flat connections induced by represen-
tation ρ, one obtains a ρ-pfaffian C-fibration:

(117) Pfaff(Dρ) →ME, H .

It turns out that in the coordinate model:

ME, H = ΠH\H × (C⊗Z ΛH)

we have:

Lemma 25. The holomorphic pfaffian fibration (117) can be by factoring
out the trivial line bundle over the universal cover H⊕ (C⊗Z ΛH) by means
of a set of automorphy factors ϕρg, g ∈ ΠH which can be given on generators
of ΠH as:

1) ϕρg(τ, z) = eπi(−2<z,q2>−τ<q2,q2>)

for g ∈ TH associated to (q1, q2) ∈ ΛH ⊕ ΛH
2) ϕρg(τ, z) = χ(m)16 eπi

c<z,z>
cτ+d

for g ∈ SH associated to m =
(
a b
c d

)
∈ SL(2,Z)

3) ϕρg(τ, z) = 1 for g ∈ WH .

Proof. The representation ρ is determined by thirty two weights on the max-
imal torus ofH represented by two copies of x1, x2, · · ·x8,−x1, −x2, · · ·−x8.
Each weight x determines an analytic map:

σx : ME, T →ME, U(1)

which is can be described at the level of universal covers as:

H⊕ (C⊗Z ΛH) → H⊕ C, (τ, u⊗ λ) (τ, u · x(λ)).

The pull-back of the determinant bundle onME, U(1) through the morphism
σx determines a holomorphic line bundle σ∗xDet(DL) → ME, T . Tensoring
over all weights we obtain:

D̃et(Dρ) =
⊗
w

σ∗xDet(DL).

This bundle and its holomorphic section are invariant under the action of
the Weyl group WH . Factoring out the Weyl action, one obtains therefore
the ρ-determinant fibration Det(Dρ) →ME, H which is the square of (117).
Once again, lemma 22 can be used to determine a set of automorphy factors
ϕxg , g ∈ ΠH for each σ∗xDet(DL). These factors can be read on generators of
ΠH as:
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1) ϕxg(τ, z) = (−1)x(q1)+x(q2) eπi(−2x(z)x(q2)−τx(q2)2)

for g ∈ TH associated to (q1, q2) ∈ ΛH ⊕ ΛH

2) ϕxg(τ, z) = χ(m)2 eπi
c·x(z)2

cτ+d

for g ∈ S associated to for m =
(
a b
c d

)
∈ PSL(2,Z).

Taking the product over all weights and using the fact that:

2 ·
8∑
i=1

xi(a) · xi(b) = < a, b >

for all a, b ∈ ΛH , we obtain a set of automorphy factors ϕ̃ρg, g ∈ ΠH for the
ρ-determinant fibration. They are:

1) ϕ̃ρg(τ, z) = e2πi(−2<z,q2>−τ<q2,q2>)

for g ∈ TH associated to (q1, q2) ∈ ΓH ⊕ ΓH

2) ϕ̃ρg(τ, z) = χ(m)32 e2πi
cu2

cτ+d

for g ∈ SH associated to m =
(
a b
c d

)
∈ SL(2,Z).

The factor corresponding to the Weyl action is identically 1. The pfaf-
fian fibration is obtained by grouping together the weights of opposite sign.
Therefore, one can obtain a set ϕρg of automorphy factors for the ρ-pfaffian
fibration (117) by just dividing the exponents in ϕ̃ρg by two. �

There is a similar Spin(32)/Z2 analog for Lemma 25. In this case one takes
H to be Spin(32) and ρ to be the spin representation of Spin(32).

6.3 Heterotic Fibration = Character Fibration

We are now in position to finish the proof of theorem 21. Recall the basic
facts. The moduli space of G-heterotic data makes an 18-dimensional com-
plex variety MG

het which is the total space of the heterotic Chern-Simons
C∗-fibration:

(118) Mhet →ME, G.

Under the coordinate description:

ME,G = ΠG\H × (C⊗Z ΛG) ,

the holomorphic type of fibration (118) is given, equivariantly, by the class
of a set of automorphy factors ϕhet

g , g ∈ ΠG, which describe a way to factor
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(118) from the trivial line bundle over the universal cover H× (C⊗Z ΛG) of
the base.

The fermionic tensor products constructed as pfaffian phase combinations
in section 4 were holomorphic C-fibrations:

Lad →ME, G and Lρ →ME, H

obtained as in (73) (79):

(119) Lad = Pfaff(Dad)⊗ (Pfaff(Dg))⊗224

and

(120) Lρ = Pfaff(Dρ)⊗ (Pfaff(Dg))⊗−8 .

Proposition 26.

• The adjoint anomaly fibration:

Lad →ME, G = ΠG\H × (C⊗Z ΛG)

can be described by a set of automorphy factors φad
g , g ∈ ΠG given on

generators of ΠG as:
1) φad

g (τ, z) = ecGπi(−2<z,q2>−τ<q2,q2>)

for g ∈ TG associated to (q1, q2) ∈ ΛG ⊕ ΛG
2) φad

g (τ, z) = ecGπi
c<z,z>
cτ+d

for g ∈ SG associated to m =
(
a b
c d

)
∈ SL(2,Z).

3) φad
g (τ, z) = 1 for g ∈ WG.

In both cases G = (E8 × E8) o Z2 and G = Spin(32)/Z2 the Coxeter
number cG = 30.

