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1. Introduction

The geometric objects of study in this paper are K3 surfaces which admit a
polarization by the unique even unimodular lattice of signature (1,17). This lattice
can be realized as the orthogonal direct sum

M = H⊕ E8 ⊕ E8 ,

where H is the standard rank-two hyperbolic lattice and E8 is the unique even,
negative-definite and unimodular lattice of rank eight. A lattice-polarization by
the lattice M imposes severe constraints on the geometry of a K3 surface X. In
particular, the Picard rank of X has to be 18, 19, or 20 (see [25]).

A standard Hodge-theoretic observation about this special class of K3 surfaces
is that the polarized Hodge structure of an M-polarized K3 surface is identical
with the polarized Hodge structure of an abelian surface A = E1 × E2 realized as
a cartesian product of two elliptic curves. Since both types of surfaces involved
admit appropriate versions of the Torelli theorem, Hodge theory implies a well-
defined correspondence, giving rise to a canonical analytic isomorphism between
the moduli spaces on the two sides. By employing a modern point of view from the
frontier of algebraic geometry with string theory, one can regard this correspondence
as a Hodge-theoretic duality map, a correspondence that relates two seemingly
different types of surfaces sharing similar Hodge-theoretic information.

In [4], the first two authors showed that that the resemblance of the two Hodge
structures involved in the duality correspondence is not fortuitous, but rather is
merely a consequence of a quite interesting geometric relationship. We show in
[4, Theorem 1.1] that: the surface X possesses a canonical involution defining a
Shioda-Inose structure; the minimal resolution of X quotiented by this involution
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is a new K3 surface Y endowed with a canonical Kummer structure; this structure
realizes Y as the Kummer surface of an abelian surface A which is canonically
represented as a Cartesian product of two elliptic curves (i.e., A = E1 × E2); and
the construction induces a canonical Hodge isomorphism between the M-polarized
Hodge structure of X and the natural H-polarized Hodge structure of the abelian
surface A.

One important feature of the special class of M-polarized K3 surfaces is that
they turn out to be completely classified by two modular invariants σ and π in
C, much in the same way as elliptic curves over the field of complex numbers are
classified by the j-invariant. However, the two modular invariants σ and π are not
geometric in origin. They are defined Hodge-theoretically, and the result leading to
the classification is a consequence of the appropriate version of the Global Torelli
Theorem for lattice polarized K3 surfaces. In the context of the duality map, the two
invariants can be seen as the standard symmetric functions on the j-invariants of
the dual elliptic curves, σ being their sum and π their product. This interpretation
suggests that the modular invariants of an M-polarized K3 surface can be computed
by determining the two elliptic curves.

Explicit M-polarized K3 surfaces can be constructed by various geometrical
procedures. One such method, introduced in 1977 by Inose [19], constructs a two-
parameter family X(a, b) of M-polarized K3 surfaces by taking minimal resolutions
of the projective quartics in P3 associated with the special equations:

(1.1) y2zw − 4x3z + 3axzw2 − 1
2
(z2w2 + w4) + bzw3 = 0

for a, b in C. In Section 3 below, this construction is generalized so as to compact-
ify the affine (a, b)-parametric family to a weighted projective space with covering
coordinates [a, b, d]. The coarse moduli space for M-polarized K3 surfaces is then
given by the locus where d 6= 0 in this weighted projective space. One can thus
regard the Inose quartic as a normal form for M-polarized K3 surfaces. In
the second part of [4], we use the geometric correspondence to explicitly describe
the j-invariants of the two elliptic curves E1 and E2 associated to the Inose sur-
face X(a, b). The result is reproduced below (Theorem 3.3) in the context of the
X(a, b, d) family. As a consequence, the coarse moduli space for M-polarized K3
surfaces is explicitly identified with the classical Hilbert modular surface H1 for the
elliptic modular group.

In this paper, we use explicit computations of Picard-Fuchs differential equa-
tions to explore (and exploit) the “universal” property of the moduli space of M-
polarized K3 surfaces with respect to enhancement to non-generic Picard lattices.
The conditions on the hypersurfaces for enhancement to Picard lattices of rank 19
are of particular interest, as these conditions determine one-parameter subfamilies
of the coarse moduli space. As we work throughout in parallel with the case of the
Weierstrass normal form for elliptic curves, this case is reviewed in Section 2. The
approach is a natural extension of the second author’s work on Picard-Fuchs uni-
formization for families of elliptic curves and lattice-polarized K3 surfaces [11, 12].

The Inose family normal form is realized as projective hypersurfaces with just
ADE type singularities. This provides a crucial advantage to using this normal
form, as now the Griffiths-Dwork technique (see Section 2.2.1 for a general discus-
sion) can be applied to compute the differential equations satisfied by periods of the
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holomorphic 2-forms directly. We do this first in Section 3 with independent vari-
ables taken to be the free coefficients in the normal form hypersurface equations;
this is the analog of taking partial derivatives of the Weierstrass elliptic periods
with respect to the parameters g2 and g3. It proves convenient to work in the affine
chart [1, b, d] for these computations. Upon substitution of the modular invariants
from [4], this partial differential system completely decouples, reducing to a pair of
ODEs. Each of these is the Picard-Fuchs ODE of a corresponding “factor” family
of elliptic curves, reflecting the geometric fact that our normal form K3 surfaces
are Shioda-Inose surfaces of products of pairs of elliptic curves.

Next we apply the Griffiths-Dwork method with independent variable t; this
is the analog of treating g2(t) and g3(t) as rational functions of a single complex
variable t. In the case of Weierstrass normal form elliptic curves, this modifica-
tion simply allows one to compute the Picard-Fuchs ODE for arbitrary one pa-
rameter families of elliptic curves, as the moduli space of elliptic curves is itself
one-dimensional. In our case, this modification allows one to “probe” the two-
dimensional moduli space of H⊕E8⊕E8 lattice polarized K3 surfaces with rational
curves, computing the Picard-Fuchs ODE for the restricted period functions.1 The
modular invariants of [4] can once again be substituted in, yielding a fourth order
ODE whose coefficients are differential rational functions of j1(t) and j2(t).