• The ρ-anomaly fibration:

Lρ →ME, H = ΠH\H × (C⊗Z ΛH)

can be described by a set of automorphy factors φρg, g ∈ ΠH given on
generators of ΠH as:
1) φρg(τ, z) = eπi(−2<z,q2>−τ<q2,q2>)

for g ∈ TH associated to (q1, q2) ∈ ΛH ⊕ ΛH
2) φρg(τ, z) = eπi

c<z,z>
cτ+d

for g ∈ SH associated to m =
(
a b
c d

)
∈ SL(2,Z).

3) φρg(τ, z) = 1 for g ∈ WH .

Proof. This is a straightforward computation based on Lemmas (24), (25)
and Corollary (23). �
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In this setting, after checking the above formulas upon the character bundle
automorphy factors of Proposition 20 one concludes:

Remark 27. Under the analytic map σ : ME,H →ME,G the two fermionic
fibrations (119) and (120) are related to the ΛG-character fibration Z →
ME,G of (99) as follows:

(121) Lρ ' σ∗Z, Lad ' Z⊗cG .

This remark we exploit in order to extract information about the automor-
phy factors ϕhet

g of (118). The considerations in section 4 allow us to affirm
the following two holomorphic fibration isomorphisms:

1) Lρ ' σ∗Lhet

2) Lad ' L⊗cGhet .

These statements can subsequently be translated into the following equiva-
lences of automorphy factors:

1)
[(
ϕhet
a

)
a∈ΠG

]cG
∼
(
φad
a

)
a∈ΠG

2)
(
ϕhet
p(b)

)
b∈ΠH

∼
(
φρb
)
b∈ΠH

The equivalence relation “∼” asserts the factors on the two sides realize the
same group cohomology class in

H1(ΠG,H
0(O∗

H×(C⊗ΛG)))

in the first assertion or

H1(ΠH ,H
0(O∗

H×(C⊗ΛH))

in the second assertion or, in geometrical terms, the two sets of automorphy
factors determine isomorphic equivariant line bundles on the universal cover
of the base space. As defined earlier, cG represents the Coxeter number of
G. For both G = (E8 × E8) o Z2 and G = Spin(32)/Z2 we have cG = 30.

The two equivalence relations above and Remark 27 allows us to conclude
that that the two sets of automorphy factors ϕhet

a and ϕch
a are related:

(122) ϕhet
a ∼ fa · ϕch

a

where fa ∈ H1(ΠG,H
0(O∗

H×(C⊗ΛG))) and satisfies:

1) (fa)30 = 1 for any a ∈ ΠG.
2) fp(b) = 1 for any b ∈ ΠH .
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Since all fa are holomorphic functions, the first condition above implies that
they are all constant functions. Therefore, the set fa can be reduced to a
group homomorphism f : ΠG → Z30 with p(ΠH) ⊂ Ker(f).

We note immediately that fa = 0 for a ∈ SG as SG = p(SH). Let us
next analyze the restriction of f on WG. In the case G = Spin(32)/Z2,
H = Spin(32) one has p(WH) = WG and therefore f vanishes on WG.
For the other case, G = (E8 × E8) o Z2, H = Spin(16) × Spin(16), and
the image p(WH) is a subgroup of index 135 = 33 · 5 in WG. This can
be deduced form the orders of the Weyl groups of Spin(16) and E8, whose
explicit computations one can find, for example, in [22]. Therefore, the
image of the character f restricted to WG is either {0} or a subgroup of
Z30 of odd order. But WG is generated by elements of order two. Hence
Im(f) = {0}. We conclude then that, in both cases, the character f vanishes
on the Weyl transformations in WG. Let us then continue with an analysis
of the behavior of f on TG. This group is acted upon by WG and, under
the identification, TG ' ΛG × ΛG, this action is the Weyl action. Since the
Weyl action is transitive on the roots, we conclude that the homomorphism
f takes the same value on all roots in ΛG × ΛG. However, some of the
roots are coming from the roots of H and therefore all roots must belong to
Ker(f). This shows that fa = 0 for any a ∈ TG and since we have already
proved that f vanishes on WG and SG, conclude that f is identically zero
on ΠG.

By (122) the automorphy factors ϕhet
a and ϕch

a are equivalent and hence
the heterotic C∗-fibration (118) is holomorphically isomorphic to the ΛG-
character fibration Z →ME,G of (99). This completes the proof of theorem
21.

Appendix A The Push-Forward Map

In this appendix we clarify the push-forward mechanism for differential co-
cycles. This feature has been used in section 4 in order to construct the
Chern-Simons bundle (52) associated to a family of heterotic parameters.

As mentioned in [5], differential cohomology classes can be integrated.
In other words, there exists a push-forward homomorphism of the following
type:

(123)
∫
E

: Ȟn(X × E) → Ȟn−d(X)
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where X and E are smooth closed manifolds and dimRE = d. More-
over, there are (non-canonical) extensions of this cohomology map to push-
forward morphisms for non-flat differential cochains:

(124)
∫
E

: NČn(X × E) → NČn−d(X)

Such kind of map integrates non-flat n-cochains from X × E down to non-
flat (n−d)-cochains on X. And carries certain properties as diffeomorphism
invariance, sensitivity to orientation, Stokes’ theorem and gluing law. The
goal of this appendix is to describe in detail the construction of (124).

Recall that there is an integration map for differential forms:

(125)
∫
E

: Λn(X × E) → Λn−d(X)

which gives rise to a morphism of the de Rham complexes:

(126)
∫
E

: Λ•(X × E) → Λ•−d(X)

The induced homomorphism

(127)
∫
E

: Hn
dR(X × E) → Hn−d

dR (X)

represents the cap product with the fundamental homology class [E] ∈
Hd(E). We would like to reproduce the same pattern for differential co-
homology.

The push-forward mechanism, in the framework we are going to use, is in
some sense a generalization of the higher gerbe connection holonomy, which
a non-flat n-cocycle defines along a closed embedded n-manifold. This has
been discussed briefly in section 2.2. namely, if one assumes that X reduces
to just a point and d = n then the particular map :

(128)
∫
E

: NŽn(E) → NŽ0({point}) ' R

returns a real number whose exponential gives precisely the holonomy of the
n-cocycle along E. Accordingly, we construct the push-forward mechanism
along the lines holonomy was defined in section 2.2.

Let X and E be closed smooth manifolds and the real dimension of E is
d. Assume that X and E are endowed with (contractible) open coverings:

X =
⋃
a∈A

Ua, E =
⋃
b∈B

Ub
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and that the covering of E is admissible, in the sense that it admits a
subordinated dual cell decomposition. This creates a product covering of
X × E:

X × E =
⋃

(ab)∈A×B

U(ab) with U(ab) = Ua × Ub.

As with holonomy, we make a choice of dual cell decomposition for E,
(∆i)i∈I , ∆i representing the top d-cells. We keep the same orientation
convention. ∆(i1>i2···>ik) is the (d + 1 − k)-face obtained by intersecting
∆i1 , ∆i2 , · · · , ∆ik if such a thing does exist. The orientation we con-
sider on ∆(i1>i2>···>ik) is the one obtained when regarding ∆(i1>i2>···>ik) as
a boundary component in ∆(i1>i2>···>ik−1). As before, suppose the decom-
position is subordinated to the covering (Ub)b∈B through a subordination
map

(129) ρ : I → B, ∆i ⊂ Uρ(i)

We now describe the push-forward map. Let ω be a non-flat n-cochain on
X × E. We assume that the product covering U(ab) = Ua × Ub is chosen
to be sufficiently small such that ω can be represented in this covering as a
multiplet:

(130) ω =

(H,ωn(a1b1), ω
n−1
(a1b1)(a2b2), ω

n−2
(a1b1)(a2b2)(a3b3), · · · , ω

−1
(a1b1)(a2b2)···(an+2bn+2)).

The integration map associates then to each ω a non-flat (n-d)-cochain:

A =
∫
E
ω ∈ NČn−d(X).

and such an object can be represented in the covering (Ua)a∈A as a multiplet:

(131) A = ( T, An−da1
, An−d−1

a1a2
, · · · , A−1

a1a2···an−d+2
).

Definition 28. The components T and A(a) are defined as:

(132) T =
∫
E
H

and for higher indices (a) = (a1a2 · · · ar) ,

(133) An−d+1−r
(a) =

d+1∑
k=1

(−1)(n−d+1)(k+1)
∑

(i)=(i1>i2>···>ik)

∫
∆(i)

T
(a)
ρ((i))ω

if 1 ≤ r ≤ n+ 1− d and

(134) A−1
(a) = (−1)(n−d+1)d

∑
(i)=(i1>i2>···>id+1)

∫
∆(i)

T
(a)
ρ((i))ω
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for r = n+ 2− d. For a multi-index (i) = (i1 > i2 > · · · > ik) in the second
sum, ρ((i)) is defined as (ρ(i1)ρ(i2) · · · ρ(ik)). The symbols:

(135) T
(a1a2···ar)
(b1b2···bk) ω

represent local (n+ 2− r− k)-forms (local constant functions with values in
2πZ if n+ 2− r − k = −1) living on

(Ua1 ∩ Ua2 ∩ · · · ∩ Uar)× (Ub1 ∩ Ub2 ∩ · · · ∩ Ubk).

The exact formulation of symbols (135) is given by the next definition. By
convention, in expressions (133) and (134), integration over points (∆(i)

with |(i)| = d+ 1) means just evaluating the respective forms on ∆(i).

Definition 29. Let the two multi-indices be:

(a) = (a1, a2, · · · , ar) and (b) = (b1, b2, · · · , bk).

We set

(136) T
(a)
(b) ω =

∑
γ∈D

(−1)A(d) ωn+2−k−r
d

where D stands for the set of paths in the rectangular network (ap, bq) gen-
erated by (a) = (a1, a2, · · · , ar) and (b) = (b1, b2, · · · , bk) joining (a1, b1) to
(ar, bk) and moving only to the right or upward. A(γ) stands for the area of
the domain bounded by the path γ and the b-axis. For

γ =
(

(ap1 bq1), (ap2 bq2), · · · (apr+k−1
bqt+r−1)

)
we define

(137) ωn+2−k−r
γ = ωn+2−r−k

(ap1 bq1 )(ap2 bq2 )···(apr+k−1
bqk+r−1

).