Here is where the universal property for the moduli space with respect to lattice
enhancement makes its impact felt. Enhancement of polarization from M to

Mn = H⊕ E8 ⊕ E8 ⊕ 〈−2n〉
is equivalent to the condition that this fourth order ODE reduces to a third order
ODE (a condition on ODEs studied by Gino Fano over a century ago). Under the
hypothesis that j1(t) and j2(t) are nonconstant, this reduction occurs precisely when
these two functions satisfy a particular nonlinear ODE. This nonlinear ODE is the
master equation for modular parametrizations in that any parametrization
of the modular curve X0(n) by rational functions j1(t) and j2(t) solves this ODE.
What’s more, for any solutions j1(t) and j2(t) not themselves rational functions
of t, but such that their sum and product are still rational functions, the pair
parametrizes the modular curve X0(n) + n.

The master equation can even be rewritten in a form which makes manifest
its relationship with pairs of n-isogenous elliptic curves. First, all of the terms
involving j1(t) can be moved to one side of the equation and all those involving
j2(t) to the other. Of course, up to exchanging j1(t) with j2(t), the expressions
on each side are then the same. Moreover, they are recognizable as the coefficients
of projective normalized Picard-Fuchs ODEs for a pair of elliptic curves. As such,
they are each the sum of one term involving the rational function characterizing
the uniformizing differential equation for the elliptic modular parameter j, and
another term consisting of the Schwarzian derivative of j with respect to t (when
set equal to zero, this expression is also known as the “Schwarzian differential
equation” for j). Once the master equation for modular parametrizations has been
expressed in this form, it is natural to ask whether an analogous equation, based on

1Computation of Picard-Fuchs equations for particular one-parameter families of K3 surfaces
of Picard rank 19 dates back at least to [26]. The approach taken in the present paper, however,
results in a universal expression for the Picard-Fuchs equations for all one-parameter families of K3
surfaces admitting (at least) an M -polarization. The families are explicitly realized as subfamilies
of the single two-parameter family of Equation 1.1.
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hauptmoduls other than the elliptic modular parameter j, will similarly characterize
parametrizations of genus zero quotients of the upper half plane by the moonshine
groups. We address this question in Section 3.3.1, and illustrate there explicit
parametrizations of some modular equations studied by Cohn-McKay.

Currently under investigation are an extension of the method to handle modular
curves of genus greater than zero (by modifying the Griffiths-Dwork technique) and
a generalization to parametrizing Humbert surfaces and Shimura curves based now
on universal properties of the moduli space of H ⊕ E8 ⊕ E7 lattice polarized K3
surfaces studied by Clingher and Doran in [5, 6].

2. Elliptic Curves

2.1. Normal Form and Moduli Space. As is well-known, the classification
of elliptic curves over the field of complex numbers is based on the following classical
features. First, every elliptic curve E can be realized through an explicit normal
form given, for instance, by the projective version of the Weierstrass cubic:

y2z − 4x3 + g2xz2 + g3z
3 = 0

for some pair (g2, g3) ∈ C2 with g3
2−27g2

3 6= 0. The Weierstrass form is not unique.
Nevertheless, the weighted projective point [g2, g3] ∈ WP(2, 3) classifies E up to
isomorphism. This leads to a nice (coarse) moduli space for complex elliptic
curves, taken as the one-dimensional open variety:

M =
{

[g2, g3] ∈WP(2, 3)
∣∣ g3

2 − 27g2
3 6= 0

}
.

In this context, the j-invariant:

j(E) =
g3
2

g3
2 − 27g2

3

realizes an identification between M and C.
From a Hodge theoretic point of view, an elliptic curve can be seen as an

element (period) in the complex upper half-plane H. The classifying space for such
periods is the modular quotient

F1 = Γ1\H

where Γ1 = PSL(2,Z) with the standard action on H.
The link between the two points of view is realized by the period map:

(2.1) per : M → F1

which makes an isomorphism of analytic spaces. The inverse of (2.1) can be de-
scribed in terms of Γ1-modular forms as:

per−1 = [ 60 · E4, 140 · E6 ]

where E4, E6 : H → C are the classical Eisenstein series of weights four and six,
respectively. Using the inverse period map, one may view the j-invariant as a map
j : H→ C.
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2.2. Picard–Fuchs Differential Equation. When considering the periods
of varieties in families, it is often easier to compute the regular singular differential
equation satisfied by all the period functions on the base of the family – the Picard-
Fuchs differential equation – than to explicitly describe the period functions
themselves. We first review in Section 2.2.1 the method, due to Griffiths and Dwork,
for computing the Picard-Fuchs differential equation for families of hypersurfaces in
projective space via residues. In Section 2.2.2 this technique is applied to families
of elliptic curves in P2 in Weierstrass normal form.

2.2.1. The Griffiths–Dwork Technique. Let X be a hypersurface in Pn given
by a homogeneous polynomial Q in coordinates [x0, . . . , xn], and let ι : X → Pn

be the inclusion map. Let H(X) be the de Rham cohomology of rational n-forms
on Pn − X. We may write any representative of H(X) as PΩ0/Qk, where Ω0 =∑n

i=0(−1)ixidx0 ∧ . . . d̂xi . . . ∧ dxn is the usual holomorphic form on Pn and P is
a homogeneous polynomial of degree deg P = k deg Q− (n + 1).

Let the Jacobian ideal J(Q) be the ideal generated by the partial derivatives
∂Q
∂xi

. If we have an element of H(X) of the form K
Qk+1 Ω0 where K =

∑
i Ai

∂Q
∂xi

is a
member of the Jacobian ideal, then we may reduce the order of the pole:

(2.2)
Ω0

Qk+1

∑

i

Ai
∂Q

∂xi
=

1
k

Ω0

Qk

∑

i

∂Ai

∂xi
+ exact terms

Let γ be a cycle in X, and let T (γ) be a small tubular neighborhood of γ in
Pn −X. Then we may define the residue map Res : H(X) → Hn−1(X,C) by

1
2πi

∫

T (γ)

PΩ0

Qk
=

∫

γ

Res(
PΩ0

Qk
)(2.3)

Let H be the hyperplane class in Hn−1(Pn,C). We refer to the perpendicular com-
plement of ι∗(H) in Hn−1(X,C) as the primitive cohomology of X, and denote
it by PH(X). The residue map is an isomorphism onto the primitive cohomology.
[15]