We make the remark here that in (137), if the number of nodes in the path γ
is n+2 then ω−1

γ ∈ 2πZ. Relation (134) let us then conclude that A−1
(a) ∈ 2πZ

for |(a)| = n−d+2, and therefore, the multiplet A described in definition 28
is indeed a differential cochain. One obtains therefore a push-forward map:

(138)
∫
E

: NČn(X × E) → NČn−d(X)

It satisfies the following propriety:

Theorem 30. For every non-flat differential cocycle ω ∈ NŽN (X×E), the
push-forward: ∫

E
ω

is a (n-d)-dimensional non-flat differential cocycle on X.
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Moreover, theorem 30 is just a particular case of a Stokes-like integration
argument.

Theorem 31. The push forward map defined above for differential cochains
commutes with the differentiation operator ď. Namely,

(139)
∫
E
ďω = ď

( ∫
E
ω

)

Based on above statement, one concludes that the integration mechanism
constructed so far sends differential cocycles to differential cocycles and
coboundaries of flat differential cochains to coboundaries of flat cochains.
This induces therefore a push-forward cohomology map:

(140)
∫
E

: Ȟn(X × E) → Ȟn−d(X).

Proof. (of Theorem 31) Theorem 30 will follow as a corollary. Assume that
the input ω is a non-flat differential n-cochain on a product open covering
of X × E and η = ďω ∈ NČn+1(X × E). We are going to show that the
push-forward cochains:

(141) A =
∫
E
ω = ( T, An−da1

, An−d−1
a1a2

, · · · , A−1
a1a2···an−d+2

)

and

(142) B =
∫
E
η = ( Q, Bn−d

a1
, Bn−d−1

a1a2
, · · · , B−1

a1a2···an−d+2
)

satisfy ďA = B. That means:

dT = Q, T|Ua1
− dAa1 = Ba1 and (δA)(a) + (−1)|(a)| dA(a) = B(a) .

The first identity can be quickly proved:

dT = d

(∫
E
H

)
=
∫
E
dxH =

∫
E
dH −

∫
E
dyH =

∫
E
dH = Q.

Here dx and dy are derivatives along X, respectively Y direction.

Let us prove that T|Ua1
− dAa1 = Ba1 . We have:

T − dAa1 =
∫
E
H − dAa1 =

∫
E
H −d+1∑

k=1

(−1)(n−d+1)(k+1)
∑

(i)=(i1>i2>···>ik)

∫
∆(i)

dxT
a1

(ρ(i1)ρ(i2)···ρ(ik))ω

 =
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=
∑
i1

∫
∆i1

H −

d+1∑
k=1

(−1)(n−d+1)(k+1)
∑

(i)=(i1>i2>···>ik)∫
∆(i)

(dT a1

(ρ(i1)ρ(i2)···ρ(ik))ω − dyT
a1

(ρ(i1)ρ(i2)···ρ(ik))ω).

But Stockes’ Theorem provides:∑
(i)=(i1>i2>···>ik−1)

∫
∆(i)

dyT
a1

(ρ(i1)ρ(i2)···ρ(ik−1))ω =

=
∑

(i)=(i1>i2>···>ik)

(−1)n−d+1+k+1

∫
∆(i)

[δbT a1

(.)ω](ρ(i1)ρ(i2))···ρ(ik)).

Here δb means Cech differentiation with respect to the second indices. Con-
tinuing along these lines one obtains that T − dAa1 equals:∑

i1

∫
∆i1

(H − dT a1

ρ(i1)ω) −
d+1∑
k=2

(−1)(n−d+1)(k+1)

∑
(i)=(i1>i2>···>ik)

(∫
∆(i)

(dT a1

(ρ(i1)ρ(i2)···ρ(ik)) + (−1)k [δbT a1

(.)ω](ρ(i1)ρ(i2))···ρ(ik)))

)
.

However, ďω = η and therefore:

H − dT a1

ρ(i1)ω = H − dωn(a1ρ(i1)) = ηn+1
(a1ρ(i1)) = T a1

ρ(i1)η

and
dT a1

(ρ(i1)ρ(i2)···ρ(ik))ω + (−1)k [δbT a1

(.)ω](ρ(i1)ρ(i2))···ρ(ik)) =

dωn+1−k
(aρ(i1))(aρ(i2))···(aρ(ik)) + (−1)k [δωn+1−k](aρ(i1))(aρ(i2))···(aρ(ik)) =

= (−1)k ηn+2−k
(aρ(i1))(aρ(i2))···(aρ(ik)) = (−1)kT a1

(ρ(i1)ρ(i2)···ρ(ik))η.

Hence:
T − dAa1 =

=
∑
i1

∫
∆i1

T a1

ρ(i1)η +

+
d+1∑
k=2

(−1)(n−d+1)(k+1)
∑

(i)=(i1>i2>···>ik)

∫
∆(i)

(−1)kT a1

(ρ(i1)ρ(i2)···ρ(ik))η =

=
d+1∑
k=1

(−1)(n−d+2)(k+1)
∑

(i)=(i1>i2>···>ik)

∫
∆(i)

T a1

(ρ(i1)ρ(i2)···ρ(ik))η = Ba1 .
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We are now in position to prove the cocycle condition for higher indices.

Namely:

[δA](a)+(−1)|(a)| dA(a) = B(a) for (a) = (a1a2 · · · ar), |(a)| = r ≤ n−d+2.

We have:

dA(a) =
d+1∑
k=1

(−1)(n−d+1)(k+1)
∑

(i)=(i1>i2>···>ik)

∫
∆(i)

dxT
(a)
ρ((i))ω

and

(δA)(a) =
d+1∑
k=1

(−1)(n−d+1)(k+1)
∑

(i)=(i1>i2>···>ik)

∫
∆(i)

[δaT
(.)
ρ((i))ω](a).

Taking into account

dxT
(a)
ρ((i))ω = dT

(a)
ρ((i))ω − dyT

(a)
ρ((i))ω

we write:
[δA](a) + (−1)r dA(a) =

=
d+1∑
k=1

(−1)(n−d+1)(k+1)
∑

(i)=(i1>i2>···>ik)∫
∆(i)

(
[δaT

(.)
ρ((i))ω](a) + (−1)rdxT

(a)
ρ((i))ω

)
=

=
d+1∑
k=1

(−1)(n−d+1)(k+1)
∑

(i)=(i1>i2>···>ik)∫
∆(i)

(
[δaT

(.)
ρ((i))ω](a) + (−1)rdT (a)

ρ((i))ω − (−1)rdyT
(a)
ρ((i))ω

)
.

But ∑
(i)=(i1>i2>···>ik−1)

∫
∆(i)

dyT
(a)
ρ((i))ω =

= (−1)n−d+r+k+1
∑

(i)=(i1>i2>···>ik)

∫
∆(i)

[δbT
(a)
(.) ω]ρ((i)).

Therefore we continue:

(143) [δA](a) + (−1)r dA(a) =

=
∑
i1

∫
∆i1

(
[δaT

(.)
ρ(i1)ω](a) + (−1)rdT (a)

ρ(i1)ω
)

+
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+
d+1∑
k=2

(−1)(n−d+1)(k+1)
∑

(i)=(i1>i2>···>ik)∫
∆(i)

(
[δaT

(.)
ρ((i))ω](a) + (−1)rdT (a)

ρ((i))ω + (−1)k+1[δbT
(a)
(.) ω]ρ((i))

)
.

We claim now that the right part of identity (143) is exactly B(a). To clarify
this assertion we need the following lemma:

Lemma 32. Let ω ∈ NČn(X × E) be a non-flat differential n-cocycle and
ďω = η ∈ NČn+1(X ×E). We consider the symbols T (a)

(b) ω and T (a)
(b) η intro-

duced by Definition 29 . They satisfy the following relation:
(144)
T

(a)
(b) η = (−1)|(a)|+|(b)|+1 dT

(a)
(b) ω + (−1)|(b)|+1 [δaT

(.)
(b)ω](a) + [δbT

(a)
(.) ω](b).

If |(a)| = 1 or |(b)| = 1 the second or the third term in (144) disappears.

Before giving a proof for Lemma 32 , let us notice that this this ends the
proof of theorem 31 . Indeed, one can see that the terms appearing in sum-
mation (143) can be immediately rewritten as:

(145) [δaT
(.)
ρ(i1)ω](a) + (−1)rdT (a)

ρ(i1)ω = T
(a)
ρ(i1)η

and

(146) [δaT
(.)
ρ((i))ω](a) + (−1)rdT (a)

ρ((i))ω +

+ (−1)k+1[δbT
(a)
(.) ω]ρ((i)) = (−1)k+1T

(a)
ρ((i))η.

Therefore
[δA](a) + (−1)r dA(a) =

=
∑
i1

∫
∆i1

T
(a)
ρ(i1)η +

+
d+1∑
k=2

(−1)(n−d+1)(k+1)
∑

(i)=(i1>i2>···>ik)

∫
∆(i)

(−1)k+1T
(a)
ρ((i))η =

=
d+1∑
k=1

(−1)(n−d+2)(k+1)
∑

(i)=(i1>i2>···>ik)

∫
∆(i)

T
(a)
ρ((i))η = B(a).

This finishes the proof. �

We still have to provide a proof for lemma 32 that was used above.
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Proof. (of Lemma 32.) Let us recall the definition of the symbols T (a)
(b) . For

(a) = (a1, a2, · · · , ar) and (b) = (b1, b2, · · · , bk), these objects are expressed
as:

(147) T
(a)
(b) ω =

∑
γ∈D

(−1)A(γ) ωn+2−k−r
γ

where D is the set of paths

γ =
(

(ap1 bq1), (ap2 bq2), · · · (apr+k−1
bqr+k−1

)
)

in the rectangular network

{(ai bj) | i ∈ {1 · · · r}, j ∈ {1 · · · k}}

starting at (a1 b1) , ending up at (ar bk) and moving only upward or to the
right. A(γ) represents the area of the domain bounded by the path γ and
the b-axis. With this in mind:

T
(a)
(b) η =

∑
γ∈D

(−1)A(d) ηn+2−k−r
γ =

=
∑
γ∈D

(−1)A(γ)
(

(δωn+2−k−r)γ + (−1)r+k−1 dωn+1−k−r
γ

)
=

=
∑
γ∈D

(−1)A(γ) (δωn+2−k−r)γ +

+(−1)r+k−1

∑
γ∈D

(−1)A(γ) ωn+1−k−r
γ

 .

The second term on the left side of above is exactly

(−1)|(a)|+|(b)|+1 dT
(a)
(b) ω,

and therefore, in order to complete the proof of the lemma we just have to
show:

(148)
∑
γ∈D

(−1)A(γ) (δωn+2−k−r)γ =

= (−1)|(b)|+1 [δaT
(.)
(b)ω](a) + [δbT

(a)
(.) ω](b).