Now, consider a family of hypersurfaces Xt1···tj given by polynomials Qt1···tj ,
where t1, . . . , tj are independent parameters. We may define a corresponding family
of cycles γ(t1, · · · , tj). For (t1, . . . , tj) in a sufficiently small neighborhood of a fixed
parameter value (t′1, . . . , t

′
j), T (γ(t1, . . . , tj)) is homologous to T (γ(t′1, . . . , t

′
j)) in

Hn(Pn −X,C). Thus, we may differentiate as follows:

∂

∂ti

∫

T (γ(t1,...,tj))

PΩ0

Q(t)k
=

∂

∂ti

∫

T (γ(t′1,...,t′j))

PΩ0

Q(t)k
(2.4)

= −k

∫

T (γ(t′1,...,t′j))

PΩ0

Q(t)k+1

∂Q

∂ti

If r = dimC(Hn−1(X)) = dimC(Hn−1(X,C)), only r− 1 derivatives can be lin-
early independent. Therefore the periods must satisfy a linear differential equation
with coefficients in Q(t1, . . . , tj) of order at most r — this is a Picard–Fuchs dif-
ferential equation. One may compute the Picard–Fuchs equation by systematically
taking derivatives of

∫
T (γ(t1,...,tj))

PΩ0
Q(t)k with respect to the various parameters and

using 2.2 to rewrite the results in terms of a standard basis for Hn−1(X,C). This
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method is known as the Griffiths–Dwork technique. (See [9] or [13] for a more
detailed discussion.)

2.2.2. Griffiths–Dwork for the Weierstrass Form. Consider the hypersurface

Q = y2z − 4x3 + g2xz2 + g3z
3 ,

the Weierstrass form for a family of elliptic curves. We illustrate here the Griffiths–
Dwork technique, first treating g2 and g3 as independent parameters. Equation 2.4
tells us that we may differentiate under the integral sign:

∂

∂g2

∫
Ω0

Q
= −

∫
xz2Ω0

Q2
(2.5)

∂

∂g3

∫
Ω0

Q
= −

∫
z3Ω0

Q2

A Groebner basis computation shows that xz2 and z3 are equivalent modulo
the Jacobian ideal J(Q). Using Equation 2.2 to reduce the pole order, we find that

∂

∂g2

∫
Ω0

Q
− ∂

∂g3

∫
Ω0

Q
=
−1
4g2

∫
Ω0

Q
(2.6)

Now, suppose g2 and g3 are both functions of a single parameter t. We compute:

d

dt

∫
Ω0

Q
= (

∂

∂g2

∫
Ω0

Q
)
∂g2

∂t
+ (

∂

∂g3

∫
Ω0

Q
)
∂g3

∂t
(2.7)

= −g′2(t)
∫

xz2Ω0

Q2
− g′3(t)

∫
z3Ω0

Q2

d2

dt2

∫
Ω0

Q
= 2g′2(t)

∫
xz2(g′2(t)xz2 + g′3(t)z

3)
Q3

Ω0 − g′′2 (t)
∫

xz2

Q2
Ω(2.8)

+ 2g′3(t)
∫

z3(g′2(t)xz2 + g′3(t)z
3)

Q3
Ω0 − g′′3 (t)

∫
z3

Q2
Ω

= 2(g′2(t))
2

∫
(xz2)2

Q3
Ω0 + 4g′2(t)g

′
3(t)

∫
(xz2)(z3)

Q3
Ω0(2.9)

+ 2(g′3(t))
2

∫
(z3)2

Q3
Ω0 − g′′2 (t)

∫
xz2

Q2
Ω0 − g′′3 (t)

∫
z3

Q2
Ω0

We may use Equation 2.2 together with a Groebner basis computation to
rewrite d2

dt2

∫
Ω0
Q as a sum of integrals of expressions with Q2 in the denominator:

d2

dt2

∫
Ω0

Q
= 2(g′2(t))

2

∫
α1xz2 + β1z

3

Q2
Ω0 + 4g′2(t)g

′
3(t)

∫
α2xz2 + β2z

3

Q2
Ω0

(2.10)

+ 2(g′3(t))
2

∫
α3xz2 + β3z

3

Q2
Ω0 − g′′2 (t)

∫
xz2

Q2
Ω0 − g′′3 (t)

∫
z3

Q2
Ω0

Here the αj and βj are rational functions in g2 and g3. Note that we have ex-
pressed d2

dt2

∫
Ω0
Q entirely in terms of

∫
xz2

Q2 Ω0 = − ∂
∂g2

∫
Ω0
Q and

∫
z3

Q2 Ω0 = − ∂
∂g3

∫
Ω0
Q .

Since d
dt

∫
Ω0
Q is also written in terms of

∫
xz2

Q2 Ω0 and
∫

z3

Q2 Ω0, we might hope to
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relate d
dt

∫
Ω0
Q and d2

dt2

∫
Ω0
Q . If such a relationship is to exist for an arbitrary choice

of g2(t) and g3(t),
∫

xz2

Q2 Ω0 and
∫

z3

Q2 Ω0 cannot be independent. In fact, they are
not: xz2 ∼= −3g3

2g2
z3 mod J(Q), so applying Equation 2.2 we find that

(2.11)
∫

xz2

Q2
Ω0 =

−3g3

2g2

∫
z3

Q2
Ω0 +

1
4g2

∫
Ω0

Q
.