One can prove this by observing that both sides of (148) are made of terms
of type:

± ωn+3−r−k
(ap1bq1 )(ap2bq2 )···(apk+r−2

qik+r−2
) .

We have to show that, after cancellations, the same terms appear in both
sides, with the same signatures. Let

γ = [ (ap1bq1)(ap2bq2) · · · (apk+r−1
bqk+r−1

) ]
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be a path in D. We have: (ap1bp1) = (a1b1) and (apk+r−1
bqk+r−1

) = (arbk).
Let t ∈ 1, · · · , k + r − 1. We denote by γt the broken path obtained after
removing the point (aptbqt) from γ. In other words:

γt = [ (ap1bq1) (ap2bq2) · · · (apt−1bqt−1) (apt+1bqt+1) · · · (apk+r−1
bqk+r−1

) ] .

Let

ωn+3−k−r
γt

= ωn+3−k−r
(ap1bq1 )(ap2qi2 )···(apt−1bqt−1 )(apt+1bqt+1 )···(apk+r−1

bqk+r−1
) .

ωn+3−k−r
γt

appears in the right hand side of equation (148) with signature:

(−1)A(γ)+t+1

We analyze what happens on the other side. There are four cases to be
considered.

1) bqt−1 = bqt = bqt+1 . This happens if the path γ keeps going horizontally
in the vicinity of the node (aptbqt).

2) apt−1 = apt = apt+1 . This happens when the path keeps climbing
vertically in the vicinity of the node (aptbqt).

3) bqt−1 = bqt = bqt+1 − 1. The path γ makes a lower L with center in
(aptbqt).

4) apt−1 = apt = apt+1 − 1. The path makes a upper L with center in
(aptbqt).

In each of the above cases one obtains a term of type:

(−1)A(γ)+t+1 ωn+3−k−r
γt

=

= (−1)A(γ)+t+1 ωn+3−k−r
(ap1bq1 )(ap2bq2 )···(apt−1bqt−1 )(apt+1bqt+1 )···(apk+r−1

bqk+r−1
)

on the right side of the equation. Let us notice that the last two cases, 3
and 4, cancel each other in some way. For example, if case 3 happens then
the corresponding term

(−1)A(γ)+t+1 ωn+3−k−r
γt

gets canceled by the term

(−1)A(γ̃)+t+1 ωn+3−k−r
γ̃t

where γ̃ is the path :

[(ap1bq1)(ap2bq2) · · · (apt−1 , bqt−1)(apt−1, bqt+1)(apt+1 , bqt+1) · · · (apk+r−1
bqk+r−1

)]

(γ̃ is obtained from γ by downgrading the upper L at step t to a lower L).
Clearly:

ωn+3−k−r
γ̃t

= ωn+3−k−r
γt
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(as we are removing exactly the step where the two paths differ) and since
A(γ̃) = A(γ)− 1 we get:

(−1)A(γ)+t+1 ωn+3−k−r
γt

+ (−1)A(γ̃)+t+1 ωn+3−k−r
γ̃t

= 0.

It is also clear that such terms do not appear on the left side of the equation
(148).

It remains to look at the first two cases. Let us analyze the first case. In
this situation, the term ωn+3−k−r

γt
appears in

(δbT
(a1a2···ar)
(.) ω)(b1b2···bk)

but not in
(δaT

(.)
(b1b2···bk)ω)(a1a2···ar) .

We check the sign which ωn+3−k−r
γt

carries on the left side of equation
(148). Assume qt = f and pt = g. Then γt can be interpreted as a
path in the rectangular network (apbq) generated by (a1, a2, · · · ar) and
(b1, b2, · · · bf−1, bf+1, · · · bfk

). The area bounded by γt and b-axis is:

A(γt) = A(γ)− (γ − 1).

Therefore ωn+3−k−r
γt

appears in

T
(a1a2···ar)
(b1b2···bf−1bf+1···bk) ω

with sign
(−1)A(γt) = (−1)A(γ)−g+1 .

But T
(a1a2···ar)
(b1b2···bf−1bf+1···bk) ω is a term in (δbT

(a1a2···ar)
(.) ω)(b1b2···bk) with sign

(−1)f+1 and (δbT
(a1a2···ar)
(.) ω)(b1b2···bk) appears on the left hand side of ex-

pression (148) with positive sign. Therefore, the following term appears
once in the left hand side of (148):

(−1)A(γ)−g+1+f+1 ωn+3−k−r
γt

.

Since f + g = t+1, A(γ)− g+1+f +1 ≡ A(γ)+ t+1 (mod 2) and hence,
the sign for ωn+3−k−r

γt
in the left hand side of (148) coincides with the sign

in the right hand side.

One clears the second case in a similar manner. Then, drawing a conclu-
sion, the entire right hand side of expression (148) appears exactly the same
in the left hand side. It can immediately be checked that the reverse holds
too. Each term in the left hand side of equation (148) appears in the mirror
on the right hand side. Therefore, the equality holds and the proof of the
lemma is complete. �
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The integration mechanism:

(149)
∫
E
ω = A = ( T, An−da1

, An−d−1
a1a2

, · · · , A−1
a1a2···an−d+2

)

with:

(150) T =
∫
E
H,

(151)

A(a) =
d+1∑
k=1

(−1)(n−d+1)(k+1)
∑

(i)=(i1>i2>···>ik)

∫
∆(i)

T
(a)
ρ((i))ω , |(a)| ≤ n−d+1

and

(152) A−1
a1a2···an−d+2

= (−1)(n−d+1)d
∑

(i)=(i1>i2>···>ik)

∫
∆(i)

T
a1a2···an−d+2

ρ((i)) ω ,

is now complete. However, there is one more issue to be discussed. The
push-forward map obtained:

(153)
∫
E

: NČn(X × E) → NČn−d(X)

commutes with differentiation operator ď, realizing therefore a morphism of
cochain complexes.