Combining Equations 2.7, 2.10, and 2.11, and setting ∆ = g3
2−27g2

3 , we obtain
the Picard-Fuchs differential equation for a one-parameter family of elliptic curves
in Weierstrass form:

A2
d2

dt2

∫
Ω0

Q
+ A1

d

dt

∫
Ω0

Q
+ A0

∫
Ω0

Q
= 0(2.12)

where

A2 =16∆(3g′2g3 − 2g2g
′
3)

(2.13)

A1 =16(9g2
2g3(g′2)

2 − (7g3
2 + 135g2

3)g′2g
′
3 + 108g2g3(g′3)

2 + ∆(−3g3g
′′
2 + 2g2g

′′
3 ))

A0 =21g2g3(g′2)
3 − 18g2

2(g′2)
2g′3 + 8g′3(15g2(g′3)

2 −∆g′′2 )− 4g′2(27g3(g′3)
2 − 2∆g′′3 )

If we make the substitution j = g3
2/∆, then Equation 2.12 reduces to the

standard Picard-Fuchs equation for a one-parameter family of elliptic curves in
Weierstrass form, described for example in [27]:

d2

dt2

∫
dx

y
+ B1

d

dt

∫
dx

y
+ B0

∫
dx

y
= 0(2.14)

where

B1 =
g′3
g3
− g′2

g2
+

j′

j
− j′′

j′
(2.15)

B0 =
(j′)2

144j(j − 1)
+

∆′

12∆

(
B1 +

∆′′

∆′ −
13∆′

12∆

)

2.3. Relationship to Toric Geometry. Another model for the Weierstrass
family of elliptic curves comes from toric geometry. This one-parameter family can
be realized as the family of anticanonical hypersurfaces in the toric variety
X =WP(1, 2, 3). This family K has defining equation

f(λ0,λ1,λ2,λ3)(x0, x1, x2) = λ0x0x1x2 + λ1x
3
1 + λ2x

6
0 + λ3x

2
2 = 0

in the global homogeneous coordinate ring C[x0, x1, x2] of X (where x0, x1, x2 have
weights 1, 2, 3 respectively).

The four parameters (λ0, . . . , λ3) are redundant. In [9], the authors define a
“simplified polynomial moduli space” Msimp for K with the property that Msimp

is a finite-to-one cover (generically) of the actual moduli space M for K (which
in the present case is just WP(2, 3) ' P1). Moreover, following [9], we have that
Msimp is a one-dimensional toric variety, and t = λ2

1λ2λ3

λ4
0

is a coordinate on the torus
C∗ ⊂Msimp. We can use the fact that the defining equation is defined only up to a
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nonzero constant to set λ0 = 1. Then we can use the natural action of T ' (C∗)2 to
set λ1 = 4, λ3 = −1. Then our simplified polynomial modulus becomes t = −16λ2.

Let φ be the rational map X → P2 defined by

(x0, x1, x2) 7→
(

x1

x2
0

+
1
48

,
x2

x3
0

− x1

2x2
0

, 1
)

= (x, y, z)

The image of K under φ has defining equation

y2z = 4x3 − 1
192

xz2 +
(

λ2 +
1

13824

)
z3

Using the j-invariant of an elliptic curve as an affine coordinate on M'WP(2, 3),
we have a map Msimp →M given in affine coordinates by

t 7→ 1
1728t(t− 432)

= j

The Picard-Fuchs differential equation for K is derived by factoring a Gel’fand-
Kapranov-Zelevinsky hypergeometric equation in [22, Section 5.1]. The ODE pro-
duced there is

0 =
(
θ2 − 12t (6θ + 5) (6θ + 1)

)
f(t)(2.16)

= t (t (432t− 1) f ′′(t) + (864t− 1) f ′(t) + 60f(t))

where θ = t d
dt . Plugging in g2(t) = 1/192, g3(t) = 864t−1

13824 into Equation 2.12 gives

(2.17) 0 =
1

393216
(t (432t− 1) f ′′(t) + (864t− 1) f ′(t) + 60f(t)) .

So the methods of GKZ and Griffiths-Dwork yield the same equation in this case
(up to an inconsequential overall factor).

3. K3 Surfaces Polarized by H⊕ E8 ⊕ E8

3.1. Normal Form and Moduli Space. In [4], the authors presented the
full classification of K3 surfaces (X, i) polarized by the unimodular even lattice
of rank eighteen M = H ⊕ E8 ⊕ E8. The contents of this section are adapted
from [4], where proofs of the results may be found. The crucial ingredient in this
classification is the existence of a normal form. That is:

Theorem 3.1 ([4]). Let (X, i) be an M-polarized K3 surface. Then, there
exists a triple (a, b, d) ∈ C3, with d 6= 0 such that (X, i) is isomorphic to the
minimal resolution of the quartic surface:

(3.1) Q(a, b, d) : y2zw − 4x3z + 3axzw2 + bzw3 − 1
2
(dz2w2 + w4) = 0.

The equation in Theorem 3.1 can be regarded as the analog, for M-polarized K3
surfaces, of the Weierstrass form in the classical theory of elliptic curves. It is a
compactification of Inose’s (a, b) family from Equation 1.1.

Two distinct quartics as in (3.1) may correspond to isomorphic polarized K3
surfaces.

Theorem 3.2 ([4]). Two quartics Q(a1, b1, d1) and Q(a2, b2, d2) determine
isomorphic M-polarized K3 surfaces as their minimal resolutions if and only if:

(a2, b2, d2) = (λ2a1, λ3b1, λ6d1)

for some parameter λ ∈ C∗.
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One obtains therefore a coarse moduli space for M-polarized K3 surfaces in the
form of the open variety:

(3.2) MM = { [a, b, d] ∈WP(2, 3, 6) | d 6= 0 }
as well as a pair of fundamental W-invariants (W1,W2):

W1 =
a3

d
, W2 =

b2

d
.

We turn to Hodge theory. Denote by T the rank-four even indefinite lattice
H ⊕ H. Then, following the general framework of [10], one notes that the Hodge
structure of an M-polarized K3 surface (X, i) can be seen as a point in the classifying
space:

(3.3) Γ\Ω
where

Ω = { ω ∈ P(T⊗ C) | (ω, ω) = 0, (ω, ω) > 0 }
and Γ is the group of integral isometries of the lattice T, with its standard action
on Ω. Upon further inspection, the quotient (3.3) turns out to be identical to the
classical Hilbert modular surface:

(3.4) H1 = (PSL(2,Z)× PSL(2,Z))o Z/2Z \ H×H
where H denotes a copy of the complex upper-half plane. This reinterpretation re-
flects, at a Hodge theoretic level, the geometric one-to-one correspondence existing
between M-polarized K3 surfaces and abelian surfaces that split as a product of
two elliptic curves.

The Global Torelli Theorem (see [10]) asserts then that the period map:

per : MM → H1

is an analytic isomorphism. This isomorphism can be made completely explicit.
Let j : H → C be the classical elliptic modular function. There are two important
modular functions on the Hilbert surface H1, given, on the cover H×H, by the two
symmetric functions:

σ(τ1, τ2) = j(τ1) + j(τ2), π(τ1, τ2) = j(τ1) · j(τ2).

They can be seen naturally as coordinates on the surface H1 realizing an identifi-
cation:

(σ, π) : H1
'−→ C2.

Theorem 3.3 ([4]). The inverse period map per−1 : H1 →MM is given by:

per−1 =
[
π1/3, (π − σ + 1)1/2, 1

]
.

In other words, the W-invariants of an M-polarized K3 surface (X, i) are linked to
the periods of X by the formulas:

W1 = π, W2 = π − σ + 1.
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3.2. Loci Supporting Lattice Enhancements. Since the rank 18 lattice M
is unimodular, the only possible enhancements to M′-polarized lattices with M ⊂ M′

and M′ of rank 19 are those for which M′ = Mn = M⊕〈−2n〉 = H⊕E8⊕E8⊕〈−2n〉
for some n ∈ N. The Mn polarized K3 surfaces for n > 1 correspond, via the Shioda-
Inose construction, to products of elliptic curves with an n-isogeny between them.
The extra algebraic cycle on the K3 corresponds to the graph of the n-isogeny on
the product of the two elliptic curves. Determining the subloci of WP(2, 3, 6) on
which these enhancements occur thus reduces to the problem of finding relations
between the j-invariants of pairs of elliptic curves. This, of course, is a classical
problem with a rich history.

Consider the map φn : H → P2 given by τ 7→ [j(τ), j(nτ), 1] = [x, y, z], and
denote by X0(n) the closure of the image of φn. φn(τ) = φn(τ ′) if and only if

τ ′ =
aτ + b

cτ + d
, nτ ′ =

αnτ + β

γnτ + δ

for some (
a b
c d

)
,

(
α β
γ δ

)
∈ SL2(Z)

Examining these equations, we see that(
na nb
c d

)
= ±

(
nα β
nγ δ

)

which is possible if and only if τ ′ = aτ+b
cτ+d , for

(
a b
c d

)
∈ Γ0(n) .

Thus X0(n) is a compactification of Γ0(n)\H, and parametrizes (ordered) pairs of
n-isogenous elliptic curves.

The genus of X0(n) for many small n can be found in [7]. The equation
Φn(x, y) = 0 for X0(n) on the affine patch z = 1 is the classical modular equation
for Γ0(n)2. Because it is symmetric in x and y, it can be written as a polynomial
in terms of the elementary symmetric functions π = xy, σ = x + y. Let Φ+n

n (π, σ)
be the corresponding polynomial such that Φ+n

n (xy, x + y) = Φn(x, y). Note that

(j(τ)j(nτ), j(τ) + j(nτ)) = (j(τ ′)j(nτ ′), j(τ ′) + j(nτ ′))

if and only if (j(τ), j(nτ)) = (j(τ ′), j(nτ ′) or (j(nτ ′), j(τ ′)), which will occur if and
only if τ ′ = aτ+b

cτ+d for some
(

a b
c d

)
∈ Γ0(n) + n .

We may thus view Φ+n
n (π, σ) = 0 as the modular relation for Γ0(n) + n. Then,

using the relationships π = a3, σ = a3 − b2 + 1 from [4], we can rewrite Φn(x, y)
as a polynomial Ψ+n

n (a3, b2), and view Ψ+n
n (a3, b2) = 0 as the equation for a curve

Y0(n) + n ⊂WP(2, 3, 6) on the affine patch d = 1 of the weighted projective plane
with homogeneous coordinates [a, b, d] of weights 2, 3, and 6 respectively. Note
X0(n) + n ' Y0(n) + n. Y0(n) + n is exactly the moduli space of Mn-polarized K3
surfaces as a submoduli space of the moduli space of M-polarized K3 surfaces.

2The j-invariant we use is normalized so that j(i) = 1, not 1728 as in many works on modular
equations in the literature.
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Thus the theory of modular curves and modular equations can be used to
analyze the moduli of Mn-polarized K3 surfaces. For example, the genus of Y0(n)+n
can be found in the literature, and in the case where Y0(n) + n has genus zero, it
can be parametrized by the hauptmodul for Γ0(n) + n.

3.2.1. Examples: n = 2, 3, and 6. Since Γ0(6) is contained in Γ0(3) and Γ0(2),
it is natural to work over X0(6). Choosing as affine coordinate on X0(6) ' P1 the
hauptmodul t for Γ0(6), the family of elliptic curves over X0(6) was shown in [2]
to form a rational elliptic surface S with four singular fibers, of Kodaira types
I1, I2, I3, I6. Beauville gave a model for this surface:

S = {([x, y, z], t) ∈ P2 × P1 : (x + y)(y + z)(z + x) + txyz = 0}

with the singular fibers of types I1, I2, I3, I6 over the points

t = −8, 1, 0,∞

respectively. Another model for this surface is given in [16]:

S′ = {([x, y, z], [α, β]) ∈ P2 × P1 : y2z − 2(α + β)xyz + 2αβ2yz2 + x3 = 0}

An explicit isomorphism between S and S′ is

S

²²

f // S′

²²
P1

g // P1

where f is defined by

([x, y, z], t) 7→ ([tyz, t(z2 + (2 + t)yz + y2 + x(z + y)),−z(z + x)], [t/2, 1])

and g is defined by

t 7→ [t/2, 1]

To describe the 2, 3, and 6-isogenies explicitly, it is more convenient to use S′.
We will denote by S′[α, β] the fiber of S′ over the point [α, β] ∈ P1. From [16], we
have that S′[α, β] is 2-isogenous to S′[−2β, α], 3-isogenous to S′[−α−4β, −2α+β], and
6-isogenous to S′[4α−2β, −α−4β]. The isogenies are not given in [16], but [3] gives
an explicit 2-isogeny, and [20] gives an explicit 3-isogeny for families of elliptic
curves. Comparing these families with S′ and noting that the 6-isogeny S′[α, β] →
S′[4α−2β,−α−4β] is the composition of the 2-isogeny S′[α:β] → S′[−2β,α] with the 3-
isogeny S′[−2β,α] → S′[4α−2β,−α−4β], we can derive explicitly what the isogenies
φn : S′ → S′ are for n = 2, 3, 6. Denote φn(([x, y, z], [α, β]) by ([x′n, y′n, z′n], [α′n, β′n]).
Then x′n, y′n, z′n, α′n, β′n are given below for n = 2, 3. (In the interest of space, we
omit the corresponding data for n = 6, but we note that it can easily be deduced,
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since φ6 is the composition of φ2 and φ3.)