ď→ NČn−1(X × E) ď→ NČn(X × E) ď→ NČn+1(X × E) ď→y∫E y∫E y∫E
ď→ NČn−d−1(X) ď→ NČn−d(X) ď→ NČn−d+1(X) ď→

This morphism is far from being canonical. It depends on choices of dual
cell decomposition ∆i of the compact manifold E and subordination map ρ.
However, one can measure its variation when using different sets of choices.

Proposition 33. Assume that (∆i, ρ) and (∆′
i, ρ

′) are two distinct pairs
of dual cell decompositions and corresponding subordination maps. Let:∫ ′

E
and

∫
E

be the associated push-forward morphisms. There exists a homotopy opera-
tor:

(154) kn : NČn(X × E) → NČn−d−1(X)

such that for any differential non-flat n-cocycle ω ∈ NŽn(X × E),

(155)
∫
E
ω −

∫ ′

E
ω = ďkn(ω) + kn+1(ďω).
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Proof. The proof goes in two steps. Initially, we show that the above state-
ment holds if the two cell decompositions are the same and only the subordi-
nation maps are different. Secondly, we prove that refining a decomposition
in the same subordination map does not change the integration process.

Let us proceed with the first step and construct the homotopy operator.

ď→ NČn−1(X × E) ď→ NČn(X × E) ď→ NČn+1(X × E) ď→
kn−1

↙
y∫ ′E y∫E kn

↙
y∫ ′E y∫E kn+1

↙
y∫ ′E y∫E

ď→ NČn−d−1(X) ď→ NČn−d(X) ď→ NČn−d+1(X) ď→

We keep the notations used earlier. The subordination maps are defined as:

ρ, ρ′ : I → B.

Let ω be a n-cocycle in NŽn(X×E) described in the product open covering
as:

(156) ω = (H, ωna , ω
n−1
a1a2

, ωn−2
a1a2a3

, .... ω0
a1a2....an+1

, ω−1
a1a2....an+2

).

We define Θ = kn(ω) ∈ NČn−d−1(X) represented in the open covering
(Ua)a∈A of X as:

(157) Θ =
(

0,Θn−d−1
a1

, Θn−d−2
a1a2

, · · · Θ−1
a1a2···an−d+1

)
.

The components of (157) are obtained as follows. Let (a) = (a1a2 · · · ar),
1 ≤ k ≤ n− d+ 1. Then:

(158) Θn−d−r
(a) =

d+1∑
k=1

(−1)(n−d)(k+1)
∑

(i) =(i1>i2>···>ik)∫
∆(i)

(
k∑
t=1

(−1)t+1T
(a)
(ρ(i1)ρ(i2)···ρ(it)ρ′(it)···ρ′(ik))ω

)
.

The integrals over points are considered to be restrictions over the corre-
sponding X-slices. If r = n − d + 1, the above summation is made for
k = d+ 1 only.

Denote by A(a) respectively A′(a), the components of the (n− d)-cochains
on X obtained from integrating ω using the subordination ρ respectively ρ′.
We compute:

(δΘ)(a) + (−1)|(a)| dΘ(a) =
d+1∑
k=1

(−1)(n−d)(k+1)
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k∑
t=1

(−1)t+1
∑

(i)=(i1>···>ik)

∫
∆(i)(

[δaT
(.)
(ρ(i1)···ρ(it)ρ′(it)···ρ′(ik))ω](a) + (−1)|(a)|dxT

(a)
(ρ(i1)···ρ(it)ρ′(it)···ρ′(ik))ω

)
=

=
d+1∑
k=1

k∑
t=1

(−1)(n−d)(k+1)+t+1
∑

(i)=(i1>···>ik)

( [δaT
(.)
(ρ(i1)···ρ(it)ρ′(it)···ρ′(ik))ω](a) +

+ (−1)|(a)| dT (a)
(ρ(i1)···ρ(it)ρ′(it)···ρ′(ik))ω +

+ (−1)|(a)|+1 dyT
(a)
(ρ(i1)···ρ(it)ρ′(it)···ρ′(ik))ω ).

But, for a fixed k:
k∑
t=1

∑
(j)=(j1>···>jk−1)

(−1)t+1

∫
∆(j)

dyT
(a)
(ρ(j1)···ρ(jt)ρ′(it)···ρ′(ik−1))ω =

= (−1)(n−d+|(a)|+k+1)
k+1∑
t=1

∑
(i)=(i1>···>ik)

(−1)t+1

∫
∆(i)

([δbT
(a)
(.) ω](ρ(i1)···ρ(it)ρ′(it)···ρ′(ik)) +

+ (T (a)
(ρ(i1)ρ(i2)···ρ(ik))ω − T

(a)
(ρ′(i1)ρ′(i2)···ρ′(ik))ω )).