x′2 = x(β2z − x)(2αβz − x)
y′2 = (β − 2α)x3 + 2αβ3yz2 − 2β2xyz + x2y

z′2 = (β2z − x)2z
α′2 = −2β

β′2 = α

x′3 = x((4β2z − 3x)x2 + 4αβxz(−3β2z + 2x) + 4α2z(3β4z2 − 3β2xz + x2))
y′3 = −8α3z(3β6z3 − 3β2x2z + x3) + x3(−8β3z + 12βx− 3y)−

12α2βz(2β2z − x)(−2x2 + βyz) + 6αx(4β4xz2 − 9β2x2z + 2x3 + 2β3yz2)
−6ζ3(−4αβ3xz2 + x3 + α2z(8β4z − 4β2x))(α(β2z − x)− βx + y)

z′3 = x3z

α′3 = −α− 4β

β′3 = −2α + β

where ζ3 is a primitive third root of unity.
In order to understand Y0(n)+n for n = 2, 3, 6 as a sublocus ofWP[2, 3, 6], there

are two ways one could proceed. One is to find the defining equation Ψ+n
n (a, b, d) =

0 for Y0(n) + n, and another — since in these cases Y0(n) + n is genus zero —
is to find a parametrization [a(t), b(t), d(t)] for the curve. Of course, these two
points of view are closely related. Given a parametrization one can eliminate the
parameter to obtain a defining equation, and conversely given the defining equation
for a genus zero curve one can employ standard algorithms (for example in [1]) to
obtain a parametrization.

Defining equations for X0(n) for small n are readily available (for example,
in MAGMA), and from these we can obtain defining equations Ψ+n

n (a, b, d) = 0
for Y0(n) + n. We give Ψ+n

n (a, b, d) for n = 2, 3 here. Ψ+6
6 (a, b, d) is a degree 72

polynomial with large coefficients, so we will omit it.

Ψ+2
2 (a, b, d) = 64a9 − 192b2a6 − 21360da6 + 192b4a3 + 1792857d2a3

−83424b2da3 − 64b6 − 1771561d3 − 175692b2d2 − 5808b4d

Ψ+3
3 (a, b, d) = 729a12 − 2916b2a9 − 129551076da9 + 4374b4a6

+5754777529878d2a6 − 1298340252b2da6 − 2916b6a3

+77703185570076d3a3 − 3974452231068b2d2a3

−733336092b4da3 + 729b8 + 262254607552729d4

−262365230658916b2d3 + 110638660374b4d2 − 15554916b6d

Given a parametrization (x(tn), y(tn)) of X0(n) on the affine patch z 6= 0,
using coordinates (b2, d) on the affine patch a 6= 0 of WP(2, 3, 6), we can construct
a parametrization of Y0(n) + n by setting

b2(tn) =
(x(tn)− 1)(y(tn)− 1)

x(tn)y(tn)

d(tn) =
1

x(tn)y(tn)
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[24] gives such a parametrization (x(tn), y(tn)) by the hauptmodul tn for Γ0(n) for
n ≤ 25 such that X0(n) is a genus 0 curve. These parametrizations for n = 2, 3, 6
give

b2(t2) =
(t2 − 512)2(t2 − 8)2(t2 + 64)2

(t2 + 16)3(t2 + 256)3

d(t2) =
21236t3

(t + 16)3(t2 + 256)3

b2(t3) =

(
t23 − 486t3 − 19683

)2 (
t23 + 18t3 − 27

)2

(t3 + 27)2 (t23 + 246t3 + 729)3

d(t3) =
21236t43

(t3 + 3)3(t3 + 27)2(t3 + 243)3

b2(t6) =
(
t26 + 12t6 + 24

)2 (
t26 + 36t6 + 216

)2 ×
(−t46 + 504t36 + 13824t26 + 124416t6 + 373248

)2 ×
(
t46 + 24t36 + 192t26 + 504t6 − 72

)2

((t6 + 6)(t6 + 12)(t36 + 18t26 + 84t6 + 24)(t36 + 252t26 + 2435t6 + 2635))3

d(t6) =
2985984t76(t6 + 8)5(t6 + 9)5

((t6 + 6)(t6 + 12)(t36 + 18t26 + 84t6 + 24)(t36 + 252t26 + 2435t6 + 2635))3

Another interesting parametrization of Y0(n)+n can be derived from the “two-
valued” modular equations derived, following Fricke, in [7].

3.3. Picard-Fuchs Differential Equations. Let us set a = 1 in Equation
3.1 and consider the resulting polynomial Q = y2zw − 4x3z + 3xzw2 + bzw3 −
1
2 (dz2w2 +w4). (We have simply reduced to the affine patch a 6= 0 of the parameter
space WP(2, 3, 6).) Applying the Griffiths–Dwork technique to

∫
Ω0
Q yields a pair

of second-order Picard–Fuchs equations:

∂2

∂b2

∫
Ω0

Q
− 4(d

∂2

∂d2

∫
Ω0

Q
+

∂

∂d

∫
Ω0

Q
) = 0(3.5)

(−1 + b2 + d)
∂2

∂b2

∫
Ω0

Q
+ 2b

∂

∂b

∫
Ω0

Q
+ 4bd

∂2

∂bd

∫
Ω0

Q
(3.6)

+2d
∂

∂d

∫
Ω0

Q
+

5
36

∫
Ω0

Q
= 0

We can use the relationship between b, d and the j-invariants of elliptic curves
from Theorem 3.3 to write b2 = (j1−1)(j2−1)

j1j2
and d = 1

j1j2
. Here j1 and j2 are

the j-invariants of the two elliptic curves E1 and E2 whose product corresponds to
X(1, b, d). Let Ei have affine Weierstrass model

y2 = 4x3 − g
(i)
2 x− g

(i)
3

for i = 1, 2. Then we can rewrite Equations 3.5 and 3.6 in terms of j1 and j2. The
resulting system decouples (no mixed partials appear). The system reduces (after
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taking appropriate linear combinations of the resulting equations) to

0 = 72j1

(
(2j1 − 1)F (1,0)(j1, j2) + 2(j1 − 1)j1F (2,0)(j1, j2)

)
− 5F (j1, j2)

0 = 72j2

(
(2j2 − 1)F (0,1)(j1, j2) + 2(j2 − 1)j2F (0,2)(j1, j2)

)
− 5F (j1, j2)

where F (i,j)(j1, j2) = ∂i+jF

∂ji
1∂jj

2
.