On can check the above equality by just applying Stokes’ Theorem and then
removing the terms that cancell. Using this in the earlier expression probides
us with:

(δΘ)(a) + (−1)|(a)| dΘ(a) =
d+1∑
k=1

k∑
t=1

(−1)(n−d)(k+1)+t+1

∑
(i)=(i1>···>ik)

( [δaT
(.)
(ρ(i1)···ρ(it)ρ′(it)···ρ′(ik))ω](a) +

+ (−1)|(a)| dT (a)
(ρ(i1)···ρ(it)ρ′(it)···ρ′(ik))ω +

+ (−1)k [δbT
(a)
(.) ω](ρ(i1)···ρ(it)ρ′(it)···ρ′(ik))+

+ (−1)k+1 (T (a)
(ρ(i1)ρ(i2)···ρ(ik))ω − T

(a)
(ρ′(i1)ρ′(i2)···ρ′(ik))ω ) ).

According to Lemma 32, the first three terms inside the above summation
make:

(−1)k T (a)
(ρ(i1)···ρ(it)ρ′(it)···ρ(ik))ďω.
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Therefore:
(δΘ)(a) + (−1)|(a)| dΘ(a) =

= −
d+1∑
k=1

k∑
t=1

(−1)(n−d+1)(k+1)+t+1
∑

(i) =(i1>i2>···>ik)∫
∆(i)

(
T

(a)
(ρ(i1)ρ(i2)···ρ(it)ρ′(it)···ρ′(ik))ďω

)
+

+
d+1∑
k=1

(−1)(n−d+1)(k+1)
∑

(i)=(i1>···>ik)∫
∆(i)

(
T

(a)
(ρ(i1)ρ(i2)···ρ(ik))ω − T

(a)
(ρ′(i1)ρ′(i2)···ρ′(ik))ω

)
.

The first sum on the right hand-side of above equality represents exactly the
(a)-component of kn+1(ďω). Therefore we obtain:

(δΘ)(a) + (−1)|(a)| dΘ(a) = −
[
kn+1(ďω)

]
(a)

+A(a) −A′(a),

In other words: [
ďkn(ω)

]
(a)

+
[
kn+1(ďω)

]
(a)

= A(a) −A′(a).

Equality (155) follows. The first part of the proof is complete.

Let us turn our attention to the second step. Assume that we are dealing
with two different cell decompositions (∆i)i∈I and (∆j)j∈J and that the
latter one is a refinement of the former. Say, there is a map:

ϕ : J → I such that ∆j ⊂ ∆ϕ(j).

Also, assume that both decompositions are subordinated to covering (Ub)b∈B
and the subordination map for ∆i is

ρ : I → B.

The subordination on ∆j can be taken as ρ ◦ ϕ.

Say the integration of ω using the first pair (∆i, ρ) is :

(159)
∫
E
ω = A = ( T, An−da1

, An−d−1
a1a2

, · · · , A−1
a1a2···an−d+2

)

whereas the integration of ω using (∆j , ρ ◦ ϕ) is:

(160)
∫̃
E
ω = Ã = ( T, Ãn−da1

, Ãn−d−1
a1a2

, · · · , Ã−1
a1a2···an−d+2

).
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Our goal is to prove that these two multiplets are actually the same. We
have:

(161) A(a) =
d∑

k=1

(−1)(n−d+1)(k+1)
∑

(i)=(i1>i2>···>ik)

∫
∆(i)

T
(a)
ρ((i))ω .

and

(162) Ã(a) =
d∑

k=1

(−1)(n−d+1)(k+1)
∑

(j)=(j1>j2>···>jk)

∫
∆(j)

T
(a)
ρ(ϕ(j))ω .

(the order relations on J and I are such chosen to make ϕ an increasing
map).

But, ω(c) vanishes as soon as the multi-index (c) includes two identical
sub-indices (by convention). Therefore, in sum (162) all terms:∫

∆(j)

T
(a)
ρ(ϕ(j))ω

for which (j) contains two sub-indices ju and jv with ϕ(ju) = ϕ(jv), vanish.
After removing those, the terms in expression (162) can be summed up to
make the ones in (161). The second step is complete. �

Let us finish up the appendix by making the following observations related
to Proposition 33. First, although the integration mechanism we devised for
differential cochains depends on ingredient choices (dual cell decomposition
and subordination assignment), the induced cohomology push-forward map
does not depend on those. One can extend the arguments in the proof and
take into account a variation of the product open covering too. Under a
change of admissible open covering, the integration mechanism stays again
in the same homotopy class. One can therefore conclude that the induced
cohomology push-forward map:∫

E
: Ȟn(X × E) → Ȟn−d(X)

does not depend at all on the choice of product open covering, dual cell
decomposition and subordination relation.

Second, the construction can be extended to work for differential cochains
having as derivatives global forms. Namely, let Bn(X) be the set of non-flat
differential n-cochains ω such that ďω ∈ Ωn(X). We know from section 1
that the flat coboundary equivalence relation extends to Bn(X). One can
show then that, for ω1, ω2 ∈ Bn(X × E), defined on admissible product
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coverings, with ω1 ∼ ω2∫
E
ω1 ∼

∫
E
ω2 in Bn−d(X)

regardless of the choice of dual cell decomposition subordinated to the two
distinct open coverings. One obtains, therefore, a canonical push-forward
homomorphism: ∫

E
: Bn(X × E)/ ∼ → Bn−d(X)/ ∼ .
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