To solve this system, one need merely solve each ODE separately, then take
products of the solutions. Each of these ODEs separately is a Picard-Fuchs dif-

ferential equation satisfied by the periods of the form ω(i) =
(
g
(i)
2

)1/4
dx
y . Thus

periods satisfying the Picard-Fuchs system arising via Griffiths-Dwork are simply
products of periods of ω(1) and ω(2) (c.f. [23, Theorem 1.1]).

Now, consider a one-parameter family F of M-polarized K3 surfaces obtained
by treating b and d as functions of a single parameter t. We may use the Griffiths–
Dwork technique to analyze this family, just as we computed the Picard–Fuchs
equation for a one-parameter family of elliptic curves in Section 2.2.2. The result
is generically a fourth-order ODE, which we do not reproduce in full here. The
Picard–Fuchs equation for F will reduce to a third-order ODE precisely when F is
an Mn-polarized family.

Let j1(t), j2(t) be two functions of a complex variable t such that j1(t) + j2(t)
and j1(t)j2(t) are rational functions of t. In this case b2(t) = (j1(t)−1)(j2(t)−1)

j1(t)j2(t)
and

d(t) = 1
j1(t)j2(t)

are also rational functions of t, and we may write the Picard–Fuchs

equation for F in terms of j1(t) and j2(t). The coefficient r4(t) of d4

dt4

∫
Ω0
Q in the

Picard–Fuchs ODE then becomes

144((j1(t)−1)(j2(t)−1))3(j1(t)j2(t))4(j1(t)−j2(t))7(j′1(t)j
′
2(t))

2 (¤(j2(t))−¤(j1(t)))

where

¤(j(t)) = j′(t)2
36j(t)2 − 41j(t) + 32
144(j(t)− 1)2j(t)2

+
1
2
{j(t), t}

and

{j(t), t} =
2j′(t)j′′′(t)− 3j′′(t)2

2j′(t)2

is the Schwarzian derivative.
If j1(t) and j2(t) are both nonconstant, then r4(t) will vanish if and only if

either j1(t) = j2(t) (in which case the family of K3 surfaces is M1-polarized) or
¤(j1(t)) = ¤(j2(t)). This observation motivates the following theorem.

Theorem 3.4. Let j1(t), j2(t) be nonconstant functions of a complex variable
t such that j1(t) + j2(t) and j1(t)j1(t) are rational functions of t. Then

(3.7) ¤(j1(t)) = ¤(j2(t))

if and only if (j1(t), j2(t)) is a parametrization of X0(n) for some n ≥ 1.

Proof. The Picard-Fuchs ODE for F , suitably normalized, is the tensor prod-
uct of the Picard-Fuchs ODE’s of the two pencils of elliptic curves over P1

t with
functional invariants j1(t), j2(t) respectively. If these second-order ODE’s L1 =
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0, L2 = 0 are in projective normal form

L1 =
d2f

dt2
+ p2(t)f

L2 =
d2g

dt2
+ q2(t)g

then p2(t) = ¤(j1(t)) and q2(t) = ¤(j2(t)). Their tensor product is

0 = H(4)(t) +
q′2(t)− p′2(t)
p2(t)− q2(t)

H ′′′(t) + 2(p2(t) + q2(t))H ′′(t) +

p2(t) (p′2(t) + 5q′2(t))− q2(t) (5p′2(t) + q′2(t))
p2(t)− q2(t)

H ′(t) +(3.8)
(

(p2(t)− q2(t))2 + p′′2(t) + q′′2 (t) +
q′2(t)

2 − p′2(t)
2

p2(t)− q2(t)

)
H(t)

According to [14], this fourth-order equation factorizes as a third-order equation
times a first-order equation if and only if p2(t) = q2(t), i.e. if and only if ¤(j1(t)) =
¤(j2(t)). On the other hand, the Picard-Fuchs equation of F has third order if and
only if F is Mn-polarized, and this occurs if and only if the two pencils of elliptic
curves are fiberwise n-isogenous–or in other words, if and only if (j1(t), j2(t)) ∈
X0(n) for all t. ¤

For this reason, we call Equation 3.7 the master equation for modular
parametrization of modular equations for the elliptic modular function j(τ).

Corollary 3.5. If two pencils of elliptic curves over P1
t admit a fiberwise n-

isogeny for n such that X0(n) + n is genus 0, then the projective normal forms of
their Picard-Fuchs differential operators are identical.

3.3.1. Modular Relations and Differential Identities for Hauptmoduls. Theo-
rem 3.4, which relates the existence of a parametrized modular relation between
j(τ) and j(nτ) to a differential identity involving a parametrization, can be gener-
alized to other hauptmoduls. If h is a hauptmodul for a genus 0 modular group Γ,
then h will satisfy a Schwarzian differential equation

h′(τ)2QΓ(h(τ)) +
1
2
{h(τ), τ)} = 0(3.9)

where QΓ(h) is a rational function we shall call the “Q-value for h.” A list of “Q-
values” for (suitably normalized) hauptmoduls for all genus 0 modular groups are
given in [21].

As was noted in [18, 17], if the hauptmodul h for Γ can be expressed as a
function h1(t) of a hauptmodul t for a genus 0 group Γ′, then

h′1(t)
2QΓ(h1(t)) +

1
2
{h1(t), t} = QΓ′(t)(3.10)

This identity follows quite easily from formally writing h1(t) = h(τ(t)), and apply-
ing the chain rule to Equation 3.9. If we can also write h(nτ) as a function h2(t),
then we have an analogous result to Equation 3.10 with h1(t) replaced by h2(t),
and hence we have
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Theorem 3.6. If h and t are hauptmoduls for genus zero modular groups Γ
and Γ′ respectively, and if h(τ), h(nτ) can both be expressed as rational functions
of t then

h′1(t)
2QΓ(h1(t)) +

1
2
{h1(t), t} = h′2(t)

2QΓ(h2(t)) +
1
2
{h2(t), t}(3.11)

= QΓ′(t)

Such a situation will occur when h(τ), h(nτ) satisfy a modular equation of
genus zero. Theorem 3.4 covers the special case Γ = PSL(2,Z), Γ′ = Γ0(n).

For example, [8] discusses the hauptmoduls satisfying modular equations of
levels two and three, and gives formulae for the modular equations. Parametrizing
the curves defined by these equations, computing the left-hand side of Equation
3.10, and comparing with list of “Q-values” in [21], we can verify Theorem 3.6 in
these cases (and identify the group Γ′ if it is not already known). We illustrate this
for Γ = Γ0(3) + 3 below.

The hauptmodul h for Γ = Γ0(3) + 3 has Q-value h2−48h+7560
4(h2−24h−2772)2

and satisfies
the level two modular equation Φ2(h(τ), h(2τ)) = 0 where

Φ2(h1, h2) = h3
1−h2

2h
2
1+17343h2h1+h3

2+741474(h1+h2)+1566(h2
1+h2

2)+28166076

The curve defined by Φ2(h1, h2) = 0 can be parametrized by setting

h1(t) =
−512t3 + 804t2 − 12t + 1

(1− 6t)2t
, h2(t) =

244t3 − 30t2 − 6t + 1
t2 − 6t3

Evaluating the left-hand side of 3.10, we see that

QΓ′(t) =
2848t4 − 800t3 + 108t2 + 4t + 1

4t2 (120t3 − 68t2 + 2t + 1)2

and by comparing with [21] we see that t is a hauptmodul for Γ′ = Γ0(6) + 3.

3.4. Relationship to Toric Geometry. Another model for the two parame-
ter family of M-polarized K3 surfaces comes from toric geometry. The 2-parameter
family can be realized as the family of anticanonical hypersurfaces in the mirror
(polar) toric variety X to WP(1, 1, 4, 6). The family of anticanonical K3’s K has
defining equation

f(λ0,λ1,...,λ5)(x0, x1, x2, x3) = λ0x0x1x2x3+λ1x
12
0 +λ2x

12
1 +λ3x

3
2+λ4x

2
3+λ5x

6
0x

6
1 = 0

in the global homogeneous coordinate ring C[x0, x1, x2, x3] of X (where x0, x1, x2, x3

have weights 1, 1, 4, 6 respectively).
As in Section 2.3, these six parameters (λ0, λ1, . . . , λ5) are redundant. Let

Msimp be the simplified polynomial moduli space for K. Msimp is a two-dimensional
toric variety and is a finite-to-one cover (generically) of the actual moduli space M
(which in the present case is WP(2, 3, 6)). We will use (z1, z2) = (λ2

3λ3
4λ5

λ6
0

, λ1λ2
λ2

5
)

as affine coordinates on the torus (C∗)2 ⊂ Msimp. We can use the fact that the
defining equation is only defined up to an overall nonzero constant to set λ4 = 1.
Then we can use the natural action of T ' (C∗)3 on X to set λ1 = λ2 = −1/2, and
λ3 = −4. Then our simplified polynomial moduli are (z1, z2) = ( 16λ5

λ6
0

, 64
λ5

).
Let φ be the rational map X → P3 defined by

(x0, x1, x2, x3) 7→
(

x2

x2
0x

2
1

− λ2
0

48
,

x3

x3
0x

3
1

+
λ0x2

2x2
0x

2
1

,
x6

1

x6
0

, 1
)

= (x, y, z, w)
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The image of K under φ has defining equation

0 = y2zw − 4x3z +
λ4

0

192
xzw − 1

2
(
z2w2 + w4

)
+

( −λ6
0

13824
+ λ5

)
zw3

= y2zw − 4x3z +
λ4

0

192
xzw − 1

2
(
z2w2 + w4

)
+

( −λ6
0

13824
+ λ5

)
zw3

Comparing this with the Inose normal form for M-polarized K3 surfaces, we get a
map Msimp →WP(2, 3, 6) given in affine coordinates by

(z1, z2) 7→ (
1

1443z2
1z2

,
864z1 − 1
1443z2

1z2
) = (a3, b2)

The Picard-Fuchs equations for this family has been computed from GKZ methods
(e.g. by Lian-Yau in [23]) as

0 = L1f(z1, z2)(3.12)
= (θ1(θ1 − 2θ2)− 12z1(6θ1 + 5)(6θ1 + 1)) f(z1, z2)

0 = L2f(z1, z2)(3.13)
=

(
θ2
2 − z2(2θ2 − θ1 + 1)(2θ2 − θ1)

)
f(z1, z2) .

See also [29] for some related discussion of the Lian-Yau example.
Changing coordinates into the (b2, d) affine patch on WP(2, 3, 6) gives

(z1, z2) 7→
(
864z1 − 1, 1443z2

1z2

)
= (b2, d)

and plugging this into Equations 3.5, 3.6 gives

0 = − 1
z2

L2F (z1, z2)(3.14)

0 =
(
− 1

z1
L1 + 1728L2

)
F (z1, z2)(3.15)

Therefore, as in Section 2.3, the solution spaces of the Picard-Fuchs equations
computed via GKZ and Griffiths-Dwork are identical.
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Moonshine. Centre de Recherches Mathématiques: CRM Proceedings and Lecture Notes,
24 (2000) 257–281.



18 A. CLINGHER, C. F. DORAN, J. LEWIS, AND U. WHITCHER

[12] C. F. Doran, Picard-Fuchs Uniformization and Modularity of the Mirror Map. Communica-
tions in Mathematical Physics, 212 (2000) 625–647.

[13] C. F. Doran, B. Greene, and S. Judes, Families of Quintic Calabi-Yau 3-Folds with Discrete
Symmetries. arXiv:hep-th/0701206v1
